The dawn of gravitational-wave astronomy

Graham Woan

SUPA School of Physics & Astronomy University of Glasgow

LIGO-G1601077-v2

The 'Event'

- Online burst analysis reported a loud simultaneous trigger in both LIGO detectors on 14th September 2015, consistent with a high-mass binary black hole (BBH) merger.
- Instrument configuration frozen until 20th October to collect 16 days-worth of coincident data from the two detectors (to compute a background)

Sergey Klimenko

```
To: <burst@ligo.org>, Cc: calibration@ligo.org and 7 more...
Re: Re: [burst] [calibration] Very interesting event on ER8
```

Sergey.

```
This is clean and very significant inspiral with Mchirp = 27 +- 2 Mo.
The polarization is close to circular.
The cWB ER8 offline analysis accumulated ~236 years of background
so far - this event FAR << 1.e-10 Hz. If this is not injection,
I guess, we need to do the detection checklist...
Sergey
```

Why this event has been rejected by IDQ! this is a nice inspiral with Mchirp = 27 Mo.

To: klimenko@phys.ufl.edu , reed.essick@lin action required for GraceDB event : G184098	go.org , Marco Drago Details 3 (burst_cwb_allsky) Inbox - UF exchange	
action required for GraceDB event : (burst_cwb_allsky) cwb_eventcreation	https://gracedb.ligo.org//events/view/G184098	
Marco Drago 19	Soutomber 14, 2015, S:54 AM	
	September 14, 2015 6.54 Alvi	
io: <burst@sympa.ligo.org> and 8 more</burst@sympa.ligo.org>	Details	
CBCJ very interesting event on ER8 ii all, cWB has put on gracedb a very interestinttps://gracedb.ligo.org/events/view/G1	$-\textcircled{$\mathbb{T}$} (\textcircled{\basel{eq:starses}}) \xrightarrow{\basel{eq:starses}} \\ ng event in the last hour. \\ \underbrace{84098}_{84098} $	

Sergey Klimenko 🧮	September 14, 2015 7:15 AM
To: <emfollow@ligo.org>, Peter Shawhan and 2 more</emfollow@ligo.org>	Details
Fwd: action required for GraceDB event : G184098 (burst_cwb_allsky)	Sent - UF exchange

September 14, 2015 8:06 AM Details Sent - UF exchange -1

GW150914 – a burst of gravitational waves...

... matching a BBH inspiral and merger waveform from General Relativity

Abbott, et al. ,LIGO Scientific Collaboration and Virgo Collaboration, 'Observation of Gravitational Waves from a Binary Black Hole Merger' <u>Phys. Rev. Lett. 116, 061102 (2016)</u>

But does General Relativity really fit?

- GW150914 is the first observation of a binary black hole merger
- Our best test of GR in *the strong field, dynamical, nonlinear regime*
- Event better than the binary pulsar system PSR J0737-3039

Abbott, et al. ,LIGO Scientific Collaboration and Virgo Collaboration, "Tests of general relativity with GW150914", http://arxiv.org/abs/1602.03841

LIGO detectors – first Adv. LIGO run (O1)

End-mirror quadruple-pendulum suspensions

https://dcc.ligo.org/LIGO-P1500248/public/main

Initial LIGO to Advanced LIGO

We have a brand-new astrophysical toolbox

- GWs are generated coherently by large accelerated masses, so the amplitudes and phases of these waves are meaningful (i.e., many non-stochastic sources, cf. EM).
- Precision timing observations possible (cf. pulsars)
- Even at leading post-Newtonian order we can derive simple results, e.g. the 'chirp mass':

and the **full system parameters** (masses, spins, distance...) appear at higher orders.

- Chirp shape is sensitive to luminosity distance but not redshift ('standard sirens').
- Fruitful test sites for GR (BH/BH), particle physics (BH/NS, NS/NS, spinning NSs).
- Constraints on extreme equation-of-state, stellar evolution, cosmology ...

Parameter posteriors

arXiv:1602.03840

GW150914 results and parameters

observed by	LIGO L1, H1			
source type	black hole (BH) binary			
date	14 Sept 2015			
time	09:50:45 UTC			
likely distance	0.75 to 1.9 Gly 230 to 570 Mpc	ii f		
redshift	0.054 to 0.136			
ignal-to-noise ratio	24			
false alarm prob.	< 1 in 5 million	1		
false alarm rate	< 1 in 200,000 yr			
Source Ma	asses Mo			
total mass	60 to 70			
primary BH	32 to 41			
secondary BH	25 to 33			
remnant BH	58 to 67	ç		
mass ratio primary BH spin secondary BH spin	0.6 to 1 < 0.7 < 0.9			
remnant BH spin	0.57 to 0.72	#		
signal arrival time delay	arrive <mark>d</mark> in L1 7 ms be <mark>f</mark> ore H1	c		
likely sky position likely orientation resolved to	Southern Hemisphere face-on/off ~600 sq. deg. https://losc.li	P		
	11(()), ()), ()), ()), ()), ()), ()), ()	50		

	duration from 30 Hz	~ 200 ms			
ary	# cycles from 30 Hz	~10			
	peak GW strain	1 x 10 ⁻²¹			
_	peak displacement of interferometers arms	±0.002 fm			
	frequency/wavelength at peak GW strain	150 Hz, 2000 km			
	peak speed of BHs	~ 0.6 c			
	peak GW luminosity	3.6 x 10 ⁵⁶ erg s⁻¹			
	radiated GW energy	2.5-3.5 M⊙			
r	remnant ringdown fre	q. ~ 250 Hz			
	remnant damping tin	ne ~4 ms			
	remnant size, area	180 km, 3.5 x 10 ⁵ km ²			
	consistent with general relativity?	passes all tests performed			
	graviton mass bound	< 1.2 x 10 ⁻²² eV			
	coalescence rate of binary black holes	2 to 400 Gpc ⁻³ yr ⁻¹			
	online trigger latency	~ 3 min			
V	# offline analysis pipeli	nes 5			
5	CPU hours consumed	~ 50 million (=20,000 PCs run f <mark>o</mark> r 100 days)			
le.	papers on Feb 11, 2016	13			
Ŵ	# researchers	~1000, 80 institutions in 15 countries			
c.li	go.org/events/GW15	0914/			

Implications for progenitor stars

Figure 1. Left: dependence of maximum BH mass on metallicity Z, with $Z_{\odot} = 0.02$ for the old (strong) and new (weak) massive star winds (Figure 3 from Belczynski et al. 2010a). Right: compact-remnant mass as a function of zero-age main-sequence (ZAMS; i.e., initial) progenitor mass for a set of different (absolute) metallicity values (Figure 6 from Spera et al. 2015). The masses of GW150914 are indicated by the horizontal bands.

Astrophysical Implications of the Binary Black-Hole Merger GW150914 ApJL, 818, L22, 2016

Electromagnetic follow-up of the first LIGO event

 Consortium agreement between LIGO and 63 teams using ground- and spacebased telescopes (gammaray, X-ray, optical, IR and radio) to follow-up the alert.

Initial

GCN Circular

http://arxiv.org/abs/1602.08492

Initial GW

Burst Recovery

Fermi GBM, LAT IPN, INTEGRAL (', MAXI, (archival)	Swift XRT	Swift XRT				Fermi LAT, MAXI
BOOTES-3	MASTER	<i>Swift</i> UVOT, SkyM Pan-STARRS1, KWFC	apper, MA , QUEST, I	STER, TOROS, DECam, LT, P2	TAROT, VST 00, Pi of the Sl	, iPTF, Keck, Pan-STARRS1 xy, PESSTO, UH VST	TOROS
					VISTA		
			MWA	ASKAP, LOFAR	ASKAP, MWA	VLA, LOFAR	VLA, LOFAR VLA
· · · · ·		10 ⁰			10 ¹		10 ²
			$t - t_{\rm m}$	erger (days)			

Fermi GBM around the time of the event

http://arxiv.org/abs/1602.03920

https://losc.ligo.org/events/GW150914/

LIGO Open Science Center

IGO

Getting Started

LIGO is operated by California Institute of Technology and Massachusetts Institute of Technology and supported by the U.S. National Science Foundation.

Data release for event GW150914

Tutorials Data Events Bulk Data	This page has been prepared by the LIGO Scientific Collaboration (LSC) and the Virgo Collaboration to inform the broader community about a confirmed astrophysical event observed by the gravitational-wave detectors, and to make the data around that time available for others to analyze. There is also a technical details page about the data linked below, and feel free to contact us . This dataset has the Digital Object Identifier (doi) http://dx.doi.org/10.7935/K5MW2F23					
Timelines	Common of Observation					
Mu Oniversi	Summary of Observation					
My Sources	The event occurred at GPS time $1126259462.39 ==$ September 14 2015, 09:50:45.39 LITC. The false alarm rate is					
Software	estimated to be less than 1 event per 203,000 years , equivalent to a significance of 5.1 sigma . The event was detected					
GPS ↔ UTC	in data from the LIGO Hanford and LIGO Livingston observatories.					
About LIGO	 There are Science Summaries, covering the information below in ordinary language. There is a one page factshoot about CW150014, summarizing the event. 					
Data Analysis Projects	There is a one page factsheet about GW150914, summarzing the event.					
Acknowledgement	How to Use this Page					
	 Click on the section headings below to show available data files. (click to Open/Close all sections) 					

- There are lots of data files available in the sections below, look for the word DATA.
- Click on each thumbnail image for larger image.
- See the papers linked below for full information, references, and meaning.
- Many of the data files linked below have heterogeneous formatting; if you have any
 questions, please contact us.

Detector array beam pattern

- The sky localisation depends on
 - the individual detector beam patterns
 - time delay between signal arrival at spatially separated sites
- *vastly* improved with more detectors:

The advanced GW detector network

Gravitational astronomy

Summary

- LIGO has made the first measurement of a gravitational waveform
- Heavy stellar-mass black holes exist, singly and in binaries
- LIGO has seen black holes up-close, and a merging binary black hole, both for the first time

- LIGO will restart in the Autumn, and Virgo will join in
- The first steps in gravitational-wave astronomy!

SUPA members of the LIGO roster (70)

Alan Cumming, Alastair Grant, Andrew Spencer, Angus Bell, Borja Sorazu, Bryan Barr, Brynley Pearlstone, Chris Messenger, Christian Graef, Daniel Williams, Daniela Pascucci, David Vine, Des Gibson, Ewan Houston, Gareth Davies, Gavin Newton, Giles Hammond, Graham Woan, Hafizah Isa, Harry Ward, Husni Almoubayyed, Ian MacLaren, Ian Martin, Ignacio Santiago-Prieto, Siong Heng, Jade Powell, James Hough, Jamie Scott, Jan Devenson, Jan-Simon Hennig, Jennifer Wright, Jessica Steinlechner, Jonathan Gair, Joshua Logue, Karen Haughian, Karl Toland, Ken Strain, Kirill Tokmakov, Kyung-ha Lee, Liam Cunningham, ManLeong Chan, Margot Phelps, Mariela Masso-Reid, Marielle van Veggel, Mark Fletcher, Martin Hart, Martin Hendry, Martin Sinclair, Matthew Pitkin, Michael Perreur-Lloyd, Nick Lockerbie, Norna Robertson, Peter Murray, Raymond Robie, Rebecca Douglas, Ross Birney, Russell Jones, Sabina Huttner, Sean Leavey, Sean Macfoy, Sebastian Steinlechner, Sharat Jawahar, Sheena Barclay, Sheila Rowan, Stefan Danilishin, Stefan Hild, Stuart Reid, Teng Zhang, Valentina Mangano, Zeno Tornasi

end

688

SITZUNGSBERICHTE

697

DER

KÖNIGLICH PREUSSISCHEN

AKADEMIE DER WISSENSCHAFTEN.

Sitzung der physikalisch-mathematischen Klasse vom 22. Juni 1916

AS.A. 311 SCIRNER LIGAAAT MIT

Näherungsweise Integration der Feldgleichungen der Gravitation. "Approximate integration of the field equations of gravitation" Von A. EINSTEIN.

First paper is "is disfigured by a regrettable calculation error", leading Einstein to think, by 1918, that no energy is carried by GWs...

154 Gesamtsitzung vom 14. Februar 1918. - Mitteilung vom 31. Januar

Über Gravitationswellen.

Von A. EINSTEIN.

(Vorgelegt am 31. Januar 1918 [s. oben S. 79].)

Die wichtige Frage, wie die Ausbreitung der Gravitationsfelder erfolgt, ist schon vor anderthalb Jahren in einer Akademiearbeit von mir behandelt worden¹. Da aber meine damalige Darstellung des Gegenstandes nicht genügend durchsichtig und außerdem durch einen bedauerlichen Rechenfehler verunstaltet ist, muß ich hier nochmals auf die Angelegenheit zurückkommen.

Wie damals beschränke ich mich auch hier auf den Fall, daß das betrachtete zeiträumliche Kontinuum sich von einem »galileischen« nur sehr wenig unterscheidet. Um für alle Indizes

 $g_{\mu\nu} = -\delta_{\mu\nu} + \gamma_{\mu\nu} \tag{1}$

The second loudest event

Event	Time (UTC)	FAR (yr^{-1})	Ŧ	$\mathscr{M}\left(\mathrm{M}_{\odot} ight)$	$m_1~({ m M}_\odot)$	$m_2~({ m M}_\odot)$	χ eff	D_L (Mpc)
GW150914	14 September 2015 09:50:45	$< 5 \times 10^{-6}$	$< 2 \times 10^{-7}$ (> 5.1 σ)	28^{+2}_{-2}	36^{+5}_{-4}	29^{+4}_{-4}	$-0.06\substack{+0.17\\-0.18}$	410^{+160}_{-180}
LVT151012	12 October 2015 09:54:43	0.44	$\begin{array}{c} 0.02 \ (2.1\sigma) \end{array}$	15^{+1}_{-1}	23^{+18}_{-5}	13^{+4}_{-5}	$0.0\substack{+0.3 \\ -0.2}$	1100^{+500}_{-500}

Binary coalescence search

Flux (in)sensitivity

Sathyaprakash and Schutz 2009

... but looked at another way, GW sources are VERY bright!