HOW BIG IS KERRY?
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ABSTRACT. We summarise some geometric properties, and try to give an im-
pression of the ‘size’, of the black hole which was formed by the merger that
emitted the first ever directly detected gravitational wave signal GW150914.

1. INTRODUCTION

The source of the first ever directly detected gravitational wave signal GW150914
was a binary black hole merger event, in which two co-rotating black holes collide
and merge to a single final black hole; cf [I]. The masses of the initial black holes,
as well as the mass and spin of the final black hole could be extracted from the
signal, which are summarised in the following table.

quantity value
primary black hole mass SGfZMQ
secondary black hole mass 291 My,
final black hole mass 6215 M,

dimensionless spin of the final black hole | 0.67%0 95

The fact that for the final black hole not only the mass but also the spin could be
measured, allows us to describe it as a Kerr black hole. In the following we sumarise
some geometric properties, which characterise our final Kerr hole. Furthermore, we
comment on ways to communicate the ‘size’ of it to the public. This is the first
ever real rotating black hole to be described as a Kerr hole, so it deserves a name
— lets call her Kerry!

Remark. This is an informal text. We do not present any novel new ideas, but
rather give a collection of formulas and facts for Kerr black holes, and specifically
for Kerry. The key point is to arrive at an intuitive, yet physically meaningful way
to communicate an impression of the size of a Kerr black hole to the general public.

2. SOME PROPERTIES OF A KERR BLACK HOLE
We will work in natural units, where G = ¢ = 1 throughout this section.

2.1. The Kerr metric. In the framework of general relativity, Kerr spacetime
describes a single rotating black hole in an empty universe, and its geometry is given
by the Kerr metric g. In Boyer-Lindquist coordinates {t,r,6, ¢}, and geometric
units, where G = ¢ = 1, the metric can be written as
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where we have
a=J/M, p?>=r*+a’cosf? and A =1r>—2Mr+ada>

Here, M denotes the mass of the black hole, and J it’s spin. The quantity a = J/M
is called the Kerr (spin) parameter.

2.2. Singularities, the horizon and the ergosphere. The metric is singular
iff p=0or A =0. The vanishing of p occurs when r = 0 and § = 7/2, and
represents the physical singularity of the black hole. In contrast, we have A = 0 iff
r =ry, with

r+ =M+ M?—a?,

and these singularities are merely coordinate singularities. Never the less, especially
r4 marks an interesting surface, which can be shown to be the event horizon of the
Kerr black hole — it’s ‘point of no return’. One might also be interested in comparing
r4+ to the Schwarzschild radius rs = 2M, so to the coordinate location of a horizon
of a non-spinning black hole, ie a Kerr black hole in the limit a — 0.

The intrinsic geometry of the horizon is given by the by ¢g induced metric on the
horizon 3, ie by the restriction of tor =74 and dr =0,
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Another interesting feature of a Kerr black hole is it’s ergosphere. This is the
volume between r and an outer ergosphere radius r.(6), within which an observer
with a time-like four-velocity cannot be stationary. In other words, within the
ergosphere objects cannot be at rest with respect to an observer at infinity, but are
forced to rotate with the black hole to some degree. The outer ergosphere boundary
can be shown to be given by

M? — a2 cos 92.

3. How BIG 1S A KERR BLACK HOLE?

We will work in natural units, where G = ¢ = 1 throughout this section.

3.1. A measure of the size. If one attempts to give an impression of the size
of a Kerr black hole, one is struggling with the yet so interesting implications of
curved spacetime. For instance, one cannot simply quote a value like 7y to give
an impression of the black hole’s radius, since it is a coordinate value which makes
sense in the Boyer-Lindquist coordinate system only. In principle one could give
the proper distance from r = 0 to r, which is an invariant quantity. However, then
one is faced with the counterintuitive physics inside of the event horizon, eg with
the singularity at the centre where the curvature blows up, or with the fact that
grr 18 negative inside of the horizon, implying that the radial direction is actually
time-like there. For these reasons, one can hardly expect that this proper distance
would help us at all to picture the black hole’s size in our mind.

The truth is of course, that there is no measure of length, which is both, a true
physical distance in spacetime and an intuitive measure of the black hole’s size, and
from the scientific perspective we simply have to deal with it.

If we now still decided to deal with it, for instance for the sake of communicating
science to the public, the best thing we could do is to look for an invariant geometric
quantity, which is both graspable by our imagination and which can be related to an
intuitive notion of a radius. The best choice for this appears to be the surface area



of the Kerr horizon A, which is given by an integration over the volume element of

3, ie by
27 ™
A= / / \/200(0)S45(0) d0dg = 4 (r? + a?).
0 0

We can now use our intuitive notion of the radius of a sphere in FEuclidean space
which yields the same surface area as that of the black hole horizon. This quantity
is called the areal radius r4 of the Kerr hole, and is given by

A
ra=A\ - = 73+ a?.

3.2. A measure of the oblaticity. Even though the Kerr horizon is located at
a constant Boyer-Lindquist radius r = r4 its geometry is not spherical but rather
oblate. To convince oneself one could for example calculate the Riemann curvature
of , and see that it changes with the angles. Here however we are again interested
in measures of lengths, which allow for an intuitive notion of how oblate a given
Kerr black hole is.

What we can do for example is to compare the circumferences of the horizon
measured at the equator and through the poles. These are invariant geometric
quantities, just as the area. To calculate the circumference at the equator Ceq, we
restrict to § = w/2,df = 0, and perform a volume integration over the resulting
induced metric, ie the line integration

Ceqg = /OQW /Ses(7/2) dp = 47 M.

In the same way, taking ¢ = 0,d¢ = 0 we yield

Opoz2/ \/299(0)d9:2/ \/7T2 + a?cos 62 do,
0 0

for the circumference Cj, through the poles, which is an elliptic integral and hence
can only be evaluated numerically.

We could now relate these circumferences to radii in the same way as we related
the area A to r4. For instance we could relate C,q to the radius of a circle in the
Euclidean plane, while we could work with an ellipse in the case of Cp,, ie

2+,
Ceq =2mreq and Cpo =27 %.

So r¢q and 7p, might be usefull to communicate an impression of how oblate a Kerr
black hole is due to its spin.

3.3. Remarks. Let us end this section by reminding ourselves that the true phys-
ical quantities discussed here, are the area of the horizon A, and it’s circumferences
Ceq and Cp,. The radii 74, req and rp, were defined using analogues of Euclidean
geometry, so they have no clear physical meaning by their self. Never the less, they
might be helpful in giving an impression of the ‘size’ of Kerr black hole, which can
be communicated to the general public.

4. KERRY

4.1. Conversion of geometric to SI units. So that we can calculate the quan-
tities discussed in the previous section for our Kerr black hole Kerry in SI units,
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we need to introduce the appropriate factors of G and ¢ into our formulas:

J=aMG/c,
ry = (M:l: vV M? fa2) G/,
re =2MG/c?,

re(0) = (M—f— M? —a? 00592) G/c?,
A=Adr (7’3_ + (aG/c2)2> ,
ra=1\/T%+ (aG/c?)?,
Cog = 4TMG /3,
Cpo = 2/ \/7"_2._ + (aG/c?)? cos 62 d6,
0
Teq = Ceq/2m = 2MG /2,

1 T
Tpo = Cpo/2m = ;/0 \/ri + (aG/02)2 cos 62 d6.

4.2. Values for Kerry. Let us finally write down the values of the discussed
quantities for the final Kerr black hole quoted in section [I| We do not keep track
of the experimental errors here. Thus we have

M =62Mg and a=0.67M,

as our mass and spin parameters. Entering now the values for the solar mass Mg,
the gravitational constant G and the speed of light ¢ in SI units, we obtain the
values summarised in the following table:

quantity ‘ SI value ‘ description
physical quantities of Kerry
M [1.23-10%kg mass
J | 2.27-10*kgm? /s | spin
ry | 1.60 - 10°m coordinate radius of the horizon
re(m/2) | 1.83 - 10°m coordinate radius of the ergosphere at the equator
r¢(0) | 1.60 - 10°m coordinate radius of the ergosphere at the poles
A | 3.67-1011'm? are of the event horizon
Ceq | 1.15- 105m circumference of the horizon at the equator
Cpo | 1.04-10m circumference of the horizon through the poles

Chpo/Ceq | 0.90
Euclidean analogues to give an impression of the ‘size’ of Kerry

ra | L.71-10°m radius of a Euclidean sphere with area A

Teq | 1.83-105m radius of a Euclidean circle with circumference
Ceq

Tpo | 1.45 - 10°m small semi-major axis of a Euclidean ellipse with

circumference ~ Cp,

Tpo/Teq | 0.79
comparison to a non-spinning black hole of mass M
rs | 1.83-10°m | Schwarzschild radius
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