Post-detection GW Astrophysics: What We Know and Don't Know About the GW Sky (But Really Want To!)

Salvatore Vitale MIT

DAWN workshop Atlanta, July 7 2016

Post detection era

- We need to plan asap for the future of ground-based GW detectors
- What (astro)physical questions have we answered in O1?
- What are the open questions?
 - -What questions require a significant upgrade?
 - -What questions require new facilities?
 - —How many detectors should we have online, and under which conditions?

What did we learn in O1 – BH masses

- We measured BH masses directly
- BHs can have masses much larger than what found with EM (<~ 15M)
- Implications for metallicity and winds strength in the progenitors

What did we learn in O1 – BH spins

- We measured BH spins directly
- Spins for BBH hard to measure due to mass ratio close to 1
- GW151226 had a least a BH with non-zero spin
- No much can be said about spin orientation

What did we learn in O1 - general relativity

- The two events allowed for the firsts tests of GR in a strong field dynamical regime
- Still not a precise test. Will require more events

What did we not learn about BHs

- Mass and spin distribution
- Could not exclude exotic objects (instead of BHs)
- Could not pinpoint to the astrophysical formation channel of the systems
- Did not probe cosmological distances
- Did not see effects of spin precession
- Did not see EM counterpart (if any was present...)
- To address these will take more time, or more detectors, or new detectors

Further ahead...

Cosmic history

- When did seed black holes form, how heavy were they and how did they grow?
- What is the geometry, topology and dynamics of large scale structure in the Universe?
- Did CBC produce most of the metals in the Universe?

Extreme matter

- What are the equation of state and internal structure of neutron stars?
- How fast can black holes spin and how big can they get?
- How do supernovae explode?
- How do CBC form, and are they progenitors of short GRBs?

Extreme gravity

- Can we test the no hair theorem?
- Can we probe the space-time around the horizon?
- Is general relativity correct?

Further ahead...

A+, New facilities

2 G detectors

CBC formation channels

- The two most likely formation patterns for CBCs are:
 - Common envelope. The two objects were in a binary system from the very beginning -> aligned spins
 - Dynamical capture. The two objects were born independently, then met and formed a bound system -> isotropic spin
- If both channels happen very estimate the relative
- 10% uncertainty with 200 events

Intrinsic masses

What we measure with GW are the redshifted masses

$$m_{det} = (1+z)m_{source}$$

- GWs do not provide z, but luminosity distance
- In absence of EM counterpart, and the second seco
- Uncertainties in listance will thus propagate source masses
- Do we measure distances better with 3 detectors? No!

Neutron stars – equation of state

- CBC detections can be used to measure the equation of state of neutron stars
- EOS ranking could be done with second generation detectors if rate is high
 - -Could exclude some extreme O
- EOS measurement will likely will happen when new facilities are online
 - Large collection of quiet events
 - Occasional loud events

7/6/16 S. Vitale

Continuous wave sources

- Spinning neutron stars can have ellipticity and emit GWs
 - -Their amplitude strongly depends on EOS
- A detection would provide the quadrupole moment
 - Ellipticity (requires EOS)
 - Differential rotation in the core
- Spin-down limit already beater a few pulsars
 - Will improve in the next scine Chs
 - Could exclude some EOS
- Detection could happen any time from O2 on, depending on EOS (note: O1 analysis not yet concluded!)

Core-collapse supernovae

- Huge potential impact on nuclear physics and astrophysics
 - Explosion mechanism
- GW rate and waveform very uncertain
- In many models, only galactic SNe woodle detectable by 2G
 - Rate of ~1/century
- Third generation detectors could bring this up to ~few/year
- Until new facilities are online, it really boils down to luck...

1511.02836

Stochastic background

- The stochastic background made of all unresolvable BBH could be detectable already with 2G detectors
- Study of the stochastic signal can potentially help assessing metallicity, delay time and start formation rate of underlying pulation
 - Requires new facilities
- Background from inflation is a mote inbitious

Summary

Note: some of the searches in O1 data are not finished yet!

	BNS	NSBH	ВВН
Detection	>= 02	>= 02	
Rates	>= 03	>= 03	>= 02
Mass distribution	>= 03	>= 03	Decent in O2
Spin distribution	>= 03	>= 03	>= 02
Formation channels	>= 03	>= 03	>= 02
EOS	> O3, A+, NF	> O3, A+, NF	??
EM connection	> 03	> O3	O2 w/ Virgo?
Detection at z>1	NF	NF	03
Tests of GR	>=02	>=02	

	CC SIVE	Other bursts
Detection	O2 - NF	O2- NF
Mechanism	From 1 st detection	??
Mass→ GW efficiency	From 1 st detection	??
	BBH bgd	Primordial bgd
Detection	O4, A+, NF	>>> NF
Population studies	A+, NF	Not Relevant
	Targeted CW	Blind CW
Detection	O2 -NF	O2 -NF
Ellipticity/EOS	From 1 st detection	From 1 st detection
Population studies	Not relevant	A+, NF

CC SNe

NF= new facilities (CE, ET)

• Acknowledge very useful discussions with B. Sathyaprakash, S. Fairhurst, R. Adhikari, M. Evans, D. Sigg, M. Zucker, C. Palomba, M. Zanolin, Y. Chen