ITM Camera Focuser Control Interface and Calibration

Chen Jie Xin Mentors: Keita Kawabe, Rick Savage, Dan Moraru

Background

- PCal ETM cameras
 - Nikon D7100 DSLR + Telephoto lens
 - \circ Viewing angle = 9.8°
 - Distance = 5.94 meters
- Locating PCal beams
- Viewing test mass surface

Source: LIGO Document T14005510-v5

Background

• Scattering from ETM when IR resonating in arms

LHO X-end photo from PCal camera (22/11/2015)

Objectives

- 1. Calibrate cameras to quantify scattering
 - Camera sensor
 - Lens
- 2. Set up similar DSLR cameras for viewing ITMs:
 - Hardware
 - User interface

- Determine relationship between pixel values and power incident on camera sensor
- Different settings (ISO, shutter speed)
- Each colour channel R, G, B treated separately

Camera calibration

Camera calibration

19 July 2016

ITM cameras

- Different viewport:
 - Viewing angle = 1°
 - Distance = 32.756 m

Source: LIGO Document T14005510-v5

- Celestron 8" SCT instead of telephoto lens
- Focus adjustment using stepper motor controlled by Beckhoff module

ITM cameras

- Hardware:
 - Cable connections between stepper motor and Beckhoff controller
- Software:
 - PLC program for position control + position presets
 - Currently: can control motor velocity
 - MEDM screen for use from control room

Further work

- Calibration:
 - Calibrate for losses through the lens and telescope
 - Power meter for input power, camera image for output
- ITM camera:
 - Writing position control loop
 - MEDM screen
 - Documentation