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Abstract

During the first science run of the recently completed Advanced Laser Interferometer
Gravitational-Wave Observatory (aLIGO) detectors, two gravitational waves were detected,
the first such detections in history. When the rest of the data is released to the public, mean-
ingful data representation will be necessary for communication to both informed viewers and
the general public. In its current state, LIGO’s data representation is largely static and clumsy
in nature, relying on Python to generate images of plots or simply distributing numerical data.
This project sought to upgrade one of LIGO’s plotting programs, splot, to feature interactive
zooming and software design compatible with more expansive use. During the course of the
project, splot was upgraded to use the plotly.js JavaScript library to dynamically zoom and
display information as well as Django templates to eliminate the need for hard drive space
when generating the plots, and other minor improvements. This work makes splot much more
informative to users of all kinds and establishes a framework for future features that is friendly
to larger audiences. Also prior to the data release, all signals that were injected using control
mechanisms for detector testing must be catalogued. To make this catalog, a match filter was
constructed and run over many of the known hardware injections over the course of O1, the
first data collection run for aLIGO. The results were compiled into a table and weaknesses in
the search were identified.

1 Introduction to Gravitational Wave Research

Albert Einstein first theorized gravitational waves in 1916 as a consequence of his theory of gen-
eral relativity. The predicted amplitudes of these waves were incredibly small, making observation
of these waves difficult [1]. In the 1960s, Joseph Weber led the first serious efforts to detect grav-
itational waves [2]. Weber’s original design used a large mass of aluminum and a piezoelectric
detector to sense changes in length of the aluminum. In the late 1960s and 1970s, prototype inter-
ferometer detectors were constructed, and in 1980 the NSF funded the construction of a 40-meter
prototype at Caltech and a 1.5-meter prototype at MIT. These prototypes demonstrated the feasibil-
ity of a large interferometer and led to the creation of the Laser Interferometer Gravitational-Wave
Observatory (LIGO) [3]. On September 14th, 2015 Advanced LIGO (aLIGO) directly detected a
gravitational wave [4].

aLIGO is pair of detectors constructed using a modified Michelson interferometer design: one in
Hanford, Washington and the other in Livingston, Louisiana. The detectors are separated by 10
ms of light travel time, and are oriented slightly off-axis from one another. The interferometers
use 1064 nm lasers and L = 4 km arms, along with a number of signal enhancements. A passing
gravitational wave induces a change in the length of the arms ∆L(t) = δLx−δLy = h(t)L, where h
is the strain amplitude projected onto the detector and δLx and δLy are the changes in arm length. h
is the primary output channel, and the sensitivity of this output is determined by two main factors:
the antenna pattern and the frequency of the wave detected. The antenna pattern is dependent on
the sky position of the binary merger that produced the gravitational wave, the inclination of the
binary orbit, and the orientation of the arms of the detector [5].

Figure 1 shows the amplitude spectral density of the primary output, demonstrating a variation in
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Figure 1: a) Arrangement of detectors and configuration of interferometer. b) Strain noise vs.
frequency, showing the highest strain sensitivity in the middle part of the frequency spectrum.

sensitivity dependent on the signal frequency. This variation in strain sensitivity is due to different
sources of noise. At low frequency, the limiting noise source is seismic vibration. At intermediate
frequencies it is Brownian thermal noise originating from the mirror coating [6]. At high frequen-
cies, the quantum shot noise produced by the Heisenberg uncertainty principle become the major
noise source.

The gravitational wave event detected on September 14, 2015, GW150914, swept through fre-
quencies from 35 to 250 Hz in 0.2 s with a maximum strain amplitude of 1.0 x 10−21 occurring at
the highest frequency. GW150914 is the first direct detection of gravitational waves. This event
has great historical value, and it is vital that the data and analysis be presented to the public in
an effective and understandable format. The second gravitational wave event detected by LIGO,
GW151226 was more faint, with a maximum strain of 3.4 x 10−22, sweeping from 35 to 450 Hz in
1 s [7]. Having an understandable representation for this event will be even more important than for
GW150914, since it is less apparent on first glance, making signal processing vital to identifying
the signal.
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2 LIGO Data Processing and splot’s Place in the Picture

To process these signals and parse out the noise, LIGO performs a range of calculations and creates
a number of plots. The first of these is calculated from the power spectral density of the data. A
power spectral density (PSD) characterizes the stationary noise of the data by averaging the square
of the fast Fourier transform (FFT) over all time. An amplitude spectral density (ASD) is then
calculated as the square root of the power spectral density; the resulting plot is shown in Figure
1 b. This set of amplitude data in the frequency domain is then used to “whiten” the strain data
of the signal by using FFT to convert the strain to the frequency domain, dividing by the ASD
and using an inverse FFT to return to the time domain. The resulting time series is shown in
the top row of Figure 2. A spectogram can be calculated to show the frequency and amplitude
behavior of the data. An optimised versions of this graph is shown on the bottom row of Figure
2. Bandpass filtering and matching to theoretical models the data are also techniques employed to
further confirm and clarify the gravitational wave signal [8].

This project sought to expand the existing plotting software used by LIGO to represent the data in
an interactive and publicly useful manner. Prior to the project, splot generated static plots of a time
series of the strain, as well as a spectrogram and ASD of the strain. splot could also apply various
types of filters to the data, adjust the sampling rate, and perform similar data manipulations. The
size, scale and parameters of the plots were set prior to submitting a request, making changing
these parameters a slow and awkward process. The plots were also stored on the server as image
files referenced in an HTML document, a very hard drive space intensive solution. The goal of this
project was to modify this functionality to include interactivity and increase efficiency by moving
plotting to the client. At the conclusion of this project all of the representations mentioned above
and interactive elements were incorporated into splot, the web-based plotting interface.

3 Improvements Made to splot

This project made two main changes to splot: it introduced interactive features and reduced the load
on the server by implementing Django template rendering. The primary objective was to expand
splot to allow the user to interactively zoom in on different parts of the plots and dynamically
zoom multiple plots to better illustrate the nature of the data. Both of these features allow real
time manipulation and do not require the user to reload the page. The secondary objective was to
reprogram much of the data management to utilize the LIGO Open Science Center’s Django web
framework. This improvement eliminated the need to store any plots on the server and simplified
the code-base.

Several JavaScript libraries were investigated to implement interactive elements, including mpld3
[10], bokeh [11] and plotly.js [12]. mpld3 and bokeh were both not suited to the task as they take an
already generated Python plot and generate a JavaScript version. This does not work as well with
the Django template tool, so plotly.js was determined to be more applicable as it simply receives
data and creates a plot on the users’ computer. Importantly, plotly.js also has functionality for all
the representations that LIGO outputs: heatmaps for the spectrograms and Omega-scan, log-log
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Figure 2: Two sets of figures from GW150914. The left column is from the Hanford detector and
the right from the Livingston detector. The top row shows whitened gravitational wave strain over
time. The second row shows a combination of different predictive techniques for theoretical wave
models. The third row shows the residuals of the signal when the theoretical model is subtracted.
The bottom row is a spectrogram of the data.

plots for the ASD and standard linked scatter plots for time series. plotly.js also has a feature that
allows multiple plots to be linked. Using this, code was written to scale the frequency and time
axis of the spectrogram and the corresponding axes on the time-series and ASD to the same values
so each plot displays the same data.

The second objective was achieved using Django’s template rendering language. It allows server
requests to fill data from a Python back end into an HTML template file to be sent to the user [13].
This framework plays very well with the way that splot is already implemented, as this template
rendering language simply takes Python objects and inserts the values into the HTML document
and the data calculated by splot is already stored in Python objects. With this tool, the process for
generating plots with splot became: the user submits a request, the server does calculations and
sends a dictionary with the calculated values to the places where Django template tags are inserted
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into an HTML document. Finally plotly.js takes this information and uses it to generate a plot in
the user’s browser.

Some auxiliary improvements for splot were made to the form for the input parameters by adding
help boxes coded in CSS and particular events easily selectable by the user for plotting. An ad-
ditional small improvement was combining the originally separate pages for the different data
collection runs into one page with a parameter for the data run allowing easier access to all pos-
sible plots. An animated loading message was also added to remove any confusion about load
times.

4 Further expansion for splot

In the course of the project, much of the existing error catching in the input parameters was dis-
abled. A basic expansion could implement these in the new front end framework. This would
be a minor upgrade that simply requires the adaptation of existing code. Another simple, related
step would be to reexamine the parameters used and to eliminate or expand features as necessary
to the utility of the user. Another easy upgrade would be to increase the amount of information
provided to the user on the form page. Currently the list of hardware injections just states the type
of injection, with no mention of parameters and this could be expanded to a very detailed list and
include many more examples.

A more ambitious goal would be to allow the user to produce an Omega-scan, a correlogram, and
an audio file of the strain. An Omega-scan, shown at the bottom of Figure 2, is a version of a
spectrogram that tunes input parameters to maximize the power recovered by the spectrogram. A
correlogram displays the correlation between the strains in the two detectors, after correcting for
differences in phase and shifting in time. This will allow the user to see the importance of having
two detectors and to visualize how the two detectors confirm the observation. An audio file is of
interest as the signals are usually in the frequency band that is audible to the human ear. These
features could be somewhat more difficult for two technical reasons. First, the servers may not
be able to return an Omega-scan or a correlogram in a timely manner. In this case, the possibility
the user submitting a request for the plot and alerting the user when the plot is ready should be
investigated. Second, the integration may be difficult because it is plausible the existing analysis
code cannot be easily merged with splot. Either of these technical issues may make the objective
intractable.

Even further expansion of splot could include the ability to manipulate parameters in real time, or
include some ability to filter the data in real time, going through the process step by step. These
features will provide an resource to educate the public on the data processing that LIGO data
undergoes and provide a more versatile experience for informed users. This particular objective
may be very difficult as it would necessitate a change in the entirety of splot as all of the data
processing is currently done in Python on the server and real time implementation would require a
completely different implementation of that or perhaps a different programming language.
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5 Hardware Injections and the Need for Documentation

Hardware injections are simulated signals that are injected into the real output of the detectors
by moving the test masses as they might be expected to move when a real gravitational wave
passes. These injections are used to test search pipelines under situations that might be seen in true
gravitational wave events, with noise levels that are realistic, as well as to characterize the nature
of the instrument.

A vital step to releasing the O1 data to the public is to catalog these hardware injections in the final
data. This information must be recorded with as much detail as possible, particularly in regards to
their signal to noise ratios (SNRs), to avoid any confusion in analyses that could be done after the
data set release. Prior to this project, the level of documentation of the hardware injections for O1
was below what was needed. Records were compiled and a match filter was written to analyze the
hardware injections and create a full picture of the injections performed in O1.

6 Matched Filtering

To understand how the hardware injections manifested in the data, each injection was analyzed
using a matched filter. A matched filter is an algorithm that searches over a section of data for the
times when the data matches a given template. This is very efficient for hardware injections since
templates exactly like what would show up in the data are used to actually do the injection and
matched filtering is a very effective search tool for signals buried in noise like those in the LIGO
data.

The matched filter used in this project was the FINDCHIRP algorithm as described by Allen, et al
[9]. This algorithm can be written as equation 1:

z(t) = 4
∫

∞

0

s̃( f )h̃∗template( f )

Sn( f )
e2πi f td f (1)

where z(t) is the complex valued output of the filter, s̃( f ) is the FFT of the detector signal,
h̃∗template( f ) is the complex conjugate of the FFT of a template and Sn( f ) is the stationary Gaussian
noise of the output as a power spectral density. To find the SNR of a signal found with this filter, it
must be normalized with the factor in equation 2:

σ
2
m = 4

∫
∞

0

|h̃De f f Mpc,m( f )|2

Sn( f )
d f (2)

The value σm is a measure of the detector sensitivity with a template, hm of effective distance
De f f . The effective distance is a relationship of the true distance of a source to its orientation to
the detector orientation. Then the amplitude SNR, ρm, of a signal with this template can be found
using equation 3:

ρm(t) =
|zm(t)|

σm
(3)
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This is the value of particular interest for this task, as the SNR of the hardware injection output
should match the expected SNR of the template if an injection was successful and recovered fully.

7 The Hardware Injection Study

The FINDCHIRP algorithm was performed over a list of hardware injections found in a schedule
file [14] that represented the most complete list of hardware injections performed in O1 (as well
as one additional injection found in a LIGO wiki page [15]). The schedule was the reference for
injection times and template and parameter files. This schedule file appears to record injections
that were requested by the burst and compact binary coalescence detection groups, but not the de-
tector characterization injections (the third largest group). The recovery of the 80% of injections
that occurred while the detector they were injected into was collecting data are shown in Figure 3.
The majority of these injections are distributed along a line of slope 1, indicating that these injec-
tions succeeded and were recovered. There is a distinct minority of injections ( 34%) that do not
adhere to this problem though, lying along the horizontal axis instead. Such low recovered SNR,
especially with the very high SNR templates, indicates that these injections were unsuccessful for
some reason, probably not making it into the final LIGO strain data.

Parameters for each injection were then extracted from the parameter files referenced by name in
the schedule file. Each injection was then paired with its parameter information and the recovered
and expected SNRs. This information was compiled into a table to document injections recovered
here for others to use as a reference for the O1 data set. This table is not complete in all of this
information, since many of the parameter files for the injections were missing from the repository
that held the rest of the parameter files.

8 Future Work for the Hardware Injection Search

The first improvement that should be made to this study of hardware injections should be the
scanning of injections from the detector characterization group since documentation does exist for
these injections. After this expansion of the study, the edge cases already identified by the study
should be investigated. Many of the injections lie in the range of SNR that could be considered
unsuccessful, but this should be confirmed and the details of these failures identified. The injections
with missing parameter files should also be researched further to identify the parameters used to
generate the templates and the schedule file should be checked against other resources to ensure
completeness. One way to verify this schedule would be to check the control channels used to
inject the signal to the detector. These channels represent the most complete resource for hardware
injection logging since there is no other way to inject signal to the detector, but an entirely new
methodology will need to be developed to scan these channels. One final improvement could be
the generalization of the algorithm used to search for these injections to future data sets so that
similar studies in the future will be easier.
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Figure 3: The injections that occurred during time when the detector was in science mode are
shown plotted with the SNR recovered by the matched filter on the y-axis and the SNR expected
from the template on the x-axis.
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