The Instruments Behind Gravitational Wave Detection

Dr. Lee McCuller for the LIGO Scientific Collaboration Apr 2015

Introductory Video

https://www.ligo.caltech.edu/video/ligo20160211v1

Credit LIGO/SXS/R.Hurt and T. Pyle

UChicago Compton Lecture

Overview

- Gravitational Waves their scale on earth
- Overview of the Instrument
 - Spacetime -> light
- The limits of physical measurements
 - Examples for light and sound
- The LIGO Detector
 - Design
 - Limits
 - Effect on data
- Possibilities for the future

LIGO Livingston Observatory

12.4

LIGO Hanford Observatory

And a state of the second state of the second state of the

2 LIGO Observatories, each with one laser interferometer with 4 km arms

UChicago Compton Lecture

Observatory Network

UChicago Compton Lecture

Michelson Video

Video

C:\Users\mcculler\Desk top\Presentation\ligo2 0160211v6.m4v

https://www.ligo.caltech.edu/video/ligo20160211v6

Credit: LIGO/T. Pyle

UChicago Compton Lecture

Michelson Video

https://www.ligo.caltech.edu/video/ligo20160211v6

Credit: LIGO/T. Pyle

UChicago Compton Lecture

UChicago Compton Lecture

UChicago Compton Lecture

Spacetime Stretch

Spacetime Strain

Strain Waveforms

UChicago Compton Lecture

Livingston, Louisiana (L1)

UChicago Compton Lecture

Advanced LIGO Sensitive Volume

- Rate 2-400 BBH mergers each year in a volume of 1 Gpc³ ApJL 818:L22 (2016)
- About 10 million galaxies per Gpc³
- Advanced LIGO range now ~ 0.1 to 1 Gpc, depending on system mass

Assuming representative rates for this event:

~5 or more BBH events in the next observing run (due to start later this year).

Initial Range

Advanced Range

UChicago Compton Lecture

UChicago Compton Lecture

Zoom! Enhance?

Roadside Guitars - Flickr: Tascam M-520

How far can you go?

Backgrounds

Sensor Noise

Turning up The volume only Overcomes the sensor limits of your ear

What about the limits of the machine?

UChicago Compton Lecture

Fundamental Noise

http://atomsinmotion.com

UChicago Compton Lecture

Advanced LIGO Noise

UChicago Compton Lecture

Frequency Dependence

UChicago Compton Lecture

Frequency Dependence

UChicago Compton Lecture

Advanced LIGO Noise

UChicago Compton Lecture

Advanced LIGO Noise

UChicago Compton Lecture

Optical Layouts

Optical Layouts

UChicago Compton Lecture

Advanced LIGO Noise

Advanced LIGO Noise

UChicago Compton Lecture

Isolation of the core optics

The Quadruple Pendulum

P1400177 - Advanced LIGO

Isolation of the auxiliary optics

UChicago Compton Lecture

Control Room in Hanford

UChicago Compton Lecture

Advanced LIGO: ways to do better?

 Mature technologies available to reduce quantum noise and improve aLIGO sensitivity by ~35% beyond design x1.35³=2.5 in rate

- Squeezed light

A gravitational wave observatory operating beyond the quantum shot-noise limit Nature Physics 7, 962–965 (2011) Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light Nature Photonics 7, 613–619 (2013) Audio-Band Frequency-Dependent Squeezing for Gravitational-Wave Detectors Phys. Rev. Lett. 116, 041102 (2016)

- Need to reduce other noise sources for maximal benefit:
 - Reducing coating thermal noise as well can lead to a reduction in the noise by a factor of 2

x2³ = 8 in rate!

2 m prototype quantum filter cavity @ MIT for frequency dependent squeezing

The Gravitational Wave Spectrum

UChicago Compton Lecture

Thanks to:

LIGO Caltech

LIGO Livingston Observatory