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LSC Overview
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Part 1 - What is the the system?
 - Role of the Seismic Isolation and Positioning subsystem
 - Parts of the subsystem
 - Key design features
Part 2 - How well does it work?
 - Commissioning process
 - Performance 
Part 3 - Challenges 
 - Tilt-horizontal coupling
 - Wind
 - Earthquakes
 - Structure bending
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Figure 1: Advanced LIGO interferometer configuration. ETM, end test mass; ITM, input

test mass; BS, 50/50 beamsplitter; CP, compensation plate; ERM, end reaction mass; PRM,

power recycling mirror; SRM, signal recycling mirror; PR2/3, power recycling cavity mirror

2/3; SR2/3, signal recycling cavity mirror 2/3; FI, Faraday isolator; ⌅m, phase modula-

tion; PD, photodetector. The power levels shown correspond to full-power operation; the

interferometers can also be operated at much lower powers with good strain sensitivity.
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• Provides good performance at 10 Hz.

• It is more than “isolation for the mirrors”

•Need to isolate, position, and monitor the mirrors 
 - Stable positioning below ~0.1 Hz  
 - Isolation from the microseism (~0.15 Hz) to 10 Hz.

•Need to mount many optical components

• Seismic and Suspensions are 
   one system split into a few parts. 

Role of Seismic Isolation  
and Control
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•Good active and passive isolation at 10 Hz 
passive above a few hertz, active isolation from 0.1 to 30 Hz

• Provides good isolation in the “Control Band”,  
work to minimize velocity below 0.1 Hz

•Can monitor the table motion from DC to 2 kHz.

• Big tables mount many components, payloads are flexible.

• Seismic and Suspensions are 
   one system split into a few parts. 

Role of Seismic Isolation  
and Control
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Role of Seismic Isolation  
and Control
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Role of Seismic Isolation  
and Control
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LSC LIGO vacuum equipment 

drawing courtesy of Oddvar Spjeld 6
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7

Support all the in-vacuum IFO optics
-Large optics in BSC chambers
-other optics in HAM chamber

5 BSC-ISIs
5 HAM ISIs
11 HEPIs
(ISC has passive  
    stack in HAM1)
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Overall Isolation of Test Masses
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HEPI

BSC-ISI

Large Optic  
(business end of SUS)

1x10-19 m/√Hz near 10 Hz

3x10-12 m/√Hz at 10 Hz

~4x10-10 m/√Hz at 10 Hz

Bolted Aluminum structure

2 active stages,

each supported by 3  
blade springs and flexures.

all 6 DOFs controlled  
for each stage.

6 actuators, 6 displacement  
sensors, 6 DOF inertial  
sensing for each stage.

Passive freq’s 1.3-7 Hz 

Optics hang down from  
table, supports 1100 kg  
of total load.

Unity gain freq’s around 30 Hz
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LSC Parts of the Subsystem
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•Plant 
- The mechanical thing we are controlling 
- designed to be controlled 
- it’s a really good mechanical system, but not perfect

• Sensors - Really good sensors 
- We sense all 6 DOF,  
- Displacement sensors for platform location at Low Freq  
- Inertial sensor for platform vibration when possible.  
- plagued by tilt-horizontal coupling at low frequency

•Actuators - Hydraulic actuators for HEPI, voice coils for ISI

•Controls - all DOFs controlled,  
- each control is simple.  
- there are many of them.
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LSC HEPI at LLO
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Hydraulic
 External 
  Pre-
   Isolator
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LSC HEPI housings
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HEPI housing on pier top holds:
- Actuators and sensors for
    vertical and tangential directions
- Offload springs & payload adjustment
- Caging, stops, alignment features...
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LSC HEPI Actuator
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> More range  than PZTs (+/- 1 mm)
> More force than voice coils  
      (~400 lbs, static offset)
> Quiet (<1 nm/√Hz at 1 Hz)
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stage 1
support - stage 0

optics table - stage 2 
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LSC Optical ble
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stage 1
support - stage 0

optics table - stage 2 
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• Bolted aluminum structure  
  Suspended by 3 blade  
  springs & “wires”

• mass:  
   stage 1 ~ 1500 kg 
   plus 510 kg of payload 
 
•Natural freq’s 
   x & y:  1.35 Hz  
   z:        1.8 Hz  
   tip/tilt: 1.07 Hz  
   yaw:    0.9 Hz

• first bending mode:  
   > 250 Hz 

• Servos with  
  unity gain around 25 Hz

HAM Design
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optical table

springs & flexures

vertical GS13 in pod (1 of 3)

horizontal GS13 in pod (1 of 3)

vertical actuator (1 of 3)

locker/ limiter (1 of 4)

stage 0

springs and sensors
under the table top

access to a vertical sensor

HAM Design
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LSC Overall Isolation of triples
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HAM2 - chamber hidden

4 triple SUS
HAM-ISI

HEPI
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LSC Inside HAM2
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CPS$
MicroSense’s$Capaci0ve$
Displacement$Sensors$

Used$On:$HAM<ISIs$and$BSC<ISIs$
Used$For:$≤$0.5$Hz$Control,$Sta0c$

Alignment$$$
Used$‘cause:$Good$Noise,$UHV$

compa0ble$

IPS$
Kaman’s$Induc0ve$Posi0on$

Sensors$
Used$On:$HEPIs$

Used$For:$≤$0.5$Hz$Control,$Sta0c$
Alignment$$$

Used$‘cause:$Reasonable$Noise,$
Long$Range$

T240$
Nanometric’s$Trillium$240$

Used$On:$BSC<ISIs$
Used$For:$0.01$≤$f$≤$1Hz$Control$
Used$‘cause:$Like$STS<2s,$Triaxial,$$$$$$$
no$locking$mechasim$<>$podded$

GS13$
GeoTech’s$GS<13$

Used$On:$HAM<ISIs$and$BSC<ISIs$
Used$For:$≥$0.5$Hz$Control$

Used$‘cause:$awesome$noise$
above$1Hz,$

no$locking$mechanism$<>$podded$

L4C$
Sercel’s$L4<C$

Used$On:$All$Systems$
Used$For:$≥$0.5$Hz$Control$

Used$’cause:$Good$Noise,$Cheap,$
no$locking$mechanism$<>$podded$

STS2$
Strekheisen’s$STS<2$
Used$On:$HEPIs$

Used$For:$0.01$≤$f$≤$1Hz$Control$
Used$‘cause:$Best$in$the$‘Biz$

below$1$Hz,$Triaxial$

“High”$Frequency$

DC$

10$$mHz$

1$$$Hz$

800$$Hz$

SEI sensors and their noise

J. Kissel G1100431
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LSC SEI sensors and their noise
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•All DOFs are controlled 
- Choose X, Y, Z, rX, rY, and rZ as basis  
- Aligned with gravity (tilt)  
- Aligned with IFO basis

• Each DOF is pretty simple  
- Blended loops control position at low-frequency  
   isolation at high frequencies, unity gain freq of ~ 30-40 Hz  
- Use feed-forward, feedback, sensor correction  
- note that much 10 Hz performance is passive

•Worst thing at low frequencies is tilt-horizontal coupling

• Biggest complexity is the number of controls

• Biggest lure for the young is to reinvent the control scheme
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disp geo

control law

Payload attached to ground 
with compliance (1-2 Hz)
Need both alignment and 
vibration control.
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Control philosophy  
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control law

Payload attached to ground 
with compliance (1-2 Hz)
Need both alignment and 
vibration control.
Correct displacement 
sensor with ground motion 
measurements.
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and often scaled for convenience.

true complementary filters  
sum identically to 1.

Final implementation
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LSC Sensors for Control
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Use active and passive techniques 
to get good performance
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LSC Signals for processing
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LSC

There is a process we set up 
and followed to get everything 
installed and running.

Platform dynamics are similar 
from 1 unit to the next, so 
basic control laws work 
without modification.

First set of tests for India 
system are done.

Dealing with complexity

32
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Transfer Function Evolution 
Those same data were used to look at the evolution of the GS-13 transfer functions (in cartesian 
coordinates) over the year 2012 and the installation of the real payload: 
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Interesting features of current performance:
- Good isolation in the control band
- Survive trains
- Useful monitor of motion at suspension point
- Guardian allows us to bring system up automatically
- Blend switching enables re-tuning of running system
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LSC ‘Typical’ performance
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Nov 28th (Sat. after Thanksgiving)
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LSC Real impact of  
isolation, alignment & control
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LSC ‘Environmental’ sensors
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LSC Glitch monitoring
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LSC Detection monitoring 

42from detection paper P150914
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43freq (Hz)
20 100 1000

D
et

ec
to

r s
tra

in
 n

oi
se

 d
en

si
ty

(H
z-1

/2
)

10-23

10-22

10-21

cr
ea

te
d 

by
 p

lo
t_

m
or

e_
st

uf
f_

G
W

15
09

14
 o

n 
23

-F
eb

-2
01

6

Noise floor of the instruments vs. ASD of the signal
H1
L1
ASD of simulation



G1601604

LSC Power of the monitors
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If GW150914 were linearly coupled seismic motion

30 50 100 200

motion of 1 mirror, equiv to GW150914

motion of table to generate equivalent mirror motion
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LSC Summary of successes
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• Mechanical systems now built work well
• Commissioning path is pretty well laid out
• Basic Control schemes work
• Path to success involves copy/ paste of existing controls 

  - but you should come work with it.
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LSC Summary of successes
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• Mechanical systems now built work well
• Commissioning path is pretty well laid out
• Basic Control schemes work
• Path to success involves copy/ paste of existing controls 

  - but you should come work with it.

Challenges
• Tilt - horizontal coupling
• Wind induced tilt
• Earthquakes
• Differential motion between platforms
• HEPI structure resonance
• Alignment changes
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LSC Tilt-Horizontal coupling
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• Horizontal accelerometers can not distinguish between  
Tilt and horizontal acceleration

€ 

xpm
(h ) ∝    xsp

(h ) −
g
ω 2 θ 

& 

' 
( 

) 

* 
+  

relative response scales as g/w^2, 
so tilt coupling dominates at low 
frequency.

If you follow the sensor signal, then 
tilt -> real translation-> excess rms
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LSC Tilt-Horizontal coupling
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• Horizontal accelerometers can not distinguish between  
Tilt and horizontal acceleration

• Trouble below 0.1 Hz almost always can be traced back to 
tilt-horizontal coupling.

• Hard to diagnose - because the sensors are always suspect 
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LSC Tilt-Horizontal coupling
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• Horizontal accelerometers can not distinguish between  
Tilt and horizontal acceleration

1. Measure the tilt and subtract it from the ground sensor.
  - Krishna Venkateswara built & installed inertial rotation sensors -  
    called the Beam Rotation Sensors (BRS) see G1600451
2. Reduce the amount of slab tilt
  - Biggest source of tilt is local building tilt driven by the wind.
Current topics:

Measure and subtract the ground tilt using the BRS
Look at IFO signals at Hanford vs. wind and control tuning
Design buildings which tilt less

What can be done?
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motion
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Margarita Vidrio, LHO log 12996

Wind causes trouble when  
   speed > 10m/s, about 15% of the time

Small reduction in speed or coupling 
  = big reduction in trouble time
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LSC
Wind moves the building

52H. Radkins LHO log 23440, Nov 16, 2015

Ground motion signal in Y, Nov 16 with strong wind

corner station - middle

corner station,
Ham 2 & 5

end stations
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Autocollimator+

Ground	
   (lt	
   is	
   measured	
   by	
   measuring	
   angle	
   between	
  
ground	
  and	
  low	
  frequency	
  beam	
  balance.	
  

Horizontal	
  accelera(on	
  can	
  be	
  rejected	
  by	
  loca(ng	
  center	
  
of	
  mass	
  at	
  the	
  pivot.	
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LSC Beam Rotation Sensor
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Ground	
   (lt	
   is	
   measured	
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   measuring	
   angle	
   between	
  
ground	
  and	
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  balance.	
  

Horizontal	
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  loca(ng	
  center	
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  the	
  pivot.	
  

Autocollimator+
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LSC
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Beam Rotation Sensor

Autocollimator+
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BRS data
56

SEI log 602, Oct. 30, 2014. BTL on Krishna’s BRS data from EndX
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SEI log 602, Oct. 30, 2014. BTL on Krishna’s BRS data from EndX
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Corrected motion w/ BRS
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LSC
Building details matter

59H. Radkins LHO log 23440, Nov 16, 2015

Ground motion signal in Y, Nov 16 with strong wind

corner station - middle

corner station,
Ham 2 & 5

end stations
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LSC

x

depends on position

60

x

x
x

sensor locations are approximate

End-Y

Corner station

Ground Tilt  

Red position has ~ 10x more than 
green position.

Likely due to building shape, and 
distance between walls and sensor

LHO studying wind fences

LIGO-India should make a better 
end station. 

What are the statistics for wind at 
your site?
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LSC Airflow past End-Y

61CFD simulations by Ian Gomez

Impact of “Bluff Body”  
   buildings on airflow.
The wind shakes the building

wind speed

“spaghetti plot” traces particle flow
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LSC

rees against

the      indWW

TT
PNW0005

A Pacific Northwest Extension Publication

Washington State University  •  University of Idaho  •
Oregon State University

62

windfence picture and plot from WeatherSolve.com

http://WeatherSolve.com
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LSC

rees against

the      indWW

TT
PNW0005

A Pacific Northwest Extension Publication

Washington State University  •  University of Idaho  •
Oregon State University

63

windfence picture and plot from WeatherSolve.com

http://WeatherSolve.com
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LSC Building at End-Y

64Can we/ Should we install a wind fence at LHO?

Wind rose from Pasco Airport,  
placed on the LHO End-Y building

The strong winds come from the SW  
and blow along the arm
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LSC Earthquakes
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What can we do to make the IFO more resistant to teleseismic 
earthquakes?  

USGS network allows us to predict the arrival of the various 
waves at the site.

Guardian allows us to change the mode of the detector  
  (e.g. high noise, high range)

Might have a manual system up by O2.  
  - Terramon alerts the operator of impending shake  
  - operator can use guardian to switch modes

Good models of ground motion, seismic system,  
   and SUS would help this 
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LSC
Stage 0 structure resonance
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G1400858, G1401167,  
L. Nutall, T. MacDonald, C. Collette

floor 
sensor

stage 0 sensor set

HEPI on stops

HEPI floating

Sensors on stage 0 move more than 
the floor at 8 Hz/ 11 Hz
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LSC
Stage 0 structure resonance
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floor 
sensor

structural path is poor

H
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ct
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H
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r

Unconstrained flexibility of stage 0 structure, particularly in the radial direction 
compromises HEPI stage and adds motion near 10 Hz.

LIGO-India should address this.
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LSC In Conclusion
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Seismic System works well.

It is complicated overall, but each part is reasonably simple

We have commissioned these for 20 chambers,  
   and we’re pretty good at it.

You should come work with it.

It is just a part of the big system,  
   we are still learning about the integration.

Several challenges remain, you can help

LIGO-India facility can be better than LHO and LLO facilities.
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LSC to consider
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wind - fences
wind - building shapes
HEPI stage 0 resonances
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LSC Building at End-Y
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Wind rose from Pasco Airport,  
placed on the LHO End-Y building

The strong winds come from the SW  
and blow along the arm

wind rose generated from http://arp-govcloud.jvs.aero:8080/windRose/ airport is KPSC,  EY image from Google

http://arp-govcloud.jvs.aero:8080/windRose/
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LSC Installation into Enhanced 
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Assembling HAM6-ISI 
for Enhanced LIGO

HAM6-ISI installed, 
supporting the  

Output Mode Cleaner
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LSC Pendulum Suspension
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SUS: Quadruple Suspension for ETM/ITM

• Parameters for suspension

• Test and penultimate masses : 
each 40 kg, 34 cm (diam) x 20 
cm, silica

• Other masses: 22 kg, 22 kg

• Final stage: 60 cm silica ribbons,      
1.1 mm x 0.11 mm,                     
Vertical bounce mode: 8.8 Hz          
first violin mode: ~490 Hz

• Overall length (suspension point 
to optic centre) 1.63 m

• MATLAB model used to compute 
transfer functions (update from M 
Barton not yet implemented -
longitudinal TF will be unaffected, 
vertical TF will be slightly (<10%) 
larger than shown overleaf)

• SUS requirements taken from 
SUS DRD document T010007-02

Picture in here

CTorrie and M P-Lloyd
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Drawings courtesy of Calum Torrie and GEO600

 

Suspensions material from N. Robertson, GEO600, and the SUS team

Multiple-pendulums 
for control flexibility & 
seismic attenuation

Each stage gives ~1/f2  
isolation above the  
natural frequency.
 More that 1e6 at 10 Hz. 

Mirrors are synthetic fused silica 
40 kg, 34 cm diameter, 20 cm thick
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LSC Pendulum Suspension
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SUS: Quadruple Suspension for ETM/ITM

• Parameters for suspension

• Test and penultimate masses : 
each 40 kg, 34 cm (diam) x 20 
cm, silica

• Other masses: 22 kg, 22 kg

• Final stage: 60 cm silica ribbons,      
1.1 mm x 0.11 mm,                     
Vertical bounce mode: 8.8 Hz          
first violin mode: ~490 Hz

• Overall length (suspension point 
to optic centre) 1.63 m

• MATLAB model used to compute 
transfer functions (update from M 
Barton not yet implemented -
longitudinal TF will be unaffected, 
vertical TF will be slightly (<10%) 
larger than shown overleaf)

• SUS requirements taken from 
SUS DRD document T010007-02

Picture in here

CTorrie and M P-Lloyd
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Drawings courtesy of Calum Torrie and GEO600 silicate bonding creates a monolithic final stage

 

Multiple-pendulums 
for control flexibility & 
seismic attenuation

Each stage gives ~1/f2  
isolation above the  
natural frequency.
 More that 1e6 at 10 Hz. 

Mirrors are synthetic fused silica 
40 kg, 34 cm diameter, 20 cm thick

Suspensions material from N. Robertson, GEO600, and the SUS team
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LSC Pendulum Suspension
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SUS: Quadruple Suspension for ETM/ITM

• Parameters for suspension

• Test and penultimate masses : 
each 40 kg, 34 cm (diam) x 20 
cm, silica

• Other masses: 22 kg, 22 kg

• Final stage: 60 cm silica ribbons,      
1.1 mm x 0.11 mm,                     
Vertical bounce mode: 8.8 Hz          
first violin mode: ~490 Hz

• Overall length (suspension point 
to optic centre) 1.63 m

• MATLAB model used to compute 
transfer functions (update from M 
Barton not yet implemented -
longitudinal TF will be unaffected, 
vertical TF will be slightly (<10%) 
larger than shown overleaf)

• SUS requirements taken from 
SUS DRD document T010007-02

Picture in here

CTorrie and M P-Lloyd
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Drawings courtesy of Calum Torrie and GEO600
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LSC 2 styles of chamber
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Support all the in-vacuum IFO optics
-Large optics in BSC chambers
-other optics in HAM chamber
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LSC

Motion of the Test Mass with Proposed Mods to ASI design
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Final Performance
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LSC Blending sensors

79

10-2 10-1 100 10110-3

10-2

10-1

100

cr
ea

te
d 

by
 p

lo
t_

45
_v

s_
qu

ite
90

 o
n 

18
-M

ay
-2

01
6

90 mHz Blend for Stage 1 Y

CPS
T240



G1601604

LSC Blending sensors

80

10-2 10-1 100 10110-3

10-2

10-1

100

cr
ea

te
d 

by
 p

lo
t_

45
_v

s_
qu

ite
90

 o
n 

18
-M

ay
-2

01
6

compares Blends for Stage 1 Y
CPS - 90mHz
Inertial - 90mHz
CPS - 45mHz
Inertial - 45 mHz



G1601604

LSC
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https://alog.ligo-wa.caltech.edu/aLOG/index.php?
callRep=27170
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https://goo.gl/maps/of6XQ85s8on
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