

Tilt-correction and Sensor-correction at LHO

Using offline data for designing and quantifying filters

Conor Mow-Lowry

Thanks to: Krishna, Jeff, Brian, Jim, Hugh, Robert

Tilt versus Horizontal displacement

 Conventional seismometers and tiltmeters cannot differentiate between horizontal displacement and ground tilt.

Tilt response to horizontal displacement response for <u>all</u> seismometers = $-g/\omega^2$

 \Rightarrow Tilt is confused with horizontal motion at low frequencies (below ~ 0.1 Hz).

Solution: Inertial rotation sensors, Tilt-free seismometers

Schematic

10-25 µm-thick Cu-Be Flexures

Source: Krishna Venkateswara

The ISI tilt problem, Stage 2

GS-13 tilt-noise and its effect on horizontal translation

Calibration step	Effect on displacement	Relevant frequency
GS-13 measures velocity	1/f	$\omega = 1$
Amplifier noise	1/√f	$f_c = 1 Hz$
Plant inversion	$1/f^{2}$	$f_0 = 1 Hz$
Tilt-baseline	1	
Tilt-to-horizontal coupling	1/f ²	$g/\omega^2 = 1 \ 0.5 \ Hz$
Result	1/f ^{5.5}	Below 0.5 Hz

Some points

- RMS velocity is a good figure of merit, and probably what we care about below ~0.3 Hz.
- Sensor correction allows us to use a lower-tilt seismometer for low-frequency isolation.
- Below 100mHz, ground motion is pretty common mode. The primary microseism ~70mHz sees at least a factor 4 direct subtraction.
- We should design further ISI improvements in the IFO basis, and potentially using IFO readout.

BRS Signal Path

Offline data was used to tune all the BRS filters for improved tiltsubtraction and reduced low-frequency noise injection.

Most benefit came from matching the high-pass filter to the STS2 ACcoupling.

BRS Tilt-correction filter tuning (ETMX)

Conor Mow-Lowry, LHO, July 2016

BRS Tilt-correction filter tuning (ETMY)

BRS Sensor correction

Figure of merit

- We want to minimise the low-frequency RMS velocity transmitted through the Sensor-Correction filter.
- This motion is typically dominated by (uncorrelated) tilt.
- We want to see whether the BRS causes harm when there is no wind.
- And measure the reduction of injected armlength motion during high winds.

Sensor Correction filter

BRS impact, no wind (<4mph)

BRS impact, X-arm, high wind (~25 mph)

Conor Mow-Lowry, LHO, July 2016

BRS impact, Y-arm, high wind (~25 mph)

Conor Mow-Lowry, LHO, July 2016

Conclusions

- The BRS does no harm, even with no wind.
- At high winds, it provides ~a factor of 5 reduction in arm-length RMS velocity.
- The low-tilt corner station STS2 is nearly as good as tilt-corrected ETMY in pretty high winds.
- Identical Sensor correction filters in all cornerstation horizontal-translation Stage-1 DoFs should result in substantially less differential motion.
- Sensor correction and blending should be tuned using real data with high microseismic motion.

Does Sensor Correction help? (yes)

Conor Mow-Lowry, LHO, July 2016

IFO-basis seismic motion is useful!

IFO-basis seismic motion is useful!

No-wind data

Conor Mow-Lowry, LHO, July 2016

High-wind data

