VOPO Suspension Final Design

LIGO MIT Lab

Matichard, Fabrice
Fernandez Galiana, Alvaro

VOPO Suspension

- Design based on HAM 6
- Holes availability (Dog Clamps)
- "Shooting" Area (for the outcome beam)
- In Vacuum RFPD Area
- Space for Tip Tilt

Maximizing Bench Surface: $3.64 \mathrm{ft}^{2}$

VOPO Suspension

- Blade with 3 -axial symmetry
- Blades clamps form equilateral triangle
- Triangle center close to "Geometric Center" (easy to balance)
- Stops separated enough

VOPO Suspension

- Conclusions:
- Questions:
- Is it enough space for the Tip Tilt?
- Do we need a Tip Tilt?
- Is it enough shooting space?

Optical Layout

- 2 different layouts:
- O2 Squeezer model (early squeezing)

- O3 Squeezer model with filter cavity + RFPD in Vacuum

Optical Layout

- Solid Works Optical Layout
- Mirror:
- Mass: 205.87 g
- Quantity: 11 / 18

- Lens:
- Mass: 121.375 g
- Quantity: 7 / 9

Optical Layout

- Solid Works Optical Layout
- Beam Dump:
- Mass: 164.61 g
- Quantity: 2 / 5

- QPD:
- Mass: 142.98 g
- Quantity: 2 / 3

Optical Layout

- Solid Works Optical Layout

- Polarizers:
- Mass: 206.71 g
- Quantity: 2+2 / 2+2

NOTE: At this point the polarizers have been modeled as mirrors. A more realistic model has to be done to the two kinds of polarizers that will be used.

- Wave Plate:
- Mass: 299.69 g
- Quantity: 1 / 2

Optical Layout

- Solid Works Optical Layout

- Fibers In:
- Mass: 252.01 g
- Quantity: 2 / 2

NOTE: At this point the fiber In have been modeled as mirrors with pico motors. A more realistic model has to be done to the two kinds of polarizers that will be used.

- RFPD in Vacuum
- Mass: 270.41 g
- Quantity: 0 / 2

NOTE: At this point the model used is for a 4 " beam height while the real one will be at $2.5 "$

Optical Layout

- Solid Works Optical Layout
- Faraday Rotator:
- Mass:
- Base: 170.43 g
- Rotator: X g
- Quantity: 1 / 1

NOTE: At this point the Faraday Rotator has been modeled as just its base and with a rough design that will be improved once the Faraday rotator model will be obtained.

EOT Faraday
Rotator

Base (6061-T6 Al)

Optical Layout

- Solid Works Optical Layout

- VOPO Cavity:
- Mass:: 1463 g
- Quantity: 1 / 1

Optical Layout

- O3 (Filter Cavity + In Vacuum RFPD)

Optical Layout

- O3 (Filter Cavity + In Vacuum RFPD)
- Option 1
- Problems

Optical Layout

- O3 (Filter Cavity + In Vacuum RFPD)
- Option 1
- Problems

Optical Layout

- O3 (Filter Cavity + In Vacuum RFPD)

Optical Layout

- O3 (Filter Cavity + In Vacuum RFPD)
- Option 2

Optical Layout

Optical Layout

- CONCLUSIONS
- Injection Bench is large enough
-QUESTIONS

Injection Bench

- Stiffener first design (dummy)

Injection Bench

- Stiffener first design (dummy II)
- $\mathrm{f}=276.29 \mathrm{~Hz}$
- Mass: 15.977 kg

Injection Bench: Mass Budget

- O3 (Filter Cavity + RFPD)

- Optics: 12 kg (2.1kg contingency)
- Bench: 18 kg
- Balancing Mass: 6kg

SUSPENDED MASS: 36 kg

NOTE I: The weight of the Injection Bench has been set at 18 kg but it may vary after the frequency FEA

NOTE II: In this calculation the Faraday Rotator is not considered, just its base, and the model for polarizers and fiber in is set as the one of a mirror mount

MASS BUDGET

ELEMENT TYPE	Name	Description	Unit Weight (g)	Quantity	Total mass (g)	Final Design?	Mass Checked?
OPTICS	MIRROR	With Beam Dump	205.87	7	1441.09		YES
OPTICS	MIRROR	With Beam Dump 2	207.55	6	1245.30		no
OPTICS	MIRROR	Without Beam Dump	192.90	3	578.70		No
OPTICS	MIRRORII	Lens	121.38	1	121.38		No
OPTICS	MIRRORIII	Lens Sigle Base	97.07	1	97.07		no
OPTICS	Lens	Desc 2	121.38	9	1092.38		no
OPTICS	beam dump	Without One Black Glass	164.61	5	823.05		No
OPTICS	QPD	Desc 5	142.98	3	428.94		no
OPTICS	polarizer	Desc 6	203.05	4	812.19		no
OPTICS	WAVE PLATE	Desc 7	299.69	2	599.38		No
OPTICS	RFPD in Vacuum	Desc 8	270.41	2	540.82		no
OPTICS	Fiber in	Desc 9	252.01	2	504.02		no
OPTICS	faraday rotator	Desc 10	170.43	1	170.43		No
OPTICS	vopo cavity	Desc 11	1463.27	1	1463.27		no
SUSPENSION	injection bench	Desc 12	17797.97	1	17797.97		no
SUSPENSION	LIMITERS \& CLAMPS	Desc 13	193.50	1	193.50		no
MASS	BALANCE MASS 1	Lateral	3857.36	0	0.00		no
MASS	BALANCE MASS 2	Lateral Removable	1302.18	0	0.00		no
MASS	BALANCE MASS 3	On Bench	2631.72	0	0.00		no
MASS	SCREWS	On Bench	174.88	0	0.00		No
OPTICS					9.918	kg	
SUSPENSION					17.991	kg	
MASS					0.000	kg	
TOTAL WEIGHT					27.909	kg	
Mass to 36 kg					8.09	kg	

Injection Bench: Mass Budget

- O2

- Optics: 8 kg (1.2kg contingency)
- Bench: 18 kg
- Balancing Mass: 10 kg

SUSPENDED MASS: 36 kg

NOTE I: The weight of the Injection Bench has been set at 18 kg but it may vary after the frequency FEA

NOTE II: In this calculation the Faraday Rotator is not considered, just its base, and the model for polarizers and fiber in is set as the one of a mirror mount

MASS BUDGET

ELEMENT TYPE	Name	Description	Unit Weight (g)	Quantity	Total mass (g)	Final Design?	Mass Checked?
OPTICS	MIRROR	With Beam Dump	205.87	5	1029.35		YES
OPTICS	MIRROR	With Beam Dump 2	207.55	3	622.65		NO
OPTICS	MIRROR	Without Beam Dump	192.90	2	385.80		No
OPTICS	MIRROR III	Lens Sigle Base	97.07	1	97.07		No
OPTICS	LENS	Desc 2	121.38	7	849.63		No
OPTICS	BEAM DUMP	Without One Black Glass	164.61	2	329.22		No
OPTICS	QPD	Desc 5	142.98	2	285.96		No
OPTICS	polarizer	Desc 6	206.71	4	826.84		No
OPTICS	WAVE PLATE	Desc 7	299.69	1	299.69		No
OPTICS	RFPD in Vacuum	Desc 8	270.41	0	0.00		No
OPTICS	FIBER IN	Desc 9	195.18	2	390.35		No
OPTICS	FARADAY ROTATOR	Desc 10	170.43	1	170.43		No
OPTICS	VOPO CAVITY	Desc 11	1463.27	1	1463.27		NO
SUSPENSION	INJECTION BENCH	Desc 12	18000.00	1	18000.00		No
SUSPENSION	LIMITERS \& CLAMPS	Desc 13	100.92	1	100.92		No
MASS	BALANCE MASS 1	Lateral	0.00	1	0.00		No
MASS	BALANCE MASS 2	On Bench	0.00	1	0.00		No
OPTICS					6.750	kg	
SUSPENSION					18.101	kg	
MASS					0.000	kg	
TOTAL WEIGHT					24.851	kg	
Mass to $\mathbf{3 6} \mathbf{~ k g}$					11.15	kg	

Injection Bench Assembly FEA

- Optical components for FEA
- Mirror:
- Mass: 205.87 g
- Mass FEA: 203 g
- Quantity: 11 / 18

- Lens:
- Mass: 121.375 g
- Mass FEA: 120 g
- Quantity: 7 / 10

Injection Bench Assembly FEA

- Optical components for FEA
- Beam Dump:
- Mass: 164.61 g
- Mass to FEA: 163 g
- Quantity: 2 / 5

- QPD:
- Mass: 142.98 g
- Mass FEA: 143 g
- Quantity: 2 / 3

Injection Bench Assembly FEA

- Optical components for FEA
- Polarizer:
- Mass: 206.71 g
- Mass FEA: 203 g
- Quantity: 2+2 / 2+2

- Wave Plate:
- Mass: 300 g
- Mass FEA: 297 g
- Quantity: 1 / 2

Injection Bench Assembly FEA

- Optical components for FEA
- Fiber In:
- Mass: 252.01 g
- Mass FEA: 191 g
- Quantitv: 2 / 2

- RFPD in Vacuum
- Mass: 270.41 g
- Mass: 279 g
- Quantity: 0 / 2

Injection Bench Assembly FEA

- Optical components for FEA
- Faraday Rotator:
- Mass:
- Base: 170.43 g
- Base FEA: 170 g
- Rotator: X g
- Quantity: 1 / 1

- VOPO Cavity:
- Mass: 1463 g
- Mass: 1460 g
- Quantity: 1 / 1

Injection Bench Assembly FEA

- Injection Bench Assembly for FEA
- Global Contact: Bonded

Injection Bench Assembly FEA

- Injection Bench Assembly for FEA (no MASSES)

NOTE: No significant difference has been observed between compatible and incompatible meshing

BLADE DESIGN: Material

- Material: 440C SSTL ($\mathrm{E}=210 \mathrm{GPa}, \sigma_{\mathrm{y}}=1800 \mathrm{MPa}, \mathrm{UTS}=1970 \mathrm{MPa}, \rho=7800 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{v}=0.285$)
- Total Suspended Mass: m $=36 \mathrm{~kg}$
- Charge per blade: $\mathrm{P}=117.72 \mathrm{~N}(12 \mathrm{~kg})$

mechanical Properties
- Constraints:
- Factor of Safety: $\geq 33.3 \%(\mathrm{FoS} \geq 3)$
- Desired frequency: $\mathrm{f} \approx 1.5 \mathrm{~Hz}$

Tempering Temperature ('C)	Tensile Strength (MPa)	Yield strength 0.2% Proof (MPa)	Elongation (\% in 50mm)	Hardness Rockwell (HR C)	Impact charpy V (1)
Annealed*	758	448	14	269HB max ${ }^{\text {a }}$	-
204	2030	1900	4	59	9
260	1960	1830	4	57	9
316	1860	1740	4	56	9
371	1790	1660	4	56	9

BLADE DESIGN: Dimensions

- Design Parameters:
- Blade Width: a
- Blade Length: 1
- Blade thickness: h

3 Parameters

- Equations (for triangular blades):
- $K z Z=\frac{E a h^{3}}{4 l^{3}}$
- $f=\frac{1}{2 \pi} \sqrt{\frac{K_{Z Z}}{m}}=1.5 \mathrm{~Hz}$
- $\sigma_{\max }=\frac{6 P l}{a h^{2}}$

2 Equations

NOTE: The choice of this length has been made after checking the optical layout

BLADE DESIGN: Dimensions

- Theoretical Results (BladeDesign.m) for $m=36 \mathrm{~kg}, \mathrm{f}=1.5 \mathrm{~Hz}$ and $\mathrm{FoS}=3$:
- $\mathrm{l}=280 \mathrm{~mm}$
- $\mathrm{b}=80.12 \mathrm{~mm}$
- $\mathrm{h}=2.0282 \mathrm{~mm}$
- $\mathrm{Kzz}=1065.9 \mathrm{~N} / \mathrm{m}$
- Tip deflection $=110.4 \mathrm{~mm}$

NOTE: 80 mm is less than what was previously used for the blade design (85 mm) so it fits widely in the designed bench.

BLADE DESIGN: Dimensions

- Theoretical Results (BladeDesign.m) for $\mathrm{m}=36 \mathrm{~kg}, \mathrm{f}=1.6 \mathrm{~Hz}$
- $\mathrm{l}=280 \mathrm{~mm}$
- $\mathrm{b}=85 \mathrm{~mm}$
- $\mathrm{h}=2.0761 \mathrm{~mm}$
- $\operatorname{FoS}=3.3346$ (30\%)
- $\mathrm{Kzz}=1212.8 \mathrm{~N} / \mathrm{m}$

NOTE: In order to increase the FoS and knowing that 280 mm length and 85 mm wide blade fits in the design, the desired frequency has been raised to 1.6 Hz .

BLADE DESIGN: Dimensions

- FINAL DIMENSIONS:
- $\mathrm{f}=1.5252 \mathrm{~Hz}$

- $\mathrm{f}=1.6277 \mathrm{~Hz}$
- $\mathrm{Kzz}=1255.1 \mathrm{~N} / \mathrm{m}$
- $\mathrm{FoS}=3.5473$

NOTE: The expected performances are those shown for 36 kg (that already include some contingency). However, the suspended mass could be raised up to 41 kg keeping $\mathrm{FoS} \geq 3$

BLADE DESIGN: FEA

- First Analysis using SW Simulation
- Second Analysis using ANSYS
- $\mathrm{m}=36 \mathrm{~kg}$
- Force: Normal to Surface

BLADE DESIGN: FEA

- Deformation

SW SIMULATION
ANSYS

BLADE DESIGN: FEA

Stress (von Misses)

5.4768e8 Max
4.868688
4.2604 e8
3.6522e8
3.044 e 8
2.4358 e 8
$1.8276{ }^{\text {e }}$
1.2194 e 8
6.112 e 7
3.0088e5 Min

Difference= 0.40%

SW SIMULATION
ANSYS

BLADE DESIGN: FEA

- Strain (Equivalent)

SW SIMULATION

0.002608 Max 0.0023184 0.0020288 0.0017392 0.0014495 0.0011599 0.0008703 0.00058068 0.00029106 1.4327e-6 Min

ANSYS

BLADE DESIGN: FEA

- Conclusions:

FEA				
	SW	ANSYS	Difference $\%$	
Stress (MPa)	547.2	547.68	0.088	
Displacement (mm)	85.82	86.16	0.395	
Strain	$1.79 \mathrm{E}-03$	$2.61 \mathrm{E}-03$	31.52	
FoS	3.29	3.29		

FLEXURE DESIGN: Properties

- Material: Music Wire Steel ($\mathrm{E}=154-201 \mathrm{GPa}, \sigma_{\mathrm{Y}}=1600-2000 \mathrm{Mpa}$)
- Total Suspended Mass: m $=36 \mathrm{~kg}$
- Charge per wire: $\mathrm{P}=117.12 \mathrm{~N}$

Instron 5500R: Tensile Strength Testing, Coiled Wires					
untreated wires			cryotreated wires		
diameter (mm)	max stress (Pa)	Young's Modulus (Pa)	diameter (mm)	max stress (Pa)	Young's Modulus (Pa)
0.635	$2.16 \mathrm{E}+09$	$1.54 \mathrm{E}+11$	0.635	$2.16 \mathrm{E}+09$	-
0.457	$2.52 \mathrm{E}+09$	$2.01 \mathrm{E}+11$	0.457	$2.51 \mathrm{E}+09$	$2.11 \mathrm{E}+11$
0.203	$2.23 \mathrm{E}+09$	$1.99 \mathrm{E}+11$	0.2	$2.24 \mathrm{E}+09$	$4.32 \mathrm{E}+11$

NOTE: T1500539 shows a 84.6% average relation between σ_{y} and UTS. Therefore, in further calculations σ_{y} is calculated as 80% of the Minimum Tensile Strength

D (mm)	0.1194	0.1524	0.2007	0.2489	0.2692	0.3404	0.3556	0.4064	0.4572	0.6096	0.6350	0.7112	1.0998
Considerated Yield Strenght (Mpa)	1986	1931	1875	1820	1820	1765	1765	1710	1710	1600	1600	1600	1600
Average Porportional Yield Strenght (Mpa)				1930	1840	1780	1770		1930	2190		1620	2170

FLEXURE DESIGN: Music Wire

- Material: Music Wire Steel ($\mathrm{E}=201 \mathrm{GPa}, \sigma_{\mathrm{Y}}=1710 \mathrm{Mpa}$)
- Total Suspended Mass: m $=36 \mathrm{~kg}$
- Charge per wire: $\mathrm{P}=117.72 \mathrm{~N}$

NOTE: Diameter of 0.41 mm enables to re-use the Faraday Isolator clamps but $\mathrm{FoS}=1.55$ is too low for our purposes

FLEXURE DESIGN: Music Wire

- Material: Music Wire Steel ($\mathrm{E}=201 \mathrm{GPa}, \sigma_{\mathrm{Y}}=1600 \mathrm{Mpa}$)
- Total Suspended Mass: m $=36 \mathrm{~kg}$
- Charge per wire: $\mathrm{P}=117.72 \mathrm{~N}$

$$
\begin{aligned}
& \mathrm{Lf}=130 \mathrm{~mm} \\
& \cdot \mathrm{~d}=0.61 \mathrm{~mm}
\end{aligned}
$$

- - - --- - -

FlexureDesign.m

$$
\begin{aligned}
& \mathrm{f}=1.4203 \mathrm{~Hz} \\
& \cdot \mathrm{Kxx}=955.62 \mathrm{~N} / \mathrm{m} \\
& \cdot \mathrm{FoS}=2.9148
\end{aligned}
$$

NOTE: Diameter of 0.61 mm raise FoS up to almost 3 , which is considered enough as the minimal guaranteed tensile strength has been considered

Desired frequency: $\mathrm{f}<1.5 \mathrm{~Hz}$
$\mathrm{FoS} \geq 33.3 \%(\mathrm{FoS} \geq 3)$
FoS function of D for $L f=130 \mathrm{~mm}$ and $m=36 \mathrm{~kg}$

FLEXURE DESIGN: Theory

- Frequency calculation using pendulum theory

$$
\begin{gathered}
\ddot{\alpha}+\frac{g}{l z} \sin \alpha=0 \\
\omega^{2}=\frac{g}{l z} \\
f=\frac{1}{2 \pi} \sqrt{\frac{g}{l z}} \\
f_{\text {PEND }}=1.4203 \mathrm{~Hz}
\end{gathered}
$$

CLAMP DESIGN: Material \& Preload

- SCREW MATERIAL

Bolt	Hole	Measured Coefficient	Expected coefficient
Silver plated	Steel	$0.30-0.31$	---
Silver plated	Helicoil	$0.26-0.35$	---
Stee	Helicoil	$0.44-0.52$	---
Steel	Aluminum	$0.44-0.61$	0.61^{*}

GRADE'	general DESCRIPTION	MECHANICAL REQUIREMEN							
		BOLTS, SCREWS AND STUDS						NUTS	
		FULL SIZE BOLTS, SCREWS, STUDS		MACHINED TEST SPECIMENS OFBOLTS, SCREWS, STUDS			HARDNESSROCKWELLMin	$\begin{aligned} & \text { PROOF } \\ & \text { STRAD } \\ & \text { STRES } \\ & \text { Ks } \end{aligned}$	$\begin{gathered} \text { HARDNESS } \\ \text { ROCKWELL } \\ \text { MIn } \end{gathered}$
		$\begin{aligned} & \text { YIELD }{ }^{2} \\ & \text { STRENGTH } \\ & \text { min } \mathrm{ks} \text { i } \end{aligned}$	TENSILE STRENGTH min ks! min ksi	$\begin{gathered} \text { YIELD } \\ \text { STRENGTH } \\ \text { min ksi } \end{gathered}$	TENSILE STRENGTH min ksi	$\begin{aligned} & \text { ELON- } \\ & \text { GATON } \\ & \text { GAMIn } \end{aligned}$			
	Austenitic Stainless Steel Sol. Annealod	30	75	30	75	20	B75	75	B75
	Austenitic Sold Workteel Cold Worked	50	90	45	85	20	B85	90	B85
		${ }_{30}$	75	$\overline{{ }_{30}}$	${ }_{75}-$	$\overline{20}$	B70	75	$\overline{\text { B70 }}$
$\begin{aligned} & \text { 304.5H } \\ & \text { and } \\ & \text { 3056-SH } \\ & \text { 36-SH } \end{aligned}$	Austenitic Stainless SteelStrain Hardened	$\begin{gathered} \text { See } \\ \text { Note } 6 \end{gathered}$	$\begin{gathered} \text { Soe } \\ \text { Note } \end{gathered}$	$\begin{gathered} \text { See } \\ \text { Note } \end{gathered}$	$\begin{gathered} \text { See } \\ \text { Note } 6 \end{gathered}$	15	C25	Note 6	c20
$\begin{aligned} & 410-\mathrm{H} \\ & 46 \mathrm{H} \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { Martensitic } \\ \text { Stainess Steel- } \\ \text { Hardened and } \\ \text { Tempered } \end{array} \\ & \hline \end{aligned}$	95	125	95	125	20	C22	125	C22
$\begin{aligned} & 410-\mathrm{HT} \\ & 416-\mathrm{HT} \end{aligned}$	Matrensitic Stainiess StelTempered	135	180	135	180	12	C36	180	C36
430	Ferritic	40	70	40	70	20	B75	70	B75

- http://www.ssina.com/download a file/fasteners.pdf

```
- \(\sigma_{\mathrm{Y}}=344.74 \mathrm{Mpa}(50 \mathrm{ksi})\)
- \(\mu=0.5\)
```


clampDesign.m FoS $=3$

- Tension $=2290.7 \mathrm{~N}$
- $\mathrm{T}=8.8702 \mathrm{Nm}$ (78.51 in-lb)

Note: No Socket Head Screw for this material neither Silver Plated option (McMaster \& HoloKrome)

Note II: Torque similar to the recommended for Generic Screws in T1100066 (75 in-lb)

CLAMP DESIGN: Material \& Preload

- SCREW MATERIAL

http://www.nuttybolts.com/nutty-bolts/?page id=146
http://www.memaster.com/\#socket-head-cap-screws/=z2xdjy

- $\sigma_{\mathrm{y}}=448.16 \mathrm{Mpa}(65 \mathrm{ksi})$
- $\mu=0.5$
clampDesign.m FoS $=3$

$$
\begin{aligned}
& \text { Tension }=3066.9 \mathrm{~N} \\
& \mathrm{~T}=11.8757 \mathrm{Nm}(105.11 \mathrm{in}-\mathrm{lb})
\end{aligned}
$$

CLAMP DESIGN: Material \& Preload

Condition	Ultimate Tensile Strength (PSI)	$\underset{\substack{\text { (PSI) }}}{0.2 \% \text { Yield Strength }}$	$\underset{\text { 2in.) }}{\substack{\text { Elongation (\% } \\ \text { In }}}$	Reduction Of Area (\%)	Hardness Brinell	Hardness Rockwell
H900	190,000	170,000	10	40	388	C40
H1025	155,000	145,000	12	45	331	C35
H1075	145,000	125,000	13	45	311	C32
H1150	135,000	105,000	16	50	277	C28
H1150-M	115,000	75,000	18	55	255	C24
H1150-D	125,000	105,000	16	50	$\begin{gathered} 255 \min _{\max }-311 \\ \hline \end{gathered}$	C24-33

- http://www.deltafastener.com/17-4\ ph.html
- http://www.mcmaster.com/\#=z2x9xd

$$
\begin{aligned}
& \cdot \sigma_{\mathrm{Y}}=861.84 \mathrm{Mpa}(125 \mathrm{ksi}) \\
& \cdot \mu=0.5 \text { (conservative) } \\
& \text { clampDesign.m FoS }=3 \\
& \text { - Tension }=5897.8 \mathrm{~N} \\
& \text { - } \mathrm{T}=22.8376 \mathrm{Nm}(202.13 \mathrm{in}-\mathrm{lb})
\end{aligned}
$$

Note: No Socket Head Screw for this material neither Silver Plated option (McMaster \& HoloKrome)

Note II: Torque similar to the recommended for Carbon Steel 1960 Series in T1100066 (200 in-lb)

CLAMP DESIGN: Number of Screws

- Preliminary calculation using ClampDesign.m

$\mathrm{Pb} \square d_{p}=d-\frac{1.299038}{n}$
$d_{n}=d-\frac{0.649519}{n}$
$A_{s}=\frac{\pi}{4}\left(\frac{d_{m}+d_{p}}{2}\right)^{2}$

$$
P_{B_{M A X}}=\frac{\sigma_{Y I E L D}}{F o S} A_{s}
$$

$$
\text { - } P_{B}=2460.5 \mathrm{~N}
$$

- 316 SSTL + HELICOILS
- Bolts needed: min 2 screw per row for FoS >3
- $\mathrm{FoS}=5.5859$ (with 2 screw per row)
- 18-8 SSTL + HELICOILS
- Bolts needed: min 1 screw per row for FoS > 3
- $\mathrm{FoS}=3.7393$ (with 1 screw per row)

- 17-4 PH SSTL + HELICOILS

- Bolts needed: min 1 screw per row for FoS > 3
- FoS $=7.1909$ (with 1 screw per row)

Note: The final number of screws per row and the material election will be driven by the contact calculation between the blade and the platform

Balancing Mass

- Preliminary Mass Balancing
- First Bench Design ($\approx 17 \mathrm{~kg}$)

```
Center of mass: ( millimeters)
    X=0.0
    Y=0.0
    Z=6.0
```

Note: The remaining 1 kg has been reserved for the Bench Optimization and final CoG adjustment

Note II: This model is the one that has been used for the injection bench optimization and will be tunned according to the results of this optimization.

Injection Bench Assembly FEA

- Injection Bench Assembly for FEA with Masses

- Global Contact: Bonded
- Mesh: Compatible

Mass $=35301.6$ grams
Volume $=675.6$ cubic inches
Surface area $=1493992.4$ square millimeters
Center of mass: (millimeters)
$\mathrm{X}=0.3$
$\mathrm{Y}=1.3$
$Z=6.5$

OPTICS	9.933	kg	9.94927
SUSPENSION	17.131	$\mathbf{k g}$	17.1857
MASS	8.131	$\mathbf{k g}$	8.167
TOTAL WEIGHT	35.195	$\mathbf{k g}$	35.301
Mass to 36 kg	0.80	kg	0.70

Injection Bench Assembly FEA

- Injection Bench Assembly for FEA

- Bench Mass $=17.06 \mathrm{~kg}$

NOTE: The remaining 940 g will be used to position the CoG

Injection Bench Assembly FEA

- Injection Bench Assembly for FEA (ANSYS)

- Equivalent Strain

NOTE: The areas with high Strain should be reinforced using the 940 g

Injection Bench Assembly FEA

- Injection Bench Assembly for FEA (no MASSES)

Density $=0.044$ kilograms per cubic inch

Mass $=17.060$ kilograms

Volume $=385.579$ cubic inches
Surface area $=781537.629$ square millimeters
Center of mass: (millimeters)
$X=21.518$
$Y=-13.145$
$Z=-20.716$

NOTE: The remaining 940 g will be used to position the CoG and to improve the high strain areas

Center of Mass

- Optics O3

Mass $=9932.652$ grams

Volume $=0.003$ cubic meters
Surface area $=1575061.645$ square millimeters
(Ceñéer ồ màss: (mililimeters)
$\begin{array}{ll}\mathrm{X}=35.471 \\ 1 \\ \mathrm{Y}=-16.171 \\ \mathrm{Z} & =37.586\end{array}$

Note: The Center of Mass of the optics is already close to the desired CoM (the barycenter of the clamps attachment points)

Desired Center of Mass

Balancing Mass

- Preliminary Mass Balancing

- First Bench Design ($\approx 17 \mathrm{~kg}$)
- Lateral Masses

Mass $=32637.107$ grams

Volume $=0.010$ cubic meters
Surface area $=2530447.011$ square millimeters
(Center of mass: (millimeters))
$X=19.147$
Y \quad = 15.506
$Z=5.293$

OPTICS		9.933
kg		
SUSPENSION		17.131
Mg		
MASS		5.500

TOTAL WEIGHT

32.564 kg

Mass to $\mathbf{3 6} \mathbf{~ k g}$
3.44 kg

Note: The remaining 3.44 kg (940 g in the injection bench and the rest as balancing masses on the bench) should be placed near the dashed area in order to balance the assembly

Balancing Mass

Note: The balancing masses are more distributed in the left part of the assembly. That could be solved by "naturally" placing the CoG of the Injection Bench opposed to the Optics one.

Center of Mass

- FEA

Mass $=33909.985$ grams
Volume $=638.177$ cubic inches
Surface area $=2301.473$ square inches
Center of mass: (inches)

$$
\begin{aligned}
& X=0.346 \\
& Y=0.405 \\
& Z=-0.079
\end{aligned}
$$

Center of Mass

- With balancing masses

Mass properties of D1500292 aLIGO VOPO Injection Bench Assembly TO FEA Configuration: Default
Coordinate system: Coordinate System1
Mass $=37.37$ kilograms
Volume $=727.18$ cubic inches
Surface area $=2533.66$ square inches
Center of mass: (inches)
$X=0.08$
$y=1.21$ | $\quad \mathrm{Y}=1.21$
Z $=0.09$
Principal axes of inertia and principal moments of inertia: (kilograms * square inches) Taken at the center of mass.

$\mathrm{Ix}=(-0.99,-0.01,0.17)$	$\mathrm{Px}=1150.51$
$\mathrm{Iy}=(0.17,-0.03,0.99)$	$\mathrm{Py}=1818.71$

$\mathrm{y}=(0.17,-0.03,0.99) \quad \mathrm{Py}=1818.71$
$\mathrm{Iz}=(-0.01,1.00,0.04) \quad \mathrm{Pz}=2833.14$
Moments of inertia: (kilograms * square inches)
Taken at the center of mass and aligned with the output coordinate system.
$L x x=1169.36$
$L y x=18.00$
$L y y=18.00$
$L y=2831.62$ $L x z=-109.72$
$\operatorname{lyx}=18.00$
$L y y=2831.62$
$L z y=-38.10$ $L z z=1801.38$

Moments of inertia: (kilograms * square inches) Taken at the output coordinate system.

Ixx $=1224.02$	Ixy $=21.63$	Ixz $=-109.46$
Iyx $=21.63$	Iyy $=2832.14$	Iyz $=-34.21$
Izx $=-109.46$	Izy $=-34.21$	Izz $=1856.00$

$y y=2832.14$
Izy $=-34.21$

Geometric Center

Center of
Mass

Center of Mass

- Optics

Mạss $=9893.8$ grams
Volume $=0.0$ cubic meters
Surface area $=1564570.5$ square millimeters
(Center of mass: (millimeters)

$\mathrm{X}=35.2$	I
$\mathrm{Y}=-12.3$	I
$\mathrm{Z}=37.5$	

Note: The Center of Mass of the optics is already close to the desired CoM (the barycenter of the clamps attachment points)

Desired Center of Mass

Balancing Mass

- Preliminary Mass Balancing
- First Bench Design ($\approx 16 \mathrm{~kg}$)

Balancing Mass

- Optics + Balancing Mass

Mass $=36054.2$ grams

Volume $=0.0$ cubic meters
Surface area $=2528676.9$ square millimeters

$\begin{aligned} & \text { (Center of mass: (} \text { (} \text { illimeters) } \\ & \begin{array}{l} \quad X=0.0 \\ \quad \mathrm{Y}=0.0 \end{array} \end{aligned}$

ELEMENT	Name	Description	Unit Weight
TYPE		(g)	

Note: The balancing masses are basically placed in the lateral of the Injection Bench (5.4 kg). However, 2.6 kg are placed on the Bench as contingency for the optics weight

Desired Center of Mass

Center of Mass

- FEA

Mass $=35805.3$ grams
Volume $=689.3$ cubic inches
Surface area $=1496522.6$ square millimeters
Center of mass: (millimeters)

$$
\begin{aligned}
& X=-0.4 \\
& Y=-1.5 \\
& z=6.3
\end{aligned}
$$

Center of Mass

- FEA
- First Frequency Study
- $f_{\text {Compatible }}=205.19 \mathrm{~Hz}$

Center of Mass

- Optics

Mass $=6773.1$ grams
Volume $=0.0$ cubic meters
Surface area $=929838.5$ square millimeters

Note: The Center of Mass of the optics far from the desired but there is a lot of available space to locate the balancing masses

Balancing Mass

- Preliminary Mass Balancing
- First Bench Design ($\approx 18 \mathrm{~kg}$)

OPTICS	6.750	kg
SUSPENSION	18.134	kg
MASS	11.068	kg
TOTAL WEIGHT	35.952	kg
Mass to 36 kg	0.05	kg

Note: The weight of the suspension (basically the Injection Bench) is approximate and will be defined after the optimization to increase the frequency

Balancing Mass

- Optics + Balancing Mass

Note: In this case there is more balancing mass placed on the bench than in the laterals as it has to compensate the lack of optics

Center of Mass

- FEA

Mass $=35532.6$ grams
Volume $=638.1$ cubic inches
Surface area $=1370261.1$ square millimeters
Center of mass: (millimeters)

$$
\begin{aligned}
& X=2.7 \\
& Y=-0.8 \\
& Z=4.8
\end{aligned}
$$

Center of Mass

- FEA
- First Frequency Study
- $f_{\text {Compatible }}=211.84 \mathrm{~Hz}$

Optimization

- FEA
- Bench Optimization for O3
- $f_{\text {Compatible }}=209.28 \mathrm{~Hz}$
- Bench Mass $=17.296 \mathrm{~kg}$

Fixer

- Screw \#10-24 Static Calculation
- Load $=\mathrm{P}=117.72 \mathrm{~N}$
- $\mathrm{FoS}=32.1622$
- Maximum Play
- Vertical: $0.5-2 \frac{0.19}{2}=0.31 \mathrm{in}(7.874 \mathrm{~mm})$
- Horizontal: $0.5-2 \frac{0.19}{2}=0.31 \mathrm{in}(7.874 \mathrm{~mm})$
- Lateral: $0.32-2 \frac{0.19}{2}=0.13 \mathrm{in}(3.302 \mathrm{~mm})$

