
Distributed State Machine Supervision for Long-baseline Gravitational-wave
Detectors with the Guardian Automation Platform

Jameson Graef Rollins1, a)

LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA

(Dated: 11 August 2016)

The Laser Interferometer Gravitational-wave Observatory (LIGO) consists of two identical yet independent,
widely-separated, long-baseline gravitational-wave detectors. Each Advanced LIGO detector consists of com-
plex optical-mechanical systems isolated from the ground by multiple layers of active seismic isolation, all
controlled by hundreds of fast, digital, feedback control systems. This article describes a novel state machine-
based automation platform developed to handle the automation and supervisory control challenges of these
detectors. The platform, called Guardian, consists of distributed, independent, state machine automaton
nodes organized hierarchically for full detector control. User code is written in standard Python and the
platform is designed to facilitate the fast-paced development process associated with commissioning the
complicated Advanced LIGO instruments. While developed specifically for the Advanced LIGO detectors,
Guardian is a generic state machine automation platform that is useful for experimental control at all levels,
from simple table-top setups to large-scale multi-million dollar facilities.

I. INTRODUCTION

The Laser Interferometer Gravitational-wave Obser-
vatory (LIGO) has just completed its first observing
run with its new second-generation instruments. Dur-
ing this run, Advanced LIGO made the first ever direct
observation of gravitational waves from a binary black
hole merger1–3. This detection heralds a new era of
gravitational wave astronomy, where gravitational wave
detectors like LIGO will operate as true astronomical
observatories, continuously listening to the cosmos for
gravitational-wave events.

Achieving the scientific goals of LIGO requires robust
detector operations. LIGO consists of two identical yet
independent 4-km baseline Michelson-type interferomet-
ric detectors, located in Livingston, LA, and Hanford,
WA, USA4,5. The detectors directly measure the strain of
passing gravitational waves as they modulate the length
of the two Michelson arms. The detectors are complex
opto-mechanical systems consisting of multiple subsys-
tems whose actions and configurations need to be coor-
dinated to acquire and maintain the operating configu-
ration needed to detect gravitational waves. Getting the
detectors to their operating point quickly and robustly
is critical for maximizing observation time and scientific
output.

While many large physics experiments rely on some
form of real-time control at the machine interface level
to handle fast event sequencing (e.g. in particle accelera-
tors or extreme light sources), LIGO is somewhat unique
in the prominent role that feedback plays in overall de-
tector control. In general, though, regardless of the low-
level controls architecture, all large physics experiments
require some kind of supervisory control layer to coordi-
nate actions between subsystems and to achieve global

a)Electronic mail: jameson.rollins@ligo.org

operating configurations from “cold boot” conditions.

In Initial LIGO6, detector feedback control systems
were simple enough to be supervised by a small set of
shell scripts and a single daemon program that monitored
detector state and executed the appropriate scripts as
needed. Advanced LIGO, however, is significantly more
complex than Initial LIGO, employing roughly 100 times
the number of feedback control loops. The Initial LIGO
supervision system was therefore inadequate to meet the
needs of Advanced LIGO.

The Virgo project7, which operates an interferomet-
ric gravitational wave detector similar to those used by
LIGO, developed its own unique supervisory system,
called Alp, to handle automation of their first genera-
tion detectors7,8. Alp, while successful in automating
the initial Virgo detectors, is specific to the inner work-
ings of the Virgo data acquisition system and relies on a
custom network communication layer. It is unclear how
much this system will be used for the Advanced Virgo
project9, which is now in its commissioning phase.

The standard for industrial automation and slow con-
trol are programmable logic controllers (PLCs), typically
embodied by the IEC 61131 standard10. Because of their
ubiquity in industry they are frequently used in large
physics experiments as well11,12. While they can be used
for higher-level supervision tasks, PLCs are usually fully
integrated systems that are less well suited for large dis-
tributed applications that frequently require operation
under some level of partitioning. They are therefore gen-
erally reserved for low-level slow controls and machine
protection.

A class of supervisory control and data acquisition
(SCADA) systems has been developed specifically to
meet the needs of large physics experiments. The pri-
mary examples of these systems are the Experimental
Physics and Industrial Control System (EPICS)13,14 and
TANGO15,16. These systems are designed for distributed
control of large numbers of independent devices and typ-
ically include network message passing infrastructures as

mailto:jameson.rollins@ligo.org


2

HAM1 HAM2 HAM3

BSC2

BSC1

BSC3

HAM4

HAM5

BSC4 (LLO)/

BSC9 (LHO)

BSC5 (LLO)/

BSC10 (LHO)

HAM6

SRM

PRM

PR2

SR2

PR3
BS

ITMX

ITMY

ETMX

ETMY

SR3

IMC

OMC

4 km

readout

PSL

4 km

ALSX

ALSY

TCSX

TCSY

ALS arm length stabilization
BS beam splitter (mirror)
BSC basic symmetric chamber (vacuum)
DIAG diagnostic
ETM end test mass (mirror)
IFO interferometer
IMC input mode cleaner
ISC interferometer sensing and control
ISI internal seismic isolation
ITM input test mass (mirror)
HAM horizontal access module (vacuum)
HEPI hydraulic pre-isolation
OMC output mode cleaner
PR[M] power recycling [mirror]
PSL pre-stabilized laser
SEI seismic isolation
SR[M] signal recycling [mirror]
SUS suspension
TCS thermal compensation system

✲ x
✻

y

FIG. 1: Overview of the Advanced LIGO vacuum envelope (tan) and optical configuration, and glossary. The
circular vacuum chambers are called BSC chambers, and the rectangular ones are called HAM chambers. All vacuum
chambers contain active seismic isolation (SEI) platforms that support the optics and their suspension (SUS) structures
(represented by blue rectangles). The red lines represent the path of the primary laser beam (emanating from the
PSL), while the green lines represent the laser beams for the arm length stabilization (ALS) system. Illuminating the

input test masses (ITMX and ITMY) is the thermal compensation system (TCS).

well as sequential logic programming tools for device-level
automation. LIGO relies on EPICS as the primary com-
munication layer for supervisory control. However, while
these SCADA systems provide suitable mediums for su-
pervisory control, they don’t provide much in the way of
structure or functionality for the development and man-
agement of higher level supervision tasks.

A common model used to represent automation sys-
tems is the finite state machine. Finite state machines
are naturally represented by graphs, where states corre-

sponding to particular configurations of, or commands
on, a system are represented by nodes in the graph, con-
nected together by directed edges defining allowable tran-
sitions between states. Finite state machine representa-
tions are quite powerful and intuitive and are well suited
for many automation tasks. Finite state machines are
found in various experiments at the Large Hadron Col-
lider (LHC)11,17–20.

In order to meet the unique supervisory requirements
of the Advanced LIGO detectors, LIGO has developed a



3

novel state-machine based automation platform, known
as Guardian. Guardian consists of a distributed hierarchy
of independent automaton processes. Each automaton
process is a state machine execution engine handling con-
trol of a particular sub-domain of the full system. A hi-
erarchy of nodes control the full instrument. Guardian’s
highly distributed architecture allows large systems to
be easily partitioned and re-unified as needed. It is also
scalable, able to handle systems from a single automa-
ton up to the hundreds required for large facilities like
LIGO. Guardian was designed to be flexible and accessi-
ble, which is important for facilitating the unique com-
missioning process of long-baseline interferometers where
the full automation procedure is not known a priori and
automation logic changes need to be made quickly and
frequently.

This article describes the Advanced LIGO require-
ments that led to the development of this new platform,
the technical design of Guardian itself, and how Guardian
was deployed to fully control the Advanced LIGO detec-
tors.

II. ADVANCED LIGO SYSTEM DESCRIPTION AND
AUTOMATION REQUIREMENTS

At the core of the Advanced LIGO detectors is a dual-
recycled Michelson interferometer with Fabry-Pérot arm
cavities4,5. To isolate the interferometer from ground mo-
tion, all main optical components are suspended by pen-
dulum systems hung from active seismic isolation plat-
forms and can be actuated on in angle and length. The
primary laser light source provides up to 180 Watts of
input light power to reduce the effects of quantum shot
noise at the detector. A thermal compensation system
uses various thermal actuators to counteract the effects
of laser heating in the core optics. Figure 1 shows a
schematic overview of the detector, as well as a glossary
for abbreviations and acronyms used in this article.

Figure 2 shows a cartoon overview of the Advanced
LIGO control and supervision architecture. Signals from
sensors in the interferometer (labeled “physical plant” in
the diagram) are digitized and fed into a custom real-
time control system21. From the digitized error signals
the controls system calculates control signals that are fed
to actuators that affect the interferometer and its various
subsystems. A Beckhoff industrial PLC-based control
system22 handles low-level slow control of some discrete
components of the system.

The dashed box in the top of the diagram in Fig-
ure 2 encloses the supervisory control layer. The real-
time control system exposes signal readbacks and pa-
rameters of the fast control as channels in the EPICS net-
work message passing infrastructure13,14. These channels
are made available to automation and supervisory con-
trol processes (e.g. Guardian, shown as blue circles), as
well as to human operator interfaces. Compatibility with
EPICS was a fundamental requirement for the Advanced

LIGO automation system.

A. Lock acquisition and global control

The nominal operating point of the instrument—
where all interference conditions in the interferometer are
such that it is maximally sensitive to differential length
changes of the Michelson arms—is susceptible to external
disturbance and must be maintained via fast feedback
control loops that “lock” all global length and angular
degrees of freedom to their desired set points23. The
subsystem that handles all interferometer global degrees
of freedom is called interferometer sensing and control
(ISC).

To achieve lock, the overall global control system and
all detector subsystems must progress through sequences
of states in a well orchestrated manner. Initially in-
dependent components must be controlled to progres-
sively tighter degree by increasingly interdependent con-
trol loops. This process is known as lock acquisition.
Developing the lock acquisition procedure is one of the
more difficult challenges in the commissioning of long-
baseline gravitational wave detectors and is the primary
automation task during operation.

Multiple detector subsystems are either directly in-
volved in overall continuous global control or are in some
way involved in the lock acquisition process: power lev-
els are set depending on the current lock state (PSL24,
TCS25); optics are continuously actuated on for sta-
bility and global control (SUS, SEI/HEPI/ISI); various
sub-cavities are locked at different stages (ISC, IMC26,
ALS27,28, OMC29).

Eventually something will cause the global interferom-
eter control loops to lose control authority (i.e. “lose
lock”). This is usually due to external disturbances that
cause controller outputs to run into dynamic range lim-
its. The automation system must be able to identify that
a lock loss has occurred, reset all controllers and subsys-
tems appropriately, and then reacquire lock as fast as
possible so as to minimize downtime.

B. Suspensions and Seismic isolation

The Advanced LIGO test masses are isolated from the
ground via seven stages of active and passive seismic
isolation, distributed among three discrete subsystems:
test mass/optic suspensions (SUS), internal seismic isola-
tion (ISI) platforms, and hydraulic external pre-isolation
(HEPI) systems. The terms “external” and “internal”
in this context are relative to the vacuum envelope. The
HEPI and ISI systems together constitute the overall seis-
mic isolation (SEI) subsystem.

All test masses and auxiliary optics are suspended from
multi-stage pendulum suspensions. The core test masses
are hung from four-stage suspensions30 while the various



4

digital

analog
field racks

(IO)

Beckhoff

fa
s
t 

c
o

n
tr

o
l

physical
plant

real-time
control

EtherCat PCIe over fiber

fa
s
t 

c
o

n
tr

o
l

fa
s
t 

c
o

n
tr

o
l

fa
s
t 

c
o

n
tr

o
l

fa
s
t 

c
o

n
tr

o
l

supervisory
control

PD

PSL

ITM ETM

SEISEI

Guardian

ETM

IFO

SUS

ITM

manager node

device node EPICS

PSL SUS ISC

RESET

SAFE

MISALIGNED

ALIGNING

UNALIGNING

ENABLE_ALL

FULLY_ENABLED

DISABLE

MISALIGNING

ALIGNED

MASTERSWITCH_ON

ENGAGE_DAMPING

DAMPED

INIT

TRIPPED

FIG. 2: Overview of the Advanced LIGO digital control and supervision architecture. The LIGO interferometer itself
is represented by the “physical plant” layer at the bottom. The input/output and “real-time” digital controls (also
referred to as “front end” systems) are represented by the gray boxes in the middle layer. Supervisory control is handled
by Guardian, which is shown in the dashed box at the top. The blue circles represent individual Guardian nodes
(labeled with hypothetical subsystem names). All communication between Guardian nodes and between Guardian

and the front-end systems is handled via EPICS. At the right is an example state graph for one of the nodes.

auxiliary optics are hung from three-, two-, and single-
stage suspensions. The suspensions incorporate various
sensors and actuators on multiple different stages that are
used for local motion sensing. Magnetic and electrostatic
actuators are used for pushing on the stages to control
the pitch, yaw, and longitudinal degrees of freedom. The
suspension systems are the primary actuators for global
control of the full interferometer. They also use feedback
from the local sensors to damp various mechanical modes.

The ISI systems provide either one or two stages of
active isolation for six degrees of freedom31. They are
located inside the vacuum enclosure and directly support
the test mass and auxiliary optic suspension structures.
There are five two-stage ISIs for the five core test masses
(BS, two ITMs, and two ETMs), and five single-stage
ISIs for five of the auxiliary optic chambers (HAMs 2-6).

The HEPI systems are located outside the vacuum en-
closure between the primary support pillars attached to
the ground and the cross beams that support the ISI
platforms in vacuum. They provide gross DC alignment
and low-frequency isolation for six degrees of freedom us-
ing hydraulic actuation31. There is one system for every
vacuum chamber in the system, for a total of 11 units in
the full system.

The HEPI and ISI systems have similar control system

architectures for each individual stage. They both uti-
lize damping loops to damp rigid body modes and struc-
tural resonances. The ISI systems additionally have isola-
tion loops for inertial isolation of the payload from input
ground motion. These control loops must be engaged in a
specific order to maintain stability: damping loops must
be engaged first for all stages, moving from outer stages
to inner, followed by the isolation loops which must be
engaged in the same order.

All SUS and SEI systems include software watchdogs
that automatically shut off all actuator outputs if control
signals surpass certain thresholds. Operator intervention
is required to reset the watchdogs, after which all control
loops must be reengaged.

C. User interface

While the lock acquisition sequence and controls nec-
essary to realize low-noise operation are understood in
principle beforehand, the ultimate implementations used
during operation are discovered over the course of an in-
tensive multi-year commissioning process. Any supervi-
sion system must support the fast turn-around pace of
commissioning. The system should have a clean, stan-



5

dardized interface and be capable of incorporating code
changes quickly and robustly so that new ideas can be
tested at a fast pace.

III. GUARDIAN STATE MACHINE SUPERVISION

Many options were considered when looking for a su-
pervisory solution for Advanced LIGO. The primary re-
quirement was that the system work with the existing
EPICS framework in the real-time control system. This
restriction narrowed down the options considerably. The
solution also needed to be scalable to handle a large num-
ber of independent components and flexible enough to
allow partitioning of the system so that sub-components
could be commissioned independently. This pointed to
a distributed architecture that would allow separate sys-
tems to function independently, yet unify as a whole for
full detector control. Finally, the system needed to sup-
port fast turnaround for code changes—lengthy recompi-
lation should not be necessary to incorporate new logic.
Ultimately it was determined that no existing system fit
these requirements, leading to the development of an en-
tirely new system: Guardian.

The basic concept of Guardian is that of a distributed
hierarchy of state machine automata. Each automaton
handles control of a specific sub-domain of the full system
to be controlled, and a hierarchy of automata can be used
to control larger systems.

The core of Guardian—the automaton—is the
guardian program, a stand-alone state machine execu-
tion engine with an EPICS control interface. When
launched, the program loads user code that defines a
state graph for the system being controlled (see sec-
tion III A). The program knows how to traverse the user-
defined state graph to move from whatever state the sys-
tem is in to a desired final state.

In a typical large-scale deployment, such as that of
Advanced LIGO, a hierarchy of guardian processes—
each referred to individually as a node—control the en-
tire instrument (henceforth referred to as the plant).
Higher-level manager nodes control lower-level subordi-
nate nodes, down to device nodes that talk directly to
the front-end systems. The blue circles in the top box in
Figure 2 each represent a node in a full hierarchy. Fig-
ure 7 shows two actual sub-hierarchies used in the full
Advanced LIGO Guardian implementation.

All Guardian user code is written in standard Python32

(as is the core guardian program itself). The full suite of
standard Python libraries are available to the user code,
as are special libraries designed specifically for interacting
with the LIGO control system.

A. State graphs and system dynamics

The user code for each node is a Python module that
defines state classes describing the action for each state

RESET

SAFE

MISALIGNED

ALIGNING

UNALIGNING

ENABLE_ALL

FULLY_ENABLED

DISABLE

MISALIGNING

ALIGNED

MASTERSWITCH_ON

ENGAGE_DAMPING

DAMPED

INIT

TRIPPED

(a) path

RESET

SAFE

MISALIGNED

ALIGNING

UNALIGNING

ENABLE_ALL

FULLY_ENABLED

DISABLE

MISALIGNING

ALIGNED

MASTERSWITCH_ON

ENGAGE_DAMPING

DAMPED

INIT

TRIPPED

(b) jump transition

FIG. 3: State graph of the Advanced LIGO suspen-
sion (SUS) Guardian systems. The colored ovals rep-
resent states of the system, and the arrows connecting
states represent allowable transitions between states. (a)
Directives take the form of state requests (green halo).
Guardian calculates the shortest path through the graph
(orange halos) to reach the requested state. (b) Any
state may return a jump target, which causes Guardian

to immediately transition to that state.

(see section III B) and a list of tuples that represent di-
rected edges—or allowable transitions—between states.
When the module is loaded the states and edges are ex-
tracted and assembled into a state graph for the given
system. An example of a state graph for the Advanced
LIGO suspension system is shown in Figure 3.

Directives to individual nodes take the form of a state
request. When a state request is received by a guardian
process (via its EPICS control interface) the process cal-
culates the shortest path in the state graph between the
current state and the requested state using a standard
Dijkstra algorithm33. An example path is shown in Fig-
ure 3a. Once the currently executing state indicates that
it is complete, the process immediately transitions to the
next state in the path and begins executing the new
state’s code. This repeats until the requested state is
reached.

At any time, the currently executing state code may
return the name of a particular state, indicating that
the system should immediately transition to the returned
state. This is known as a jump transition and is used to



6

bypass the normal edge dynamics of the graph. Jump
transitions allow Guardian to respond immediately to
undesired or unexpected changes in the plant. A jump
transition is illustrated in Figure 3b.

Guardian has three operating modes that determine
how the system graph is traversed:

auto mode: Graph traversal follows the shortest path
to the requested state. After jump transitions the sys-
tem attempts to automatically recover back to the re-
quested state by following the path from the jump tar-
get to the previous requested state.

managed mode: Graph traversal follows the shortest
path to the requested state, as in auto mode. After
jump transitions, however, the system “stalls” at the
jump target and does not transition away from the
jump target until a new request is issued. This mode is
used when the node is being managed by another node,
since it gives the managing node the opportunity to
identify that the subordinate has jumped and redirect
the subordinate to a different request state if needed.

manual mode: The graph as a whole is ignored and
the system immediately transitions between requested
states. This mode is useful only for commissioning and
debugging.

The default mode of operation is auto mode, and nodes
are automatically put into managed mode when they are
assigned a managing node.

B. State code programming and execution

Each Guardian state is a Python class definition that
inherits from a GuardState base class. The GuardState
class has two methods: main() and run(). The main()
method is executed once upon entering the state, after
which the run() method is executed in a loop. The
main() method is typically used for executing primary
plant changes, while the run() method is typically used
to watch for state exit conditions. Both state methods
have three return type options:

• False or None: This indicates that the state is
not complete and that the current state’s run()
method should be executed again.

• True: This indicates that the state is complete. If
the current state is not the target state, e.g. there
are more states in the path, a transition is made to
the next state in the path. If the current state is
the target state the current state’s run() method
is executed again.

• str: If the return value is a string it is assumed to
be the name of a state in the graph. The named
state is set to be the new target state and an im-
mediate transition to that state is initiated (jump
transition).

True

False
main run

(a) Basic operation, where a return value of True from either
method causes the state to exit, and a return value of False

causes the run() method to be executed again.

True

False
or

STATE == REQUEST

main run

(b) If the current state equals the requested state the run()

method is executed again regardless of whether the method
returns True or False.

JUMP JUMP

main run

(c) If either method returns a str state name a jump transi-
tion to that state occurs immediately.

FIG. 4: Guardian state process flow, showing execution
logic of the two state methods: main() and run().

Figure 4 shows diagrams for the state method execution
logic under various conditions.

Figure 5 shows an example Guardian user code module
and the resulting state graph. The primary activity in
each state consists of monitoring the plant via EPICS
readback channels and controlling the plant by writing to
plant settings channels. A special EPICS client interface
object (ezca) provides methods specifically designed to
deal with the Advanced LIGO front end system.

C. Process architecture

Guardian utilizes a soft real-time model for user
code execution that is similar in some respects to pro-
grammable logic controllers (PLCs). The execution/scan
loop is nominally 16 Hz, but each state method is allowed
to take as long as it needs to complete. Once a method
returns, the next method execution occurs on the next
1/16 second boundary. Only one method is executed per
cycle.

In order to handle user code execution in a fully con-
trolled environment, the guardian program is designed
around a daemon/worker subprocess architecture (see



7

from guardian import GuardState

class SAFE(GuardState ):

def main(self):

ezca[’SP0’] = 0

ezca[’SP1’] = 0

self.t = ezca[’T’]

class DAMPED(GuardState ):

def main(self):

ezca[’SP0’] = 2

ezca[’SP1’] = 3

def run(self):

if ezca[’RB0’] <= self.t:

return True

edges = [

(’SAFE’, ’DAMPED ’),

]

SAFE

DAMPED

FIG. 5: Example Guardian user code module defining
two states, SAFE and DAMPED, and one edge connect-
ing the SAFE state to the DAMPED state. The global
ezca object is the specially designed LIGO EPICS client
interface. Class attributes can be used to pass variables
between method calls. The resulting system graph for

this module is shown in the inset.

Figure 6). The main daemon process handles operator
interaction via a built-in EPICS server control interface,
and determination of the appropriate state and state
method to be executed. The worker subprocess handles
all user code execution. The daemon and worker pro-
cess communicate via a shared memory interface. This
subprocess architecture allows the main daemon process
to terminate user code execution at any time by simply
terminating the worker subprocess.

The daemon’s EPICS server provides a standard inter-
face through which operators or other managing guardian
nodes can request states in the graph, request reload of
the user code, and monitor state execution. When in-
structed from the operator, the daemon loads the user
code, constructs the state graph, and launches the worker
subprocess if it’s not already running. Through the
shared memory interface the daemon tells the worker
process which state object to instantiate and which
state method to execute. The worker then executes the
method, waits for it to return, and reports the return
value to the daemon. The daemon then calculates the
next state/method to be executed and the process con-
tinues. User code errors and exceptions are captured by
the worker process and reported to the daemon, which
halts further execution until the error condition is ac-
knowledged and cleared by the operator.

The ezca EPICS client interface used in the worker
process keeps track of all active EPICS channel subscrip-

daemon

worker

executes user code

calculates state method
calculates paths

EPICS client

process control

device control

shared
memory

EPICS server

controls worker clock

FIG. 6: Architecture of the core guardian program. The
main daemon process loads the system graph, calculates
state/method logic, and handles user interaction via a
built-in EPICS control server. The daemon spawns the
worker subprocess to execute all user code state meth-
ods. All communication between daemon and worker is

handled via a shared memory interface.

tions. Channel connectivity issues are reported to the
daemon and user code can be suspended until all con-
nections errors have cleared. The values of all EPICS
channel writes are recorded in the ezca object and a set
point monitor can be used to check settings during each
execution cycle. This allows for tracking of set points and
notifications if any set point has been changed externally.

D. Inter-node management

A special NodeManager interface is provided to facil-
itate inter-node control. Manager nodes list their sub-
ordinate nodes in the NodeManager object. Once the
subordinate nodes are “acquired” the NodeManager ob-
ject sets the subordinate nodes to be in managed mode
and starts tracking their state and status channels. Via
the interface, manager nodes can request states of their
subordinates and inspect their state and status in an id-
iomatic way.

E. State tracking and validation

Instrument state tracking is critical for scientific ap-
plications where instrument validation needs to be well
documented during an experiment, and there are a cou-
ple of key benefits of the state machine approach that
make it particularly well suited for this task. First, at any
given time the system can be in only a single well-defined
state, which helps eliminate ambiguities. Second, since
there are no persistent variables between states, all pro-
cess variables of the system must be external to the state



8

SUS_SRM

IMC_LOCK

SUS_MC2 SUS_PRM

ALS_DIFF ALIGN_IFO

SUS_ETMX SUS_ETMY SUS_ITMX SUS_ITMY SUS_OMC

ALS_XARM ALS_COMM

HPI_BS

ISC_DRMI

SR3_CAGE_SERVO

ISC_LOCK

OMC_LOCK ALS_YARM SEI_BS

ISI_BS_ST2 ISI_BS_ST1

(a) ISC LOCK node hierarchy

HPI_ETMX ISI_ETMX_ST2

SEI_ETMX

ISI_ETMX_ST1

(b) SEI nodes

FIG. 7: Guardian node hierarchy for various Advanced LIGO subsystems. (a) node hierarchy below the ISC LOCK
node that handles the interferometer lock acquisition process. (b) An SEI node hierarchy (for SEI ETMX specifically)
for which there are 11 similar in the full interferometer control. The top node for this system is known as the “chamber

manager”.

machine itself. In the case of Guardian this is achieved
by having all process variables be EPICS records that are
archived by the data acquisition system. Since Guardian
node states and status are also broadcast over EPICS
and recorded by the data acquisition system, the com-
plete state of the instrument at any given point in time
can be reconstructed completely from data on disk.

Guardian has additional features to facilitate instru-
ment validation during operation. A nominal state can
be defined for each Guardian node indicating the state
the system is expected to be in during nominal operation.
Each Guardian node can then broadcast the overall sta-
tus of the system via a single binary status channel. The
conditions that are checked are: a) the requested state is
equal to the nominal state, b) the current state is equal
to the nominal state, c) the node is in execution mode
(not paused or stopped), and d) there are no error con-
ditions present. If all of those conditions are met, the
node returns an overall status of “OK” to indicate that
the system is ready for operation.

F. User interface features

All user code can be reloaded on the fly on a live sys-
tem, even while in the middle of state execution. A snap-
shot of all user code at time of load is committed into
per-node user code git archives, which allows for inspect-
ing the exact code that was running on any node at any
point in time.

A notification system provides a way for state code
to push important notifications to the operator. Verbose
logs are archived by a logging infrastructure that provides
full access to all node logs over time.

A supporting suite of utilities is available to draw state
graphs, analyze and validate code, etc. Further details,
installation and usage instructions, and a description of
code syntax can be found in the LIGO document control
center34.

subsystem number of units nodes per unit total nodes

ISC 1 9 9

SUS 26 1 26

SEI 10 4/3 35

TCS 2 2 4

DIAG 4 1 4

TABLE I: Advanced LIGO Guardian node breakdown
among subsystems. ISC: interferometer sensing and con-
trol; SUS: suspensions; SEI: seismic isolation; TCS: ther-

mal compensation; DIAG: diagnostics.

IV. GUARDIAN SUPERVISION OF ADVANCED LIGO

Advanced LIGO employs roughly 100 Guardian nodes
in the full control of each detector (a number that con-
tinues to increase as new subsystems and functionality
are commissioned). Table I shows the breakdown of
nodes among the various subsystem components. Fig-
ure 7 shows graphs of the node hierarchies for the ISC
and SEI BSC subsystems.

A. Subsystem control

The Advanced LIGO Guardian implementation takes
advantage of standardization in subsystem hardware and
the accompanying real-time controls code to create a
highly modular and distributed automation infrastruc-
ture.

The suspension subsystem defines a single Guardian
module to describe automation for all suspension systems
in the interferometer. A common suspension class object
abstracts various suspension readout and control func-
tions depending on the suspension type. The Guardian
code for each individual suspension system merely speci-
fies the suspension type, and an appropriate EPICS chan-
nel access prefix, then loads the common suspension state
graph. All suspension systems in Guardian therefore
present an identical state graph interface to the rest of
the system.

The seismic isolation subsystem further modularizes its
code among the different types of control loops employed



9

by the various ISI and HEPI devices. Sub-packages define
functions, states and sub-graphs separately for damping
and isolation control, as well as for system initialization
and watchdog handling. The full system graph for each
SEI component is then assembled from the necessary
components. Additionally, due to the complexity of in-
teraction between the various isolation stacks on a given
chamber, multiple Guardian nodes are used to cover the
SEI systems for a single chamber. For the larger BSC
chambers that house the beam splitter and core test mass
optics, one node handles the HEPI system, two nodes
handle the two stages of the ISI system, and a “cham-
ber manager” is used to orchestrate their actions. This
hierarchy can be seen in Figure 7b. The smaller HAM
chambers that house auxiliary optics use a similar hier-
archy except with only a single ISI node for the single
stage ISI system.

The SUS and SEI Guardian systems constantly mon-
itor the state of their plant watchdogs. If a watchdog
trip occurs, the systems will immediately jump to spe-
cial states that reset all control loops and wait for the
operator to reset the watchdogs. Once the watchdogs are
reset, Guardian automatically brings all systems back to
their previously requested states.

Overall interferometer lock acquisition is handled by
the hierarchy of nodes shown in Figure 7a. Separate
nodes handle locking the IMC, OMC, and ALS systems,
and the overall DC alignment of the various suspension
controllers. The full lock acquisition process23 is orches-
trated by the ISC LOCK node.

B. System diagnostics and system validation

A set of specialized diagnostic (DIAG) nodes are em-
ployed to monitor aspects of the instrument that are not
directly handled by the primary automation and subsys-
tem nodes. These look at things like laser status, light
levels on various detectors, the states of various electron-
ics modules, the state of the Beckhoff system, etc.

At the top of the instrument node hierarchy is an “IFO
top node” whose job is to monitor the status of all other
nodes in the system. This node provides a single channel
that reports on the status of the entire system as a whole,
which is critical in determining if the observatory is ready
to begin observation or not.

The status reporting of the Guardian system is also
used extensively for detector characterization and vali-
dation purposes. Downstream detector characterization
processes use individual subsystem status reporting dur-
ing analysis of subsystem behavior.

C. Performance

The first operational demonstration of the full
Guardian deployment in LIGO was the first Advanced
LIGO observing run from September 2015 to January

0 500 1000 1500 2000
seconds since lock loss

0

10

20

30

40

50

st
at

e 
in

de
x

H1 ISC_LOCK states during lock acquisition

State
Request

FIG. 8: An example of the ISC LOCK Guardian node
at the H1 detector autonomously recovering the inter-
ferometer to full low-noise lock after an unintended lock
loss. The y-axis shows arbitrary state indices for the
node. Before t = 0 the system is in the nominal locked
state, corresponding to the orange “Request” state. At
t = 0 the system loses lock and the system transitions to
a “DOWN” state that resets all control loops in prepa-
ration for re-acquisition. At the end, the system has re-
covered the initial nominal lock state. In this particular
instance, there is at no point any human intervention.

The recovery time in this case is roughly 30 minutes.

2016, during which LIGO made the first ever direct de-
tection of gravitational waves. The system performed ro-
bustly with no issues of note, and was used to aid in val-
idation of the first gravitational wave event candidates.

The fully commissioned lock acquisition process takes
about 30 minutes, with some variability between the two
LIGO detectors. Figure 8 shows the primary lock acquisi-
tion node (ISC LOCK, top node in Figure 7a) at the Han-
ford “H1” detector as it progresses through the states in
the lock acquisition sequence during a fully autonomous
lock loss recovery. The limiting factors in the recovery
time are generally the physical responses of the various
interferometer subsystems during the engagement of var-
ious control loops and not by anything inherent to the
Guardian system itself. Lock acquisition time will likely
be improved with further commissioning.

Figure 9 shows the progression of states for the hier-
archy of nodes controlling the seismic isolation system
in a BSC chamber during autonomous recovery from a
watchdog trip. During normal operation, these types of
trips are usually the result of earthquakes. The nodes
involved are the same as those shown in the hierarchy
in Figure 7b. The chamber manager node coordinates
the activity of three subordinate nodes by issuing state
requests. The watchdog recovery time is less than 15
minutes. The distributed nature of Guardian allows all
suspension and seismic systems to recover in parallel if
multiple trips occur simultaneously, thereby significantly
reducing overall recovery time.



10

0

5

10

15

S
E
I

BSC SEI platform watchdog trip recovery

0

5

10

15

H
P
I

State

Request

0

10

20

30

IS
I_

S
T
1

0 200 400 600 800

seconds since watchdog trip

0

10

20

30

IS
I_

S
T
2

FIG. 9: An example of automated Guardian watchdog
recovery of a BSC seismic system (see Figure 1). The y-
axis shows arbitrary state indices for each node. The top
row is the SEI “chamber manager” node which manages
the actions of the following nodes shown in the lower
three plots: HPI, for the BSC HEPI system; ISI ST1, for
the first stage of the BSC ISI system; ISI ST2, for the
second stage of the BSC ISI system. The red dashed line
at 232 seconds indicates when the watchdogs were cleared
by the operator and the full Guardian recovery began.
The recovery procedure is described in Section II B. The

full recovery time is less than 10 minutes.

V. CONCLUSION AND OUTLOOK

Guardian has proven to be a powerful tool for com-
missioning the Advanced LIGO detectors and has demon-
strated robustness in the operation of both detectors dur-
ing the first Advanced LIGO observing run. Many fu-
ture runs are planned and continual improvement will be
made to the user code logic during commissioning breaks.
Additionally, short term detector improvements will in-
volve new automation challenges. In particular, plans
are being made to increase laser power in the interfer-
ometers, which will increase the complexity of the lock
acquisition process and require full commissioning of the
thermal compensation system, as well as potentially in-
troducing additional nodes to handle issues such as para-
metric instabilities35. Longer term plans involve even
more substantial upgrades that will introduce new sub-
systems with their own automation requirements, such
as squeezed light systems to reduce quantum noise36.

While the Guardian platform itself is now stable, many
new features are planned for future releases. Further in-
tegration of the user code archive will facilitate detailed
inspection of the historical data for detector characteriza-
tion purposes. User interface improvements are planned
that will integrate system graphs directly into the control
UI. Node management interfaces will be streamlined.

Success in LIGO is also leading to the adoption
of Guardian by other long-baseline gravitational wave
detectors. Guardian is being used by the Japanese
3 km-baseline, cryogenic gravitational-wave detector
KAGRA37, and may be used by Advanced Virgo. Plans
are also afoot to install a third LIGO detector in India.

ACKNOWLEDGMENTS

The author would like to thank the following people:
Daniel Sigg for many fruitful discussions on the theory
and practice of automation in general and automation
of gravitational wave detectors in particular, Matthew
Evans and Sam Waldman for their initial seed of an idea
and subsequent sprout of work, Charles Celerier for his
invaluable help in early development and testing, and
Robert Ward for breaking the ice and getting the com-
missioners using this new system. In addition, the author
thanks the entire Advanced LIGO commissioning team
who put up with the initial growing pains, helped push
the system to its full potential, and wrote most of the
user code that actually controls these incredible instru-
ments.

LIGO was constructed by the California Institute of
Technology and Massachusetts Institute of Technology
with funding from the National Science Foundation and
operates under Grant No. PHY-0757058. Advanced
LIGO was built under award PHY-0823459.



11

1Abbott, B. P. et al. (LIGO Scientific Collaboration, Virgo Col-
laboration), “Observation of Gravitational Waves from a Binary
Black Hole Merger,” Phys. Rev. Lett. 116 (2016).

2Abbott, B. P. et al. (LIGO Scientific Collaboration, Virgo Col-
laboration), “GW151226: Observation of Gravitational Waves
from a 22-Solar-Mass Binary Black Hole Coalescence,” Phys.
Rev. Lett. 116 (2016).

3Abbott, B. P. et al. (LIGO Scientific Collaboration, Virgo Col-
laboration), “Binary Black Hole Mergers in the first Advanced
LIGO Observing Run,” (2016), arXiv:1606.04856 [gr-qc].

4LIGO Scientific Collaboration, “Advanced LIGO,” Class. Quan-
tum Grav. 32, 074001 (2015).

5LIGO Scientific Collaboration, “GW150914: The Advanced
LIGO detectors in the era of first discoveries,” Phys. Rev. Lett.
116 (2016).

6LIGO Scientific Collaboration, “LIGO: the Laser Interferometer
Gravitational-Wave Observatory,” Rep. Prog. Phys. 72 (2009).

7T. Accadia et al., “Virgo: a laser interferometer to detect gravi-
tational waves,” J. Inst. 7, P03012–P03012 (2012).

8F. A. et al., “Automation of the lock acquisition of the 3 km
arm Virgo interferometer,” in 10th International Conference on
Accelerator and Large Experimental Control Systems (2005).

9F. Acernese et al., “Advanced Virgo: a second-generation inter-
ferometric gravitational wave detector,” Class. Quantum Grav.
32, 024001 (2014).

10International Electrotechnical Commission, “IEC 61131-3 inter-
national standard,” Tech. Rep.

11G. Bauer et al., “Status of the CMS detector control system,” J.
Phys.: Conf. Ser. 396, 012023 (2012).

12L. Lagin, R. Bryant, R. Carey, D. Casavant, R. Demaret, O. Ed-
wards, W. Ferguson, J. Krammen, D. Larson, A. Lee, P. Lud-
wigsen, M. Miller, E. Moses, R. Nyholm, R. Reed, R. Shelton,
P. V. Arsdall, and C. Wuest, “Status of the National Ignition Fa-
cility integrated computer control system,” in 20th IEEE/NPSS
Symposium on Fusion Engineering, 2003. (Institute of Electrical
& Electronics Engineers (IEEE)).

13“EPICS,” http://www.aps.anl.gov/epics/.
14L. R. Dalesio, M. R. Kraimer, and A. J. Kozubal, “EPICS ar-

chitecture,” in 4th International Conference on Accelerator and
Large Experimental Control Systems (1991).

15“TANGO,” http://www.tango-controls.org/.
16J. Chaize, A. Goetz, W. Klotz, J. Meyer, M. Perez, E. Taurel,

and P. Verdier, “The ESRF TANGO control system status,”
(2001), arXiv:cs/0111028.

17B. Franek and C. Gaspar, “SMI++ object oriented framework
used for automation and error recovery in the lhc experiments,”
J. Phys.: Conf. Ser. 219 (2010).

18B. Franek and C. Gaspar, “SMI++ object oriented framework for
designing and implementing distributed control systems,” IEEE
Trans. on Nuc. Sci. 45 (1998).

19G. D. Cataldo, A. Augustinus, M. Boccioli, P. Chochula, and
L. S. Jirdn, “Finite state machines for integration and control in
ALICE,” in 12th International Conference on Accelerator and
Large Experimental Control Systems (2007).

20M. Misiowiec, v. Baggiolini, and M. Solfaroli Camilloci, “State
Machine Framework And Its Use For Driving LHC Operational
states,” Conf. Proc. C111010, WEPKS005. 4 p (2011).

21R. Bork, “AdvLigo CDS design overview,” LIGO DCC
T0900612 (2009).

22“Beckhoff Automation GmbH & Co. KG,” http://www.

beckhoff.com/.
23A. Staley et al., “Achieving resonance in the Advanced LIGO

gravitational-wave interferometer,” Class. Quantum Grav. 31,
245010 (2014).

24P. Kwee, C. Bogan, K. Danzmann, M. Frede, H. Kim, P. King,

J. Pld, O. Puncken, R. L. Savage, F. Seifert, P. Wessels,
L. Winkelmann, and B. Willke, “Stabilized high-power laser sys-
tem for the gravitational wave detector Advanced LIGO,” Opt.
Express 20, 10617 (2012).

25A. F. Brooks, B. Abbott, M. A. Arain, G. Ciani, A. Cole,

G. Grabeel, E. Gustafson, C. Guido, M. Heintze, A. Hepton-
stall, M. Jacobson, W. Kim, E. King, A. Lynch, S. O’Connor,
D. Ottaway, K. Mailand, G. Mueller, J. Munch, V. Sanni-
bale, Z. Shao, M. Smith, P. Veitch, T. Vo, C. Vorvick, and
P. Willems, “Overview of advanced ligo adaptive optics,” (2016),
arXiv:1608.02934 [physics.ins-det].

26C. L. Mueller, M. A. Arain, G. Ciani, R. T. DeRosa, A. Effler,
D. Feldbaum, V. V. Frolov, P. Fulda, J. Gleason, M. Heintze,
K. Kawabe, E. J. King, K. Kokeyama, W. Z. Korth, R. M. Mar-
tin, A. Mullavey, J. Peold, V. Quetschke, D. H. Reitze, D. B.
Tanner, C. Vorvick, L. F. Williams, and G. Mueller, “The Ad-
vanced LIGO input optics,” Rev. Sci. Instrum. 87, 014502 (2016).

27A. J. Mullavey, B. J. J. Slagmolen, J. Miller, M. Evans,
P. Fritschel, D. Sigg, S. J. Waldman, D. A. Shaddock, and
D. E. McClelland, “Arm-length stabilisation for interferometric
gravitational-wave detectors using frequency-doubled auxiliary
lasers,” Opt. Express 20, 81 (2011).

28K. Izumi, K. Arai, B. Barr, J. Betzwieser, A. Brooks, K. Dahl,
S. Doravari, J. C. Driggers, W. Z. Korth, H. Miao, J. Rollins,
S. Vass, D. Yeaton-Massey, and R. X. Adhikari, “Multicolor
cavity metrology,” J. Opt. Soc. Am. A 29 (2012).

29T. T. Fricke, N. D. Smith-Lefebvre, R. Abbott, R. Adhikari, K. L.
Dooley, M. Evans, P. Fritschel, V. V. Frolov, K. Kawabe, J. S.
Kissel, B. J. J. Slagmolen, and S. J. Waldman, “DC readout ex-
periment in Enhanced LIGO,” Class. Quantum Grav. 29, 065005
(2012).

30N. A. Robertson, G. Cagnoli, D. R. M. Crooks, E. Elliffe,
J. E. Faller, P. Fritschel, S. Goßler, A. Grant, A. Heptonstall,
J. Hough, H. Lück, R. Mittleman, M. Perreur-Lloyd, M. V. Plissi,
S. Rowan, D. H. Shoemaker, P. H. Sneddon, K. A. Strain, C. I.
Torrie, H. Ward, and P. Willems, “Quadruple suspension de-
sign for Advanced LIGO,” Class. Quantum Grav. 19, 4043–4058
(2002).

31F. Matichard, B. Lantz, R. Mittleman, K. Mason, J. Kissel,
B. Abbott, S. Biscans, J. McIver, R. Abbott, S. Abbott, E. All-
wine, S. Barnum, J. Birch, C. Celerier, D. Clark, D. Coyne,
D. DeBra, R. DeRosa, M. Evans, S. Foley, P. Fritschel, J. A. Gi-
aime, C. Gray, G. Grabeel, J. Hanson, C. Hardham, M. Hillard,
W. Hua, C. Kucharczyk, M. Landry, A. L. Roux, V. Lhuillier,
D. Macleod, M. Macinnis, R. Mitchell, B. O’Reilly, D. Ottaway,
H. Paris, A. Pele, M. Puma, H. Radkins, C. Ramet, M. Robinson,
L. Ruet, P. Sarin, D. Shoemaker, A. Stein, J. Thomas, M. Var-
gas, K. Venkateswara, J. Warner, and S. Wen, “Seismic isolation
of Advanced LIGO: Review of strategy, instrumentation and per-
formance,” Class. Quantum Grav. 32, 185003 (2015).

32Python Software Foundation, “Python language reference,” .
33E. W. Dijkstra, “A note on two problems in connexion with

graphs,” Numer. Math. 1, 269–271 (1959).
34J. G. Rollins, “Advanced LIGO Guardian documentation,” LIGO

DCC T1500292 (2015).
35M. Evans et al., “Observation of parametric instability in Ad-

vanced LIGO,” Phys. Rev. Lett. 114 (2015).
36J. Miller, L. Barsotti, S. Vitale, P. Fritschel, M. Evans, and

D. Sigg, “Prospects for doubling the range of Advanced LIGO,”
Phys. Rev. D 91 (2015).

37Y. Aso, Y. Michimura, K. Somiya, M. Ando, O. Miyakawa,
T. Sekiguchi, D. Tatsumi, and H. Yamamoto, “Interferometer
design of the KAGRA gravitational wave detector,” Phys. Rev.
D 88 (2013).

http://dx.doi.org/10.1103/PhysRevLett.116.061102
http://dx.doi.org/10.1103/PhysRevLett.116.241103
http://dx.doi.org/10.1103/PhysRevLett.116.241103
http://arxiv.org/abs/1606.04856
http://arxiv.org/abs/1606.04856
http://dx.doi.org/10.1088/0264-9381/32/7/074001
http://dx.doi.org/10.1088/0264-9381/32/7/074001
http://dx.doi.org/10.1103/PhysRevLett.116.131103
http://dx.doi.org/10.1103/PhysRevLett.116.131103
http://dx.doi.org/10.1088/0034-4885/72/7/076901
http://dx.doi.org/10.1088/1748-0221/7/03/P03012
http://dx.doi.org/10.1088/0264-9381/32/2/024001
http://dx.doi.org/10.1088/0264-9381/32/2/024001
http://dx.doi.org/10.1088/1742-6596/396/1/012023
http://dx.doi.org/10.1088/1742-6596/396/1/012023
http://dx.doi.org/10.1109/FUSION.2003.1425870
http://dx.doi.org/10.1109/FUSION.2003.1425870
http://www.aps.anl.gov/epics/
http://www.aps.anl.gov/epics/EpicsDocumentation/EpicsGeneral/EPICS_Architecture.pdf
http://www.aps.anl.gov/epics/EpicsDocumentation/EpicsGeneral/EPICS_Architecture.pdf
http://www.tango-controls.org/
http://arxiv.org/abs/cs/0111028
http://arxiv.org/abs/cs/0111028
http://arxiv.org/abs/cs/0111028
http://dx.doi.org/10.1088/1742-6596/219/2/022031
http://dx.doi.org/10.1109/23.710969
http://dx.doi.org/10.1109/23.710969
https://cds.cern.ch/record/1392942
https://dcc.ligo.org/T0900612
https://dcc.ligo.org/T0900612
http://www.beckhoff.com/
http://www.beckhoff.com/
http://dx.doi.org/10.1088/0264-9381/31/24/245010
http://dx.doi.org/10.1088/0264-9381/31/24/245010
http://dx.doi.org/10.1364/OE.20.010617
http://dx.doi.org/10.1364/OE.20.010617
http://arxiv.org/abs/1608.02934
http://arxiv.org/abs/1608.02934
http://dx.doi.org/10.1063/1.4936974
http://dx.doi.org/10.1364/OE.20.000081
http://dx.doi.org/10.1364/JOSAA.29.002092
http://dx.doi.org/ 10.1088/0264-9381/29/6/065005
http://dx.doi.org/ 10.1088/0264-9381/29/6/065005
http://dx.doi.org/10.1088/0264-9381/19/15/311
http://dx.doi.org/10.1088/0264-9381/19/15/311
http://dx.doi.org/10.1088/0264-9381/32/18/185003
http://www.python.org
http://dx.doi.org/10.1007/bf01386390
https://dcc.ligo.org/T1500292
https://dcc.ligo.org/T1500292
http://dx.doi.org/10.1103/PhysRevLett.114.161102
http://dx.doi.org/10.1103/PhysRevD.91.062005
http://dx.doi.org/10.1103/PhysRevD.88.043007
http://dx.doi.org/10.1103/PhysRevD.88.043007

	 Distributed State Machine Supervision for Long-baseline Gravitational-wave Detectors with the Guardian Automation Platform
	Abstract
	Introduction
	Advanced LIGO system description and automation requirements
	Lock acquisition and global control
	Suspensions and Seismic isolation
	User interface

	Guardian state machine supervision
	State graphs and system dynamics
	State code programming and execution
	Process architecture
	Inter-node management
	State tracking and validation
	User interface features

	Guardian supervision of Advanced LIGO
	Subsystem control
	System diagnostics and system validation
	Performance

	Conclusion and outlook
	Acknowledgments


