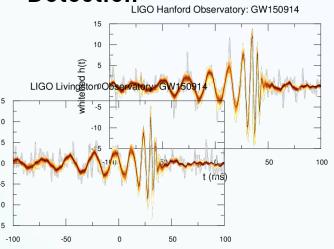
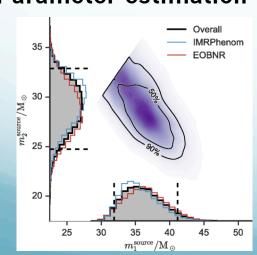


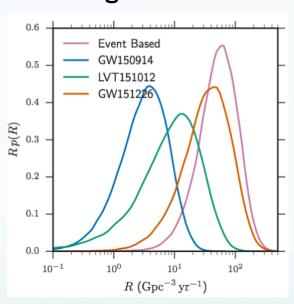
Mass Distribution and Rates of Binary Black Hole Mergers from LIGO Observations


Thomas Dent (AEI Hannover) for the LSC and Virgo LIGO-G1601017v2

July 12th 2016, GR21 (Columbia U.)


Overview: rates and mass distributions

Detection


whitened h(t)

Parameter estimation

Merger rate

Mass distribution

Astrophysical interpretation

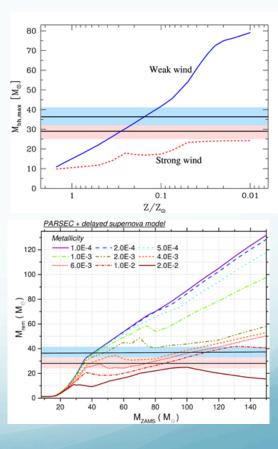
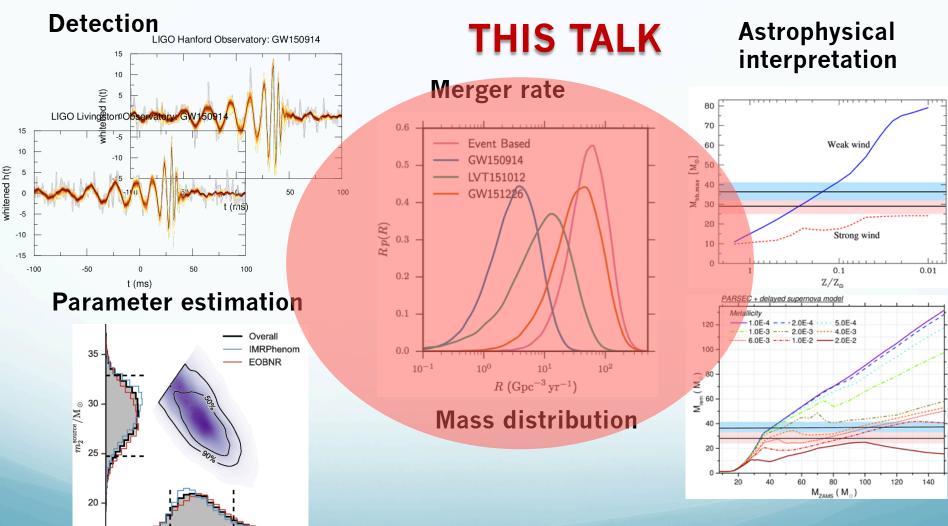



Image credits : LVC, Belczynski et al. ApJ 2010, Spera et al. MNRAS 2015

Overview: rates and mass distributions

50

25

30

35 40 $m_1^{
m source}/{
m M}_{\odot}$

Image credits: LVC, Belczynski et al. ApJ 2010, Spera et al. MNRAS 2015

Connecting LIGO detections with astrophysical predictions

- Astro models do not predict individual GW events
- Instead predict populations of events
- Describe via mean number of mergers, per (hyper)volume of space / time, per unit of component mass
 - mathematically: inhomogeneous Poisson process
- Compare specific models directly with data
- Or (this talk) constrain simple, generalized models of BBH merger population

From simple to complex models

- More model assumptions (simpler model)
 - ⇔ fewer free parameters
 - ⇔ fewer detections needed to constrain parameters
 - ⇔ smaller error bars for given data
 - ⇔ less realistic / accurate to true population
- Fewer model assumptions (more complex)
 - ⇔ more free parameters

 - ⇔ larger error bars for given data
 - ⇔ more realistic / accurate to true population

From simple to complex models

- More model assumptions (simpler model)
 - ⇔ fewer free parameters

WE ARE NOW HERE

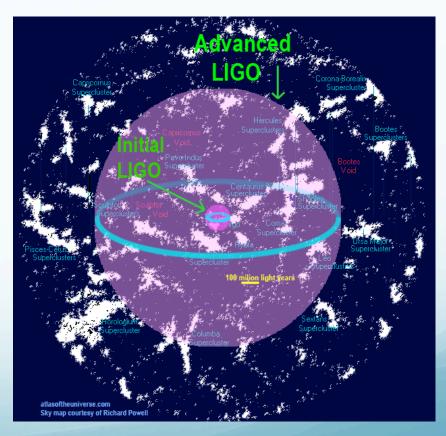
- ⇔ fewer detections needed to constrain parameters
- ⇔ smaller error bars for given data
- ⇔ less realistic / accurate to true population
- Fewer model assumptions (more complex)
 - ⇔ more free parameters

 - ⇔ larger error bars for given data
 - ⇔ more realistic / accurate to true population

From simple to complex models

- More model assumptions (simpler model)
 - ⇔ fewer free parameters
 - ⇔ fewer detections needed to constrain parameters
 - ⇔ smaller error bars for given data
 - ⇔ less realistic / accurate to true population
- Fewer model assumptions (more complex)
 - ⇔ more free parameters

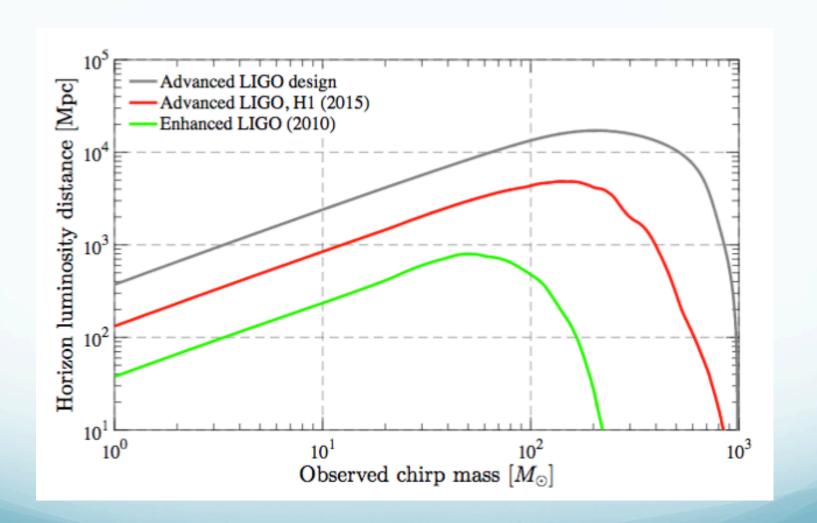
WILL MOVE TO HERE


- ⇔ more detections needed to constrain parameters
- ⇔ larger error bars for given data

(eventually)

⇔ more realistic / accurate to true population

Universal LV rates assumptions


- All current results assume constant rate of mergers
 - per unit comoving volume V_C
 - per unit source-frame time t_S
 - over local universe(z < few × 0.1)
- Early Advanced LIGO reach
 10² few×10³ Mpc for BBH
- Plausible that universe is statistically homogeneous on these scales

Basic rate calculation framework

- Set a threshold of signal strength (SNR)
- Count signals seen in data above threshold, N
- Simulate population model with total rate $R/\mathrm{Gpc^3/yr}$, calculate number of signals $\langle N \rangle \equiv R \times VT$ expected in data
- Likelihood is Poisson(N|\langle N\rangle) †
- Problem : VT measures sensitivity for population, **highly** dependent on mass distribution dR/dm_1dm_2
 - Don't know much about mass distribution yet ...

Mass dependence of BBH horizon

Rate estimates from straw-person mass distributions

3 different assumptions used to find VT

- 1. All BBH mergers in local Universe have same
 - masses and spins as events seen so far
- 2. Uniform ('flat') distribution in $\log m_1$, $\log m_2$ $[m_1, m_2 > 5 \, \mathrm{M}_\odot, \, M < 100 \, \mathrm{M}_\odot]$
- 3. Salpeter IMF-like power law $p(m_1) \propto m_1^{-2.35}$ uniform in $q \equiv m_2/m_1$

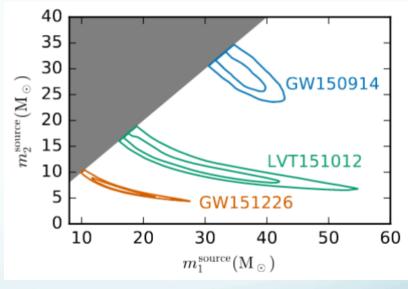
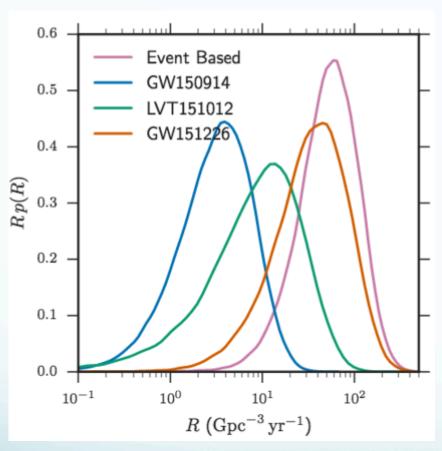
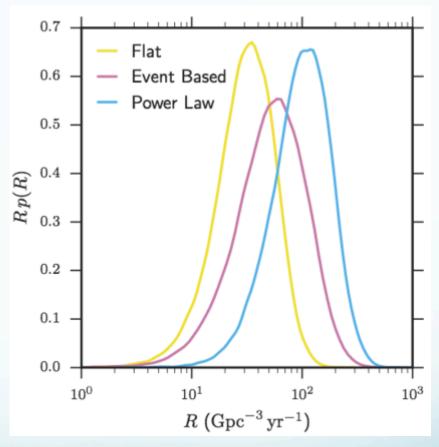
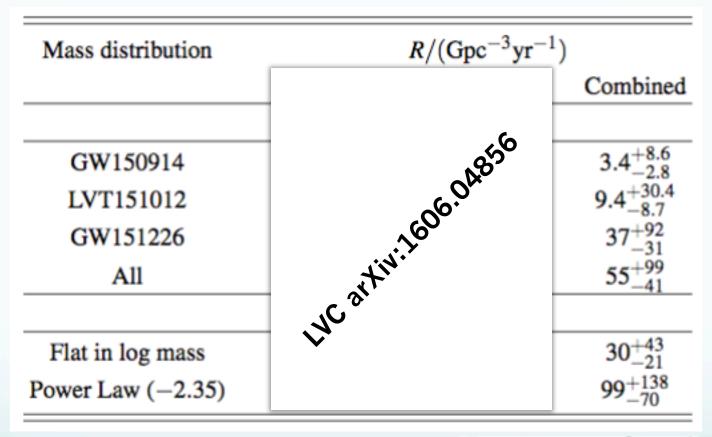




Image: LVC arXiv:1606.04856

Rates from full O1 BBH search



- Total merger rate via addition of event-like rates
- Dominated by lightest BBH

 Event-like estimate bracketed by simple distributions

Rates from full O1 BBH search

- Conservative 90% credible range $9-240 \,\mathrm{Gpc}^{-3}\,\mathrm{yr}^{-1}$
- LVC 2010 'Rates' prediction paper: 0.1, 5, 300 /Gpc³yr (CQG 27:173001) (low, realistic, high)

Two independent implementations agree

Rates from full O1 BBH search

Mass distribution	$R/(\mathrm{Gpc^{-3}yr^{-1}})$			
	PyCBC	GstLAL	Combined	
	Event base			
GW150914	$3.2^{+8.3}_{-2.7}$	$3.6^{+9.1}_{-3.0}$	$3.4^{+8.6}_{-2.8}$	
LVT151012	$9.2^{+30.3}_{-8.5}$	$9.2^{+31.4}_{-8.5}$	$9.4^{+30.4}_{-8.7}$	
GW151226	35^{+92}_{-29}	37^{+94}_{-31}	37^{+92}_{-31}	
All	53^{+100}_{-40}	56^{+105}_{-42}	55^{+99}_{-41}	
	Astrophysical			
Flat in log mass	31^{+43}_{-21}	30^{+43}_{-21}	30+43	
Power Law (-2.35)	100^{+136}_{-69}	95^{+138}_{-67}	99^{+138}_{-70}	

- Conservative 90% credible range
 9-240 Gpc⁻³ yr⁻¹
- LVC 2010 'Rates' prediction paper: 0.1, 5, 300 /Gpc³yr (CQG 27:173001) (low, realistic, high)

Rates from full O1 BBH search

Two independent implementations agree

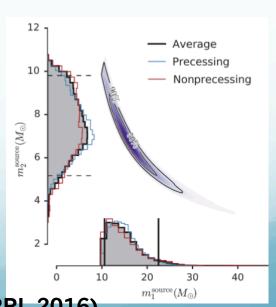
Mass distribution	$R/(\mathrm{Gpc^{-3}yr^{-1}})$		
	PyCBC	GstLAL	Combined
	Event base		
GW150914	$3.2^{+8.3}_{-2.7}$	$3.6^{+9.1}_{-3.0}$	$3.4^{+8.6}_{-2.8}$
LVT151012	$9.2^{+30.3}_{-8.5}$	$9.2^{+31.4}_{-8.5}$	$9.4^{+30.4}_{-8.7}$
GW151226	35^{+92}_{-29}	37^{+94}_{-31}	37^{+92}_{-31}
All	53^{+100}_{-40}	56^{+105}_{-42}	55^{+99}_{-41}
	Astrophysical		
Flat in log mass	31+43	30+43	30^{+43}_{-21}
Power Law (-2.35)	100^{+136}_{-69}	95^{+138}_{-67}	99^{+138}_{-70}

• Conservative 90% credible range $9-240 \,\mathrm{Gpc}^{-3}\,\mathrm{yr}^{-1}$

LVC 2010 'Rates' prediction paper: 0.1, 5, 300 /Gpc³yr (CQG 27:173001) (low, realistic, high)

(Brief) astrophysical implications

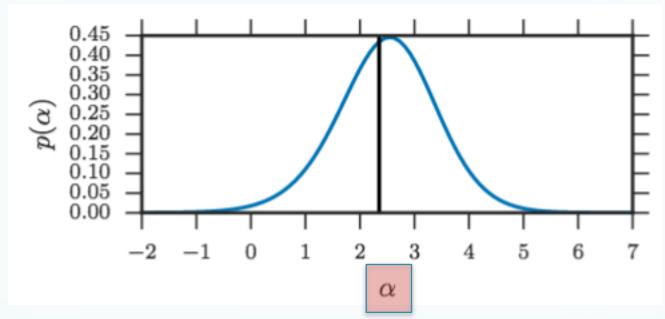
- Merging BBH with components $\sim 30~M_{\odot}$ exist!
- Merging BBH with components ~10 M_{\odot} exist!
- Some merging BBH have nonzero (but probably not very large) spin!
- Total merger rate is not low!
- 'Standard' formation mechanisms [isolated binary / dynamical] not strongly constrained (yet)!
- See S. Nissanke's talk / read references ...


LVC arXiv:1602.03846, arXiv:1606.04856

Constraining the straw-person mass distribution

 Model BBH merger mass dist as general power law

$$p(m_1, m_2 \mid \alpha) \propto \frac{m_1^{-\alpha}}{m_1 - M_{\min}}$$

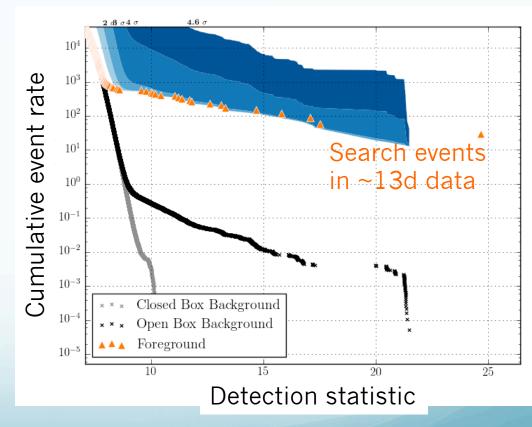

- Detected mass dist has selection effects (detection probability P_{det}) $P_{\text{det}}(m_1, m_2) \propto \langle VT \rangle |_{m_1, m_2}$
 - need to 'divide this out'
- Significant (and non-Gaussian) errors on mass measurements
 - use PE likelihood samples for 3 BBH events in O1

17

image: LVC GW151226 paper (PRL 2016)

Constraining the straw-person mass distribution

- Choose $M_{min} = 5$ as for Rates distribution
- Obtain weak constraint : highest likelihood around $\alpha \sim 2.5$
- Consistent with Rates choice $\alpha = 2.35$


BBH distributions into the far future

- Can anticipate 10s-100s of detections in upcoming LIGO-Virgo science runs (2016-7+)
- Relax assumptions on population model
- Measure mass and spin distributions
 - Test for peaks, cutoffs: e.g. maximum binary BH mass; NS-BH 'mass gap' ...
- Measure distributions over redshift / sky location ?
 - BBH as probe of cosmological evolution, homogeneity / anisotropy?

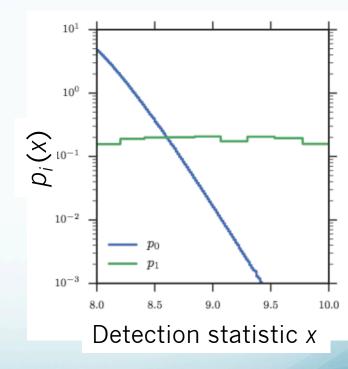

Case study: MDC on fake aLIGO data

- 'Engineering Run 4': recolored subsystem data mimicking full aLIGO (2018+) sensitivity
- High rate of 'blind injected' BBH signals
- Can mass distribution be recovered?

study done in collaboration with S. Gaebel, J. Veitch,W. Farr (B'ham)

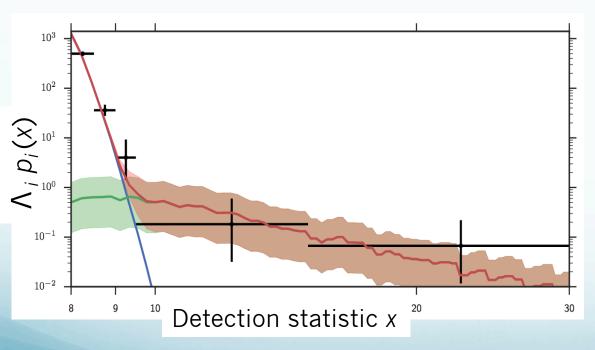
Case study: MDC on fake aLIGO data

- model distribution as constant over bins in m_1, m_2
- Bayesian prior to 'smooth' over different bins

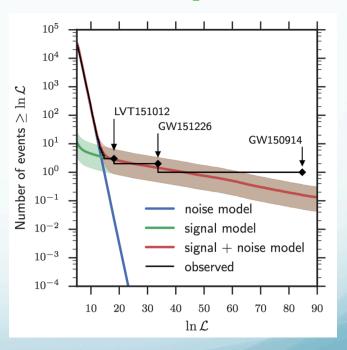

Summary

- LIGO sees BBH mergers with a range of masses
- Mass distribution : essential part of astrophysical interpretation
- Nontrivial to extract from observations
 - small number statistics (at present!)
 - selection effects
 - statistical errors on masses
 - (finite probability of noise events ..)
- Gearing up for more detections, more detailed models in O2+

Extra slide: Counting signal & noise events


Counting number of signals in GW search if events have nonzero false alarm probability

- Search pipeline assigns detection statistic 'x' to each event
- Estimate distributions of signal and noise events via Monte Carlo
- Assign each event probability P_1 of being signal $(1-P_1)$ of noise
- Infer mean counts of signal / noise events Λ_1, Λ_0 (with uncertainties) from observed $\{x^j\}$



Extra slide: Counting signal & noise events

- Choose threshold x_{th} to have many noise events at $>x_{th}$ $\Rightarrow \Lambda_0$ well determined
- Small number of signals \Rightarrow significant error in Λ_1

differential rate, pycbc, 16 days coinc data

cumulative rate, gstlal, full O1 coinc data