Getting an A+ : Enhancing Advanced LIGO

LIGO-DAWN Workshop II Georgia Tech 7 July, 2016

> M. E. Zucker LIGO Laboratory

LIGO-G1601435

Topics for today

- Context and motivation
- Our target
- What will it look like ?
- How long will it take ?
- How much it will cost ?
- Summary

Set the stage: Where we expect to be

- O2 and O3 *will* yield many BBH detections by late 2018
 - BNS and other important astrophysical targets may remain elusive, or too rare for full exploitation
- L1 and H1 should reach design sensitivity by mid-2019
 - At this point, observational horizons freeze at limits set by aLIGO technology
- "Next-generation" detectors optimistically ready no earlier than end of next decade
 - And only with immediate funding commitments

aLIGO operating at full power

Laser Power:	125.00 Watt
SRM Detuning:	0.00 degree
SRM transmission:	0.3500
ITM transmission:	0.0140
PRM transmission:	0.0300
Finesse: 44	46.41
Power Recycling Fa	ctor: 40.54
Arm power:	710.81 kW
Power on beam spl	itter: 5.07 kW
Thermal load on ITI	M: 0.385 W
Thermal load on BS	: 0.051 W
BNS range:	191.04 Mpc (comoving)
BNS horizon:	436.32 Mpc (comoving)
BNS reach:	272.08 Mpc (comoving)
BBH range:	1.37 Gpc (comoving, z = 0.3)
BBH horizon:	3.24 Gpc (comoving, z = 0.9
BBH reach:	2.12 Gpc (comoving, z = 0.5)
Stochastic Omega:	2.42e-09

What can we do?

- aLIGO design is limited by quantum noise at high and at low frequencies
- Mid-band (the "bucket") limited by Brownian thermal noise in mirror coatings
- We've learned a lot on both fronts since aLIGO designs were frozen
- We've also learned much about the detectors by commissioning and operating them
- We now have a lot of capable, well-proven technology in our toolkit
- These afford a realistic prospect to improve aLIGO sensitivity at all frequencies*

Concept Roadmap

(adapted from G1401081)

- An incremental upgrade to aLIGO that leverages existing technology and infrastructure, with minimal new investment and moderate risk
- Target: factor of 1.7* increase in range over aLIGO
 About a factor of 5 greater event rate
- Stepping stone to future 3G detector technologies
- Link to future GW astrophysics and cosmology
- Could be observing within < 6.5 years (mid-2022)
 with prompt funding (FY'19 or earlier)
- "Scientific breakeven" within 1/2 year of operation
- Incremental cost: *a small fraction of aLIGO*

A+ Strain Sensitivity Projection

A+ key parameters:

12dB injected squeezing15% readout loss100 m filter cavity20 ppm RT FC lossCTN half of aLIGO

LIGO-G1600769-v5

LIGO-G1601435

Coating Thermal Noise (CTN) Reduction

- Existing dielectric coatings have excess mechanical dissipation, leading to Brownian thermal noise
- Recent LSC Coatings working group results point to reduced loss through modified deposition and/or composition
 - Elevated-temperature, ion assisted or low-rate deposition
 - Trinary (hybrid layer) designs
- Each requires investment (NRE) in 'nonstandard' industrial capacity (LIGO requirements are special)
- We anticipate a factor of 4 lower dissipation, for a factor of 2 reduction in strain noise

A+ Coatings Plan

- Current R&D on small samples will inform a new A+ Coating Pathfinder development program, which we propose to launch in 1.5 years (FY2018)
- Will spin up industrial vendor(s) to demonstrate fullaperture coatings with new low-dissipation process
 - Requires tooling, chamber and process investments
- In parallel,we'll repolish spare aLIGO ITM and ETM optics
 - (+ buy a few additional spares)
 - Metrology, QA, lab infrastructure, suspensions, tooling, procedures, etc. all identical to aLIGO installation
- Begin production coating with new process early 2020
 - Expect production rate similar to aLIGO
- Low-CTN test masses ready for installation early 2021

Quantum Noise Reduction: Frequency-Dependent Squeezing

- Expect squeezed light injection, now in preparation, to be operating by 2019
- Effective substitute or assist for high-power operation
 - Phase squeezing at HF causes amplitude anti-squeezing (radiation pressure) at LF
 - Added radiation pressure increasingly bothersome as other LF noise is improved; forces trade
- Solution: Frequency-dependent squeezing (FDS)
- NOTE: FDS is key to planned future detectors (Voyager, ET, CX, etc.)

Frequency-Dependent Squeezing

- Optical "filter cavity" (FC)
- Rotates squeezing phase to both improve radiation pressure at LF and phase noise at HF
- Low-loss, high finesse cavity with bandwidth ~100 Hz
- Sensitive to optical losses, scattering and mirror motion
 → Requires L_{FC} ~ 100 m
 → Requires high-quality FC mirrors
 → Requires seismic isolation and quiet mirror suspension

FDS demonstration with 2m filter cavity

Oelker et al, LIGO-P1500062

16m FC FDS test is now in progress at MIT LASTI (LIGO-E1600058) Potential option to install 16m FC on H1 and L1 after O3 as an interim stopgap, if required

100m Filter Cavity Facility Layout Concept

- Recycle four H2 HAM vacuum chambers
 (ship 2 → LLO)
- Small (250 mm) FC beamtube
- FC beam penetrates ITMx chamber
- 25m x 6m lab extension/ annex alongside existing Y tube enclosure

A+ filter cavity mirror suspension & seismic isolation

aLIGO HAM Small Triple Suspension (HSTS)

aLIGO HAM Internal Seismic Isolator (HAM-ISI)

LIGO-G1601435

A+ LIGO DAWN II WORKSHOP ZUCKER

A+ Quantum Noise Optimization: Optical Loss Reduction

- Output losses degrade squeezing benefit
- Aim to reduce output losses from ~ 25% to <10%
- Lossy aLIGO components will be replaced
- An enlarged main beam splitter will reduce aperture losses (LIGO-T1400296)
- Active mode matching will improve coupling losses (LIGO-T1500188)

Balanced homodyne readout

- Reduced dark-port loss
- Improved backscatter immunity
- Reduced LO noise sensitivity
- Improved phase tuning flexibility
- Enhanced readout dynamic range

LIGO-P1300184

Projected A+ Upgrade Cost (H1 and L1)

A+ projected cost breakdown (w/o contingency)

Category ⁺	ROM Estimate		
	Color code: scaled from aLIGO new engineering	(FY'17k\$)	
Core optic coating pathfinder		3,546	
Core optic production		4,266	
FC facility mods	allak	1,023	
FC vacuum	All Mar.	1,761	
FC seismic isolation		4,728	
FC suspensions		990	
Balanced homodyne reado	339		
Sensing & control		214	
Other equipment		601	
Labor		5,648	
Contingency (25%)		5,779	
Total		28,896	

*6/30/2016 rollup; aL labor scaling, no indirect

LIGO-G1601435

Simplified Schedule*

*FY18 funding start; 5y POP; LIGO-P1200087-v32 observing scenario

Work Package	Duration (Days)	Start Date	Finish Date	FY 16	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24
O2 OBSERVING RUN	140.00	8/8/16	2/17/17	-	1							
COMMISSIONING INTERVAL 3	195.00	2/20/17	11/17/17									
O3 OBSERVING RUN	225.00	11/20/17	9/28/18			Y						
COMMISSIONING INTERVAL 4	195.00	10/1/18	6/28/19									
O4 OBSERVING RUN (TBR)	380.00	7/1/19	12/11/20				1		-			-A
A+ UPGRADE	1,135.00	10/2/17	2/4/22			÷				-		0
Coating Pathfinder	652.00	10/2/17	3/31/20								3	K .
Core Optic Production	458.00	7/1/19	3/31/21					:	1		(Day)	
FC FAC, VAC Systems	586.00	10/1/18	12/28/20						-		alle.	
FC SEI, SUS Systems	716.00	7/2/18	3/29/21								a fai	
FC ISC, BHR Systems	900.00	1/1/18	6/11/21					:		11	VI.	
Installation	285.00	1/4/21	2/4/22						·			
A+ COMMISSIONING	260.00	10/4/21	9/30/22							O C	I.	
O5 OBSERVING RUN	400.00	10/3/22	4/12/24									
				2016	2017	2018	2019	2020	2021	2022	2023	2024

- Under (mostly) conservative assumptions, supports installation start @ 2QFY21
- Installation, commissioning times scaled from 'comparable' aLIGO experience
- Goal: coincidence operation (@improved sensitivity) by end of calendar 2022

Risks and decision points

- Low-CTN coating process not ready in time?
 - Can decouple & delay TM replacement
 - Requires 2 installation phases; but intermediate enhanced performance is available for observing, in between
- Problems commissioning new FC and readout?
 - Can quickly and seamlessly revert to baseline aLIGO configuration while problems are diagnosed and resolved
- Unforeseen obstacle to aL design sensitivity?
 - Impact and reaction depends on nature of the problem
 - Precedent shows many such obstacles are mitigated by upgrades, or by opportunities they present (e.g., HEPI, TCS, eLIGO, etc.)
 - Improvements at the cutting edge take time and preparation.
 We have always needed to anticipate success, or find ourselves unprepared for it.

Summary

- Our newborn science will continue to be sensitivity driven for the foreseeable future
- Whenever we can devise a clear plan to better sensitivity, it is our duty to look beyond the current horizon
- A+ is such a plan, and now is the time

Extra slides

LIGO-G1601435

Squeezed light injection*

Dark Port Loss Budget

- If we injected squeezing in aLIGO today, we would endure 25% loss from known sources.
- Most can be eliminated by installing better optical components that are now available, plus adaptive mode matching techniques we're developing in the lab.

Added Opportunity: Newtonian Gravity Gradient Noise Cancellation

- Local density gradients may limit A+ during high seismicity, and will routinely affect 3rd generation successors
- Can be mitigated by modeling & subtracting local gravity fluctuations
- Prototype array now in preparation at LHO

(LIGO-P1600146)

aLIGO operating at full power

Laser Power:	125.00 Wall
SRM Detuning:	0.00 degree
SRM transmission:	0.3500
ITM transmission:	0.0140
PRM transmission:	0.0300
Finesse: 4	46.41
Power Recycling Fa	ctor: 40.54
Arm power:	710.81 kW
Power on beam spl	itter: 5.07 kW
Thermal load on ITI	M: 0.385 W
Thermal load on BS	5: 0.051 W
BNS range:	191.04 Mpc (comoving)
BNS horizon:	436.32 Mpc (comoving)
BNS reach:	272.08 Mpc (comoving)
BBH range:	1.37 Gpc (comoving, z = 0.3
BBH horizon:	3.24 Gpc (comoving, z = 0.9
BBH reach:	2.12 Gpc (comoving, z = 0.5
Stochastic Omega:	2.42e-09

...plus squeezing with ~100m scale filter cavity

Laser Power:	125.00 Watt
SRM Detuning:	0.00 degree
SRM transmission:	0.3500
ITM transmission:	0.0140
PRM transmission:	0.0300
Finesse: 44	46.41
Power Recycling Fa	ctor: 40.54
Arm power:	710.81 kW
Power on beam spl	itter: 5.07 kW
Thermal load on ITI	M: 0.385 W
Thermal load on BS	: 0.051 W
BNS range:	258.72 Mpc (comoving)
BNS horizon:	592.49 Mpc (comoving)
BNS reach:	370.29 Mpc (comoving)
BBH range:	1.74 Gpc (comoving, z = 0.4)
BBH horizon:	4.14 Gpc (comoving, z = 1.3
BBH reach:	2.77 Gpc (comoving, z = 0.8)
Stochastic Omega	9 32e-10

...plus coating thermal noise reduction

Laser Power:	125.00 Watt
SRM Detuning:	0.00 degree
SRM transmission:	0.3500
ITM transmission:	0.0140
PRM transmission:	0.0300
Finesse: 44	46.41
Power Recycling Fa	ctor: 40.54
Arm power:	710.81 kW
Power on beam spl	itter: 5.07 kW
Thermal load on ITI	M: 0.385 W
Thermal load on BS	i: 0.051 W
BNS range:	354.06 Mpc (comoving)
BNS horizon:	814.04 Mpc (comoving)
BNS reach:	510.28 Mpc (comoving)
BBH range:	2.24 Gpc (comoving, z = 0.6)
BBH horizon:	5395.58 Mpc (comoving, z = 2.1)
BBH reach:	3700.64 Mpc (comoving, z = 1.1)
Stochastic Omega:	6.78e-10