

A Cryogenic LIGO Mirror for 3rd Generation Gravitational Wave Observatories

Brett Shapiro, Stanford University

* Travel supported by the APS-SBF Brazil-U.S. physics PhD student & post-doc visitation program

LIGO-G1600766-v2, INPE - 29 March 2016

- How cryogenics can help us
- Summary of cryogenics research going on
- Stanford cryogenic test mass work
- Early experimental results from Stanford

LIGO Voyager baseline noise model

LIGO Voyager baseline noise model

Why Cryogenic Si for Test Masses?

- Lower temperature -> lower thermal noise
- Silicon has low mechanical loss at cold temperatures, further lowering the thermal noise off-resonance
- Thermal expansion goes to 0 at 124 K, eliminating thermoelastic noise and reducing thermal lensing
- Silicon has high thermal conductivity at low temperatures, reducing thermal lensing, permitting higher laser powers (lower shot noise)

Cryo work distribution

- Caltech direct thermal noise measurements; procuring large silicon masses
- Jena/Glasgow/Moscow mechanical loss
- KAGRA 20 K sapphire suspensions
- Glasgow silicon and sapphire test mass suspensions; coatings; absorption
- INPE Brazil cryogenic multi-nested pendulum
- Stanford optical coatings (Riccardo Bassiri's talk); cryogenic technology G1400926 - 26 Aug 2014 - Stanford

Adapted from Nicolas Smith-Lefebvre

UNIVERSITY of GLASGOW

Magnetic Czochralski for 200 kg Si test masses

- Normally all the ingots produced are processed into wafers
- - Rana A & Eric G with 300 mm ingot at Shin-Etsu, WA

- We are procuring "slugs" to determine properties of interest to us
- 20 cm diameter by 1 cm

From G1600539

UNIVERSITY of GLASGOW

Silicon absorption measurements

- Ingots polished with diamond slurry and pitch lap
- Consistently gives ~0.1% absorption at the surface
- Polishers uses it as it more easily gives good flatness over 4" diameter

Crystalline suspension fiber development

•We now have a SYNRAD 10.6um (400W laser for silicon growth/silica puller) and 1064 nm (100W) as heat sources for melting silicon/sapphire

• Low viscosity, requirement of long term stability (low growth speed) and emissivity variation (for silicon) are areas of ongoing research

Silicon heating at 10.6 um

From G1600467

Silicon

Mechanical losses of coated and uncoated Si oscillators

For the detail investigation we choose the relatively high-Q mode with frequency of 3528 Hz. This mode has five nodal diameters distorted by presence of the flats.

KAGRA Kamioka site

20 K, 23 kg sapphire test masses

GWINPE – Multi-Nested-Pendulum

28 March 2016

A model of the noise performance of LIGO Voyager

LIGO End Station Model

LIGO Voyager Conceptual Model

Scattered light noise simulation

Scattered light noise simulation

Scattered light noise simulation

Scattered light noise simulation - upconversion

Scattered light noise simulation - upconversion

Livingston Ground Displacement August 2009

Livingston Ground Displacement August & December 2009

Noise with various shield sizes

Noise with various shield sizes

Noise with various shield sizes

Heat shield experiment at Stanford University

Heat shield measurement and control

- The controller forces the heat shield to follow the isolated optics table using the relative displacement sensors
- The heat shield's geophones are used to measure how well the control is doing

Geophones inertial displacement measurement

Measured Heat Shield Displacement

Scattered Light with Measured Displacement

Actively controlled shield (ETM)

Actively controlled shield (ETM)

- Shield displacement maybe a problem
 - Active control is one approach to mitigate this
 - Or avoid control with a careful shield design
- Plan to add a second shield outside first
- Might want to heat the test mass springs

Special thanks to the **APS-SBF Brazil-U.S. physics PhD student & post-doc visitation program** for supporting this visit!

Questions?

Sources for scattered light simulations

- P1100117 The impact of upconverted scattered light on advanced interferometric Gravitational Wave Detectors
- T070089 Wide-angle scatter from LIGO arm cavities
- T1300354 Scattered light noise due to the ETM coating ripple

Advanced LIGO Noise

Predicted thermal noise of a 123 K Si mirror α -Si:SiO₂ HR coating and a 6 cm beam spot radius.

Materials vs max power

Thermal Expansion coefficient of silicon as a function of temperature

KAGRA End Station Layout

Fabrication (other than the platform) w/ a dummy mirror will be done at end of this Mar.

From G1600682

aLIGO test mass chambers

quadruple pendulum (four stages of isolation) with monolithic silica final stage

From LIGO-G1400964

Cool Down Analysis

Optical Sensor ElectroMagnet (OSEM)

Birmingham OSEM (BOSEM)

BOSEM Schematic

24 Aug 2014 - Stanford - G1400964

Advanced LIGO OSEM (AOSEM)

- modified iLIGO OSEM

Magnet Types (M0900034) • BOSEM – 10 X 10 mm, NdFeB , SmCo

10 X 5 mm, NdFeB, SmCo

- AOSEM 2 X 3 mm, SmCo
 - 2 X 6 mm, SmCo
 - 2 X 0.5 mm, SmCo

HS1 Geophone

Coil

Test mass inside heat shield

Cu brackets for Cu braids between heat shield and stage 0 cold plates

* The OSEMs monitor vertical drift of the suspension due to temperature changes in the spring The complete heat shield stage

Actuator magnets

Suspended heat shield stage over Stanford ISI

2 stage HAM-like ISI

ISI with stage 0 mounting structure for heat shield over stage 2

Mounting structure with cryogenic cold plates

Suspended heat shield stage hanging from mounting structure

OSEM feedback forces the heat shield to follow stage 2

