

Colliding black holes, Giant Laser Measurement Systems, and Ripples in the Fabric of Space and Time

> Dr. Brian Lantz for the LIGO Scientific Collaboration & the Virgo Collaboration May 31, 2016

black hole image courtesy of LISA, <u>http://lisa.jpl.nasa.gov</u>

G1601228

Colliding black holes, Giant Laser Measurement Systems, and Ripples in the Fabric of Space and Time

> Dr. Brian Lantz for the LIGO Scientific Collaboration & the Virgo Collaboration May 31, 2016

black hole image courtesy of LISA, <u>http://lisa.jpl.nasa.gov</u>

G1601228

Advanced LIGO Laser Interferometer Gravitational wave Observatory

ZLIGO LIGO Scientific Collaboration

ZLIGO LIGO Scientific Collaboration

LIGO Scie laboration

LSC

map from http://www.nationsonline.org/maps/political world map3000.jpg

map from http://www.nationsonline.org/maps/political world map3000.jpg

map from http://www.nationsonline.org/maps/political world map3000.jpg

two black holes merging

two black holes merging

Simulation of the event

http://mediaassets.caltech.edu/gwave

Simulation of the event

http://mediaassets.caltech.edu/gwave

By Sir Godfrey Kneller - http://www.newton.cam.ac.uk/art/portrait.html Implies immediate action at a distance

Earth - By NASA/Apollo 17 crew; taken by either Harrison Schmitt or Ron Evans http://www.nasa.gov/images/content/115334main_image_feature_329_ys_full.jpg apple by Abhijit Tembhekar from Mumbai, India

 $=\frac{Gm_1m_2}{r^2}$

What is a Gravitational Wave?

Predicted by Einstein in 1916 as part of GR.

"Spacetime tells matter how to move, matter tells spacetime how to curve"

- J. A. Wheeler

There are traveling wave solutions, the waves propagate at the speed of light

Albert Einstein

Photograph by Orren Jack Turner, Library of Congress digital ID cph.3b46036.

Simulation of the event

Simulation of the event

The LIGO concept

The LIGO concept why it is nearly impossible

Gravitational waves are hard to measure because space doesn't like to stretch.

(that's why it's taken so long, Einstein 1916,Weiss 1973)

http://mediaassets.caltech.edu/gwave

http://mediaassets.caltech.edu/gwave

1887 experiment to measure "luminiferous ether" with an interferometer

Am. Jour. Sci. - Third Series, Vol. 34, No. 203, Nov. 1887. pg 333-345 G1601228 14

water waves

duck by Daderot, https://commons.wikimedia.org/w/index.php?curid=15477111 Ripple by Brocken Inaglory, https://commons.wikimedia.org/w/index.php?curid=2438314

1887 experiment to measure "luminiferous ether" with an interferometer

Am. Jour. Sci. - Third Series, Vol. 34, No. 203, Nov. 1887. pg 333-345 G1601228 16

1887 experiment to measure "luminiferous ether" with an interferometer

Am. Jour. Sci. - Third Series, Vol. 34, No. 203, Nov. 1887. pg 333-345 G1601228 16

1887 experiment to measure "luminiferous ether" with an interferometer

1887 experiment to measure "luminiferous ether" with an interferometer

1887 experiment to measure "Iuminiferous ether" with an interferometer

The speed of light doesn't change if you are moving!

Am. Jour. Sci. - Third Series, Vol. 34, No. 203, Nov. 1887. pg 333-345 G1601228 17

1887 experiment to measure "luminiferous ether" with an interferometer

The speed of light doesn't change if you are moving! Your perception of time and space are RELATIVE

Am. Jour. Sci. - Third Series, Vol. 34, No. 203, Nov. 1887. pg 333-345 G1601228 17

The LIGO concept why it is nearly impossible

Gravitational waves are hard to measure because space doesn't like to stretch.

The LIGO concept why it is nearly impossible

Gravitational waves are hard to measure because space doesn't like to stretch. 4km arm cavity 3 Things we do: I) Really long arms. 4km arm cavity input light output light, containing gravitational wave signal

Layout of the interferometer

Fabry-Perot arms

advancedligo

Big Scary Laser!

Layout of the interferometer

LSC he LIGO vacuum equipment

Oddivar Sojislo . 2004

USC Overall Isolation of Test Masses

Pendulum Suspension

LSC

LIGO Mirrors: Synthetic fused silica, 40 kg mass 34 cm diameter 20 cm thick

Suspended as a 4 stage pendulum

Pendulur

advancedligo

Optical Table

optics table - stage 2 stage 1 support - stage 0

GI601228 28

Now we are ready...

Π

Initial Masses:

29 (+4/-4) & 36 (+5/-4) M_{sun}

Final Mass:

62 (+4/-4) M_{sun}

- Energy radiated
 - 3 (+0.5/-0.5) M_{sun} c²

Distance

- 410 (+160/-180) MPc
- (1.3 Billion light years)

new ways to see the sky

The Deep Sky

© 2000, Axel Mellinger

new ways to see the sky

The Deep Sky

And Now..

2FGL J1305.0+1152

LSC Supernovas and remnants

January 14, 1997 • J. Pun (NASA/GSFC), R. Kirshner (Harvard-Smithsonian CfA) and NASA

Crab Nebula, supernova in 1054, now a spinning neutron star

Credit: NASA/AEI/ZIB/M. Koppitz and L. Rezzolla

GI601228 39

Supernova 1987A Explosion Debris

ESC First signal - Sept 14, 2015 advancedligo

http://dx.doi.org/10.1103/PhysRevLett.116.061102

NS/NS waveform from http://web.mit.edu/sahughes/www/sounds.html

NS/NS waveform from http://web.mit.edu/sahughes/www/sounds.html

Initial Masses:

29 (+4/-4) & 36 (+5/-4) M_{sun}

Final Mass:

62 (+4/-4) M_{sun}

- Energy radiated
 - 3 (+0.5/-0.5) M_{sun} c²

Distance

I.3 Billion light years
(410 (+160/-180) MPc)

Stanford Prototype advancedligo

How many black hole collisions can we see?

CBC template bank

(just at the edge...)

advancedligo

FIG. 1. The four-dimensional search parameter space covered by the template bank shown projected into the component-mass plane, using the convention $m_1 > m_2$. The lines bound mass regions with different limits on the dimensionless aligned-spin parameters χ_1 and χ_2 . Each point indicates the position of a template in the bank. The circle highlights the template that best matches GW150914. This

Detection statistic

advancedligo

LIGO is not an Imaging Detector

- •Antenna pattern for aLIGO, for an optimally polarized wave.
- •LIGO is more like a microphone than a telescope.
- •i.e.We measure the amplitude of a wave coming from pretty much any direction.
- •Good for first detections, but not so good for finding the source.

