CALIBRATING OPTICAL SPRINGS

E. D. Hall

September 14, 2016

RESONANT SIDEBAND EXTRACTION

In a signal-recycled interferometer, the transfer function of DARM fluctuation ΔL to dark-port power fluctuation ΔP is determined by

- the ITM transmissivity T_{i},
- the SRM transmissivity T_{s},
- the microscopic one-way SRC phase ϕ,
- the homodyne angle ζ, and
- the optical gain g, which depends on the above four quantities as well as the beamsplitter power $P_{b s}$.

We also define the arm pole $f_{\mathrm{a}}=c T_{\mathrm{i}} / 8 \pi L$, and the SRM amplitude reflectivity $r_{s}=\sqrt{1-T_{s}}$.

RESONANT SIDEBAND EXTRACTION

For 01, we aimed for resonant sideband extraction: $\phi=\zeta=\pi / 2$. The DARM optical plant has a particularly simple form in this case:

$$
\begin{equation*}
\frac{\Delta P}{\Delta L}=\frac{g}{1+\mathrm{if} / p}, \tag{1}
\end{equation*}
$$

with

$$
\begin{equation*}
p=f_{a} \frac{1+r_{\mathrm{s}}}{1-r_{\mathrm{s}}} \tag{2}
\end{equation*}
$$

DETUNED RSE: BUONANNO AND CHEN REPRESENTATION

If $\phi \neq \pi / 2$ or $\zeta \neq \pi / 2$, the DARM optical plant is more complicated:

$$
\begin{equation*}
\frac{\Delta P}{\Delta L} \propto \frac{t_{\mathrm{s}} \mathrm{e}^{i \beta}\left[\left(1-r_{\mathrm{s}} \mathrm{e}^{2 i \beta}\right) \cos \phi \cos \zeta-\left(1+r_{\mathrm{s}} \mathrm{e}^{2 i \beta}\right) \sin \phi \sin \zeta\right]}{1+r_{\mathrm{s}}^{2} \mathrm{e}^{4 i \beta}-2 r_{\mathrm{s}} \mathrm{e}^{2 i \beta}[\cos 2 \phi+(\mathcal{K} / 2) \sin 2 \phi]} \sqrt{\frac{2 P_{\mathrm{bs}} \omega_{0}^{2}}{\omega_{\mathrm{a}}^{2}+\omega^{2}}}, \tag{3}
\end{equation*}
$$

where $\beta=-\arctan f / f_{\mathrm{a}}=-\arctan \omega / \omega_{\mathrm{a}}$,

$$
\begin{equation*}
\mathcal{K}=\frac{8 P_{\mathrm{bs}}}{M L^{2}} \frac{\omega_{0}}{\omega^{2}\left(\omega_{\mathrm{a}}^{2}+\omega^{2}\right)}, \tag{4}
\end{equation*}
$$

and ω_{0} is the angular frequency of the laser.
(Buonanno and Chen 2001, also Rob Ward's thesis)

DETUNED RSE: CURRENT AND FUTURE OPTICAL PLANTS

DETUNED RSE: QUASI-ZPK REPRESENTATION

We can recast this transfer function into a form that is (nearly) a zpk representation:

$$
\begin{equation*}
\frac{\Delta P}{\Delta L}=g \times \frac{1+i f / z}{\left(1+\frac{i f}{|p| Q_{p}}-\frac{f^{2}}{|p|^{2}}\right)-\frac{\xi^{2}}{f^{2}}}, \tag{5}
\end{equation*}
$$

with parameters $g,|p|, Q_{p}, z$ and ξ.

THE COMPLEX RSE POLE

The RSE pole p is now complex:

$$
\begin{equation*}
p=f_{\mathrm{a}} \times \frac{1-r_{\mathrm{s}} \mathrm{e}^{2 i \phi}}{1+r_{\mathrm{s}} \mathrm{e}^{2 \mathrm{i} \phi}} \tag{6}
\end{equation*}
$$

The Q of the pole is

$$
\begin{equation*}
Q_{p}=\frac{|p|}{2 \operatorname{Re} p} \tag{7}
\end{equation*}
$$

As $\phi \rightarrow \pi / 2$, the pole p becomes real, and so Q_{p} attains its minimum value of $1 / 2$.

THE RSE ZERO

The RSE zero z is always real:

$$
\begin{equation*}
z=f_{\mathrm{a}} \times \frac{\cos (\phi+\zeta)-r_{\mathrm{s}} \cos (\phi-\zeta)}{\cos (\phi+\zeta)+r_{\mathrm{s}} \cos (\phi-\zeta)} \tag{8}
\end{equation*}
$$

As $\phi \rightarrow \pi / 2, z \rightarrow p$ regardless of the value of ζ.

THE SPRING FREQUENCY

The square of the spring frequency is

$$
\begin{equation*}
\xi^{2}=f_{\mathrm{a}}^{2} \times \frac{2 \alpha r_{\mathrm{s}} \sin 2 \phi}{1-2 r_{\mathrm{s}} \cos 2 \phi+r_{\mathrm{s}}^{2}}, \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha=\frac{4 \mathrm{P}_{\mathrm{bs}} \omega_{0}}{\left(2 \pi f_{\mathrm{a}}\right)^{4} M L^{2}} . \tag{10}
\end{equation*}
$$

If $\xi^{2}>0$, the spring feature is a (somewhat) sharp resonance with an associated phase gain in the transfer function. If $\xi^{2}<0$, the spring feature is broad and has only small a effect on the transfer function phase. In either case, $\xi^{2} \rightarrow 0$ as $\phi \rightarrow \pi / 2$.

DETUNED RSE: ZPK APPROXIMATION

If $\left|\xi^{2}\right|^{\frac{1}{2}} \ll|p|$, the denominator of the optical plant can be approximately factorized:

$$
\begin{equation*}
\frac{\Delta P}{\Delta L} \simeq g \times \frac{-\operatorname{sgn}\left(\xi^{2}\right) \times f^{2} \times(1+i f / z)}{\left(1+\frac{i f}{|p| Q_{p}}-\frac{f^{2}}{|p|^{2}}\right)\left(1-\frac{i f}{\left|\xi^{2}\right|^{\frac{1}{2}} Q_{\xi}}-\frac{f^{2}}{\xi^{2}}\right)}, \tag{11}
\end{equation*}
$$

with $Q_{\xi}=Q_{p} \times|p| /\left|\xi^{2}\right|^{\frac{1}{2}}$. This shows that when $\xi^{2}>0$, the spring poles are complex and right-handed in the s-domain. When $\xi^{2}<0$, the spring poles are real, with one right-handed and the other left-handed.

