Lecture 2

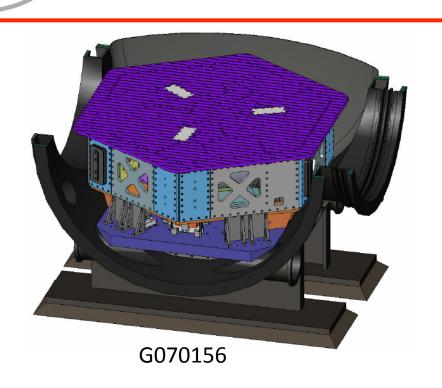
Basic control design

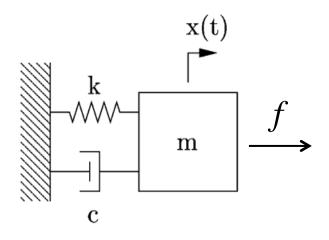
- Part 1: Feedforward

- Part 2: Feedback

- Part 3: Sensor blending

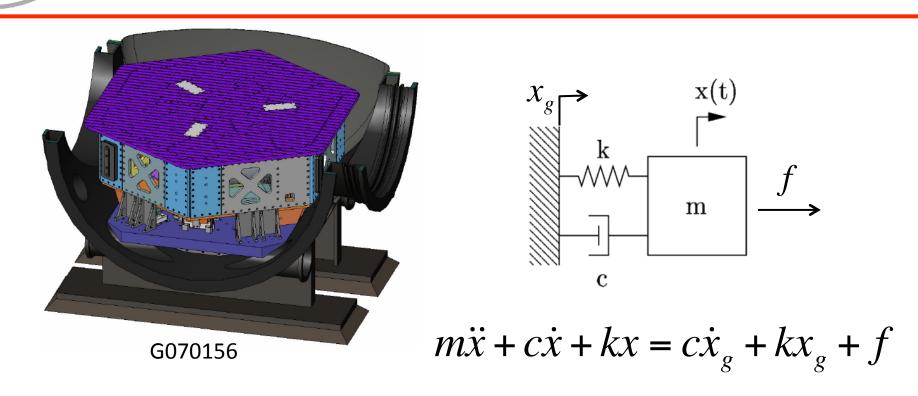
Example system – HAM ISI





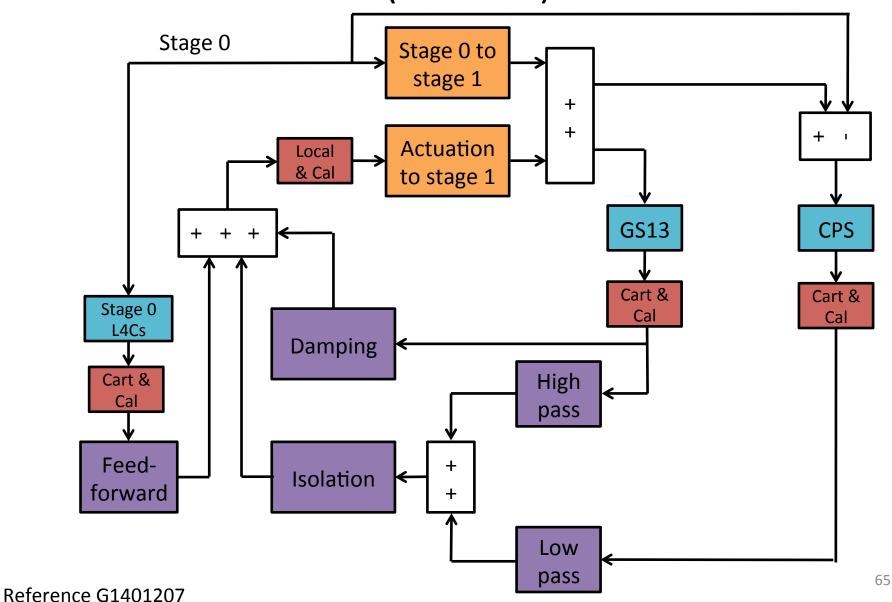
$$m\ddot{x} + c\dot{x} + kx = f$$

Example system – HAM ISI



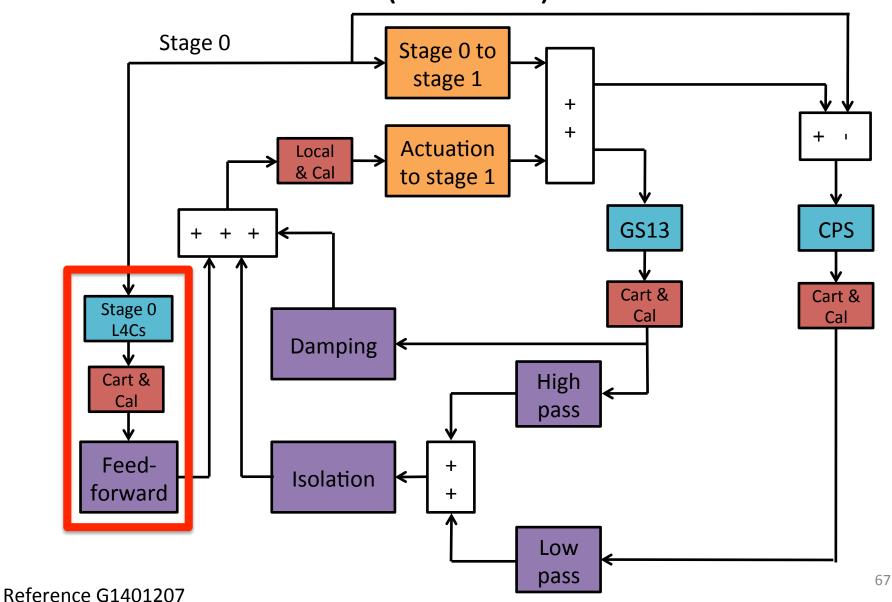
Goals:

- Use f to reduce the influence of ground displacement, x_q , on the ISI
- Don't amplify the ISI motion with sensor noise

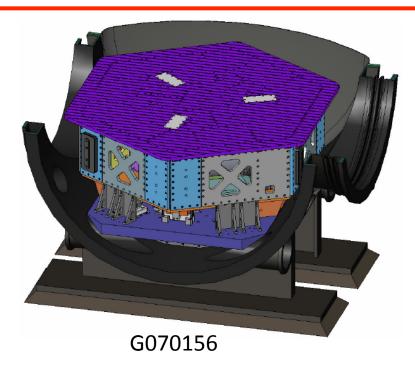


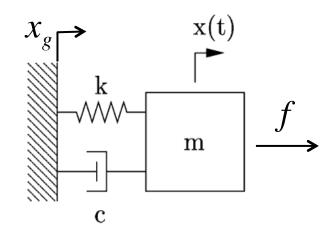
Lecture 2 – Part 1

Feedforward



Feedfoward Control





$$m\ddot{x} + c\dot{x} + kx = c\dot{x}_g + kx_g + f$$

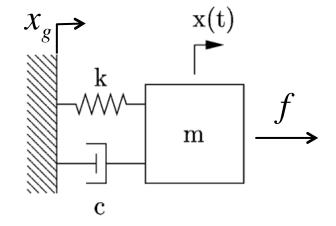
Ideal feedforward controller
$$f = -c\dot{x}_g - kx_g$$

- An inertial sensor on the ground measures x_a
- The actuator applies the correcting force *f* before the ISI responds
 - it's like the ground never even moved
- Performance is limited by how well the controller is tuned, and how much coherence there is between the ground sensor and the ISI sensor.
- The feedforward controller does not depend on the feedback design

Feedfoward Control

In practice, the feedforward control is achieved with the following 4 steps:

- 1. Measure the TF between the ground and the ISI
- 2. Measure the TF between the actuator and the ISI
- 3. Calculate the ratio of step 1 to step 2
- 4. Fit a filter to this TF ratio. This is the feedforward control filter.



$$\frac{x}{x_g} = \frac{cs + k}{ms^2 + cs + k}$$

Feedfoward Control

In practice, the feedforward control is achieved with the following 4 steps:

- 1. Measure the TF between the ground and the ISI
- 2. Measure the TF between the actuator and the ISI
- 3. Calculate the ratio of step 1 to step 2
- 4. Fit a filter to this TF ratio. This is the feedforward control filter.



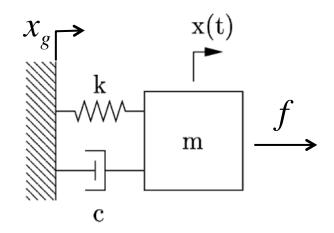
$$\frac{x}{x_g} = \frac{cs + k}{ms^2 + cs + k}$$

$$\frac{x}{f} = \frac{1}{ms^2 + cs + k}$$

Feedfoward Control

In practice, the feedforward control is achieved with the following 4 steps:

- 1. Measure the TF between the ground and the ISI
- 2. Measure the TF between the actuator and the ISI
- 3. Calculate the ratio of step 1 to step 2
- 4. Fit a filter to this TF ratio. This is the feedforward control filter.



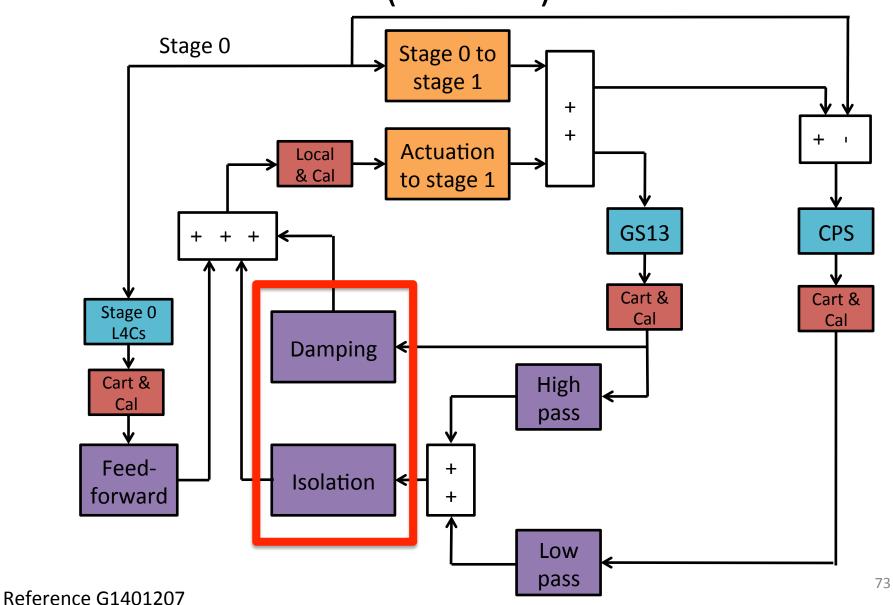
$$\frac{x}{x_g} = \frac{cs + k}{ms^2 + cs + k}$$

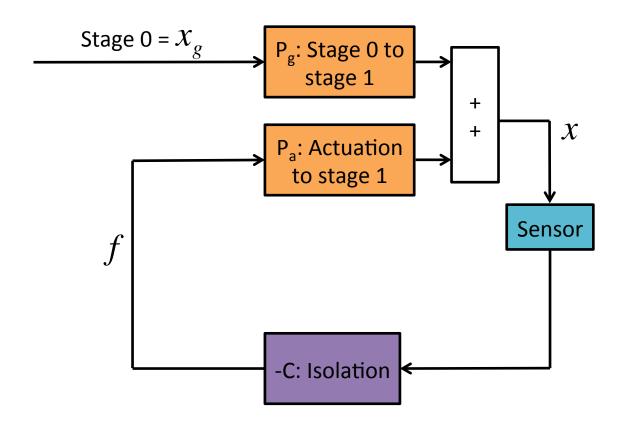
$$\frac{x}{f} = \frac{1}{ms^2 + cs + k}$$

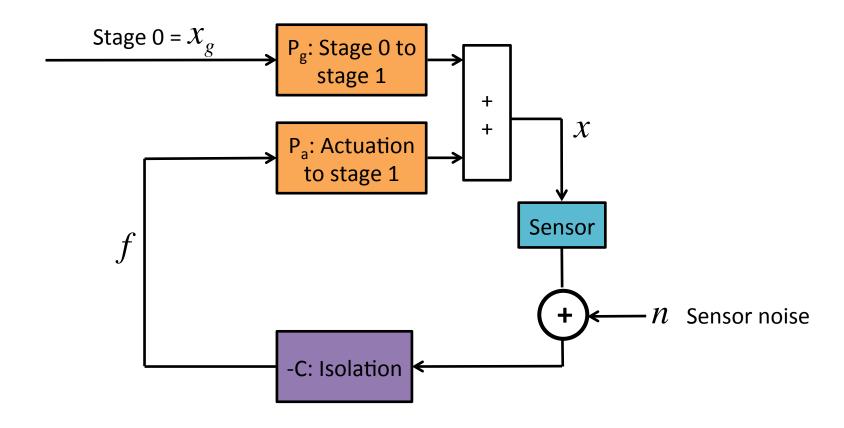
$$= \int_{x_g}^{3} \frac{f}{x_g} = cs + k$$

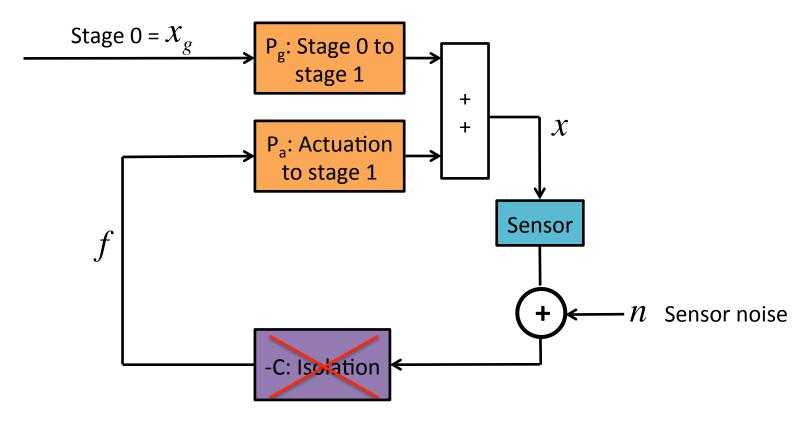
Lecture 2 – Part 2

Feedback



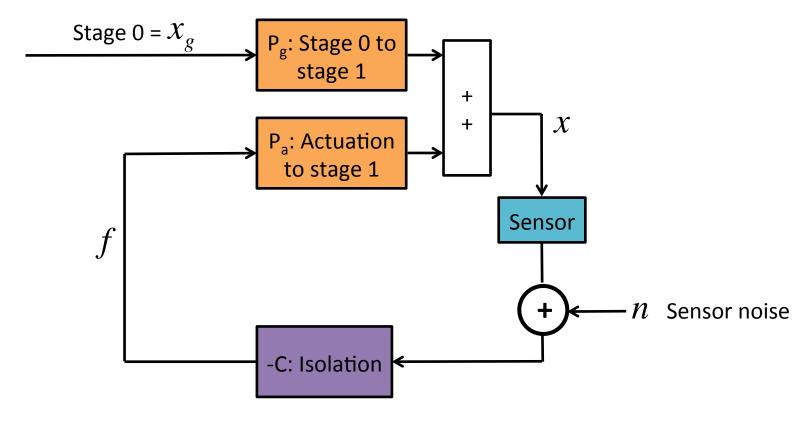






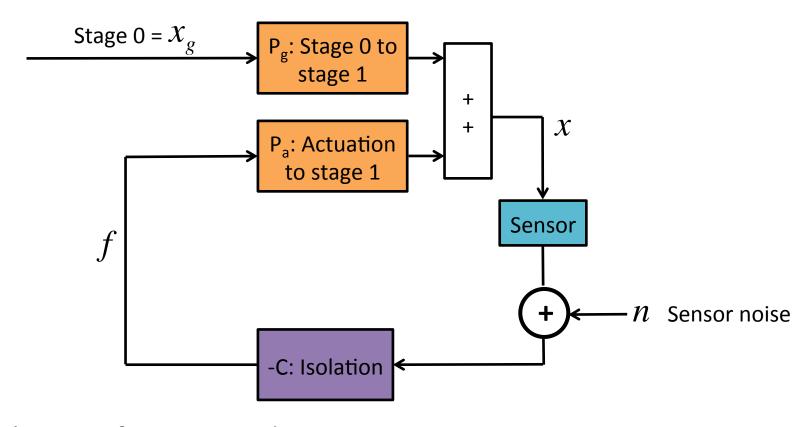
Uncontrolled TF from ground to stage 1

$$x = P_g x_g$$



Close loop TF from ground to stage 1

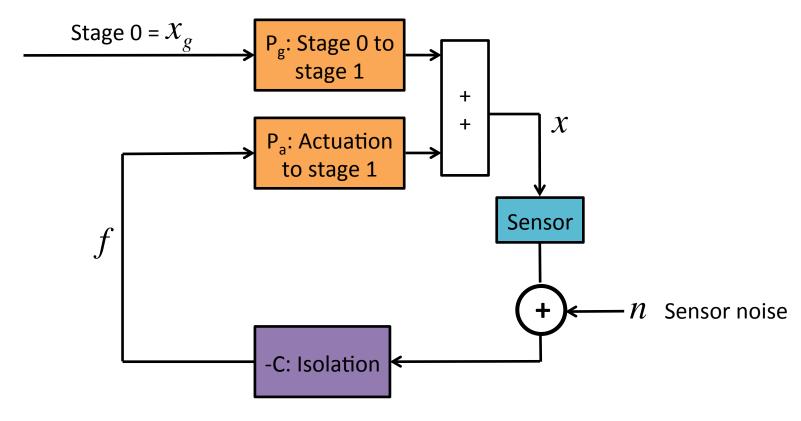
$$x = P_g x_g - P_a C x$$
 (Ignoring the sensor response for now)



Close loop TF from ground to stage 1

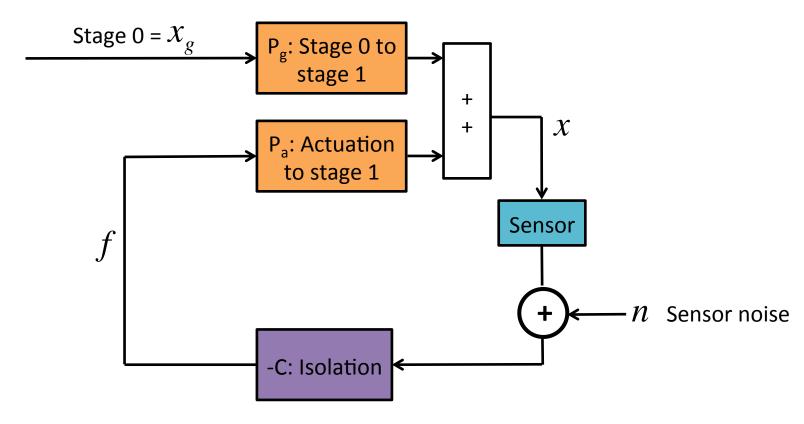
$$x = P_g x_g - P_a C x \qquad \text{(Ignoring the sensor response for now)}$$

$$x = \frac{P_g}{1 + P_a C} x_g$$



Close loop TF from sensor noise to stage 1

$$x = -P_a C (n + x)$$
 (Ignoring the sensor response for now)
$$x = \frac{-P_a C}{1 + P_a C} n$$



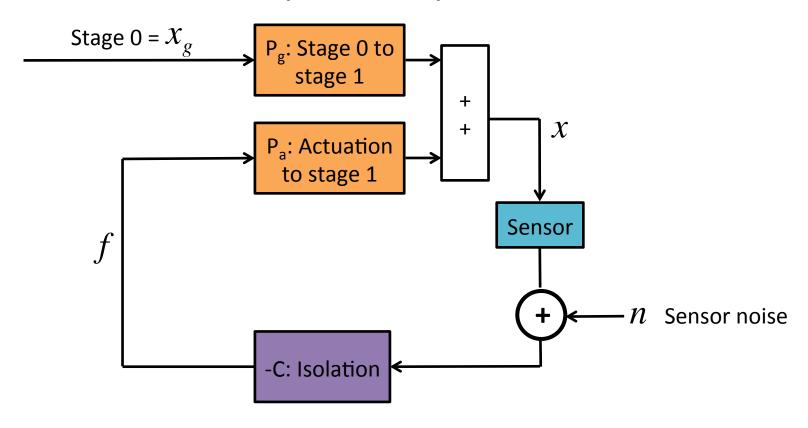
Close loop TF from sensor noise to stage 1

$$x = -P_a C (n + x)$$

$$x = \frac{-P_a C}{1 + P_a C} n$$

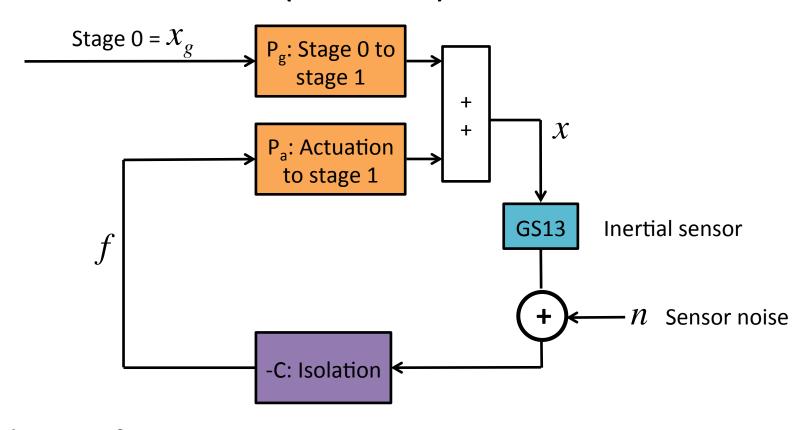
(Ignoring the sensor response for now)

All closed loop TFs in this loop will have the same denominator



Close loop TF from sensor noise to stage 1

$$x = -P_a C (n + x)$$
 (Ignoring the sensor response for now)
$$x = \frac{-P_a C}{1 + P_a C} n$$
 Loop gain TF: important for studying stability



Close loop TF from sensor noise to stage 1

$$x = -P_aC(n+x)$$
 (Ignoring the sensor response for now)
$$x = \frac{-P_aC}{1+P_aC}$$
 Numerator: boxes between input and output Loop gain TF: important for studying stability

$$x = \frac{P_g}{1 + P_a C} x_g$$

Seismic noise transmission

$$x = \frac{-P_a C}{1 + P_a C} n$$

Sensor noise transmission

$$x = \frac{P_g}{1 + P_a C} x_g$$

Seismic noise transmission

$$x = \frac{-P_a C}{1 + P_a C} n$$

Sensor noise transmission

 When the loop gain is > 1, seismic noise is reduced, but the system tends to follow the sensor noise

$$x = \frac{P_g}{1 + P_a C} x_g$$

Seismic noise transmission

$$x = \frac{-P_a C}{1 + P_a C} n$$

Sensor noise transmission

- When the loop gain is > 1, seismic noise is reduced, but the system tends to follow the sensor noise
- If the loop gain -> -1, the system goes unstable

$$x = \frac{P_g}{1 + P_a C} x_g$$

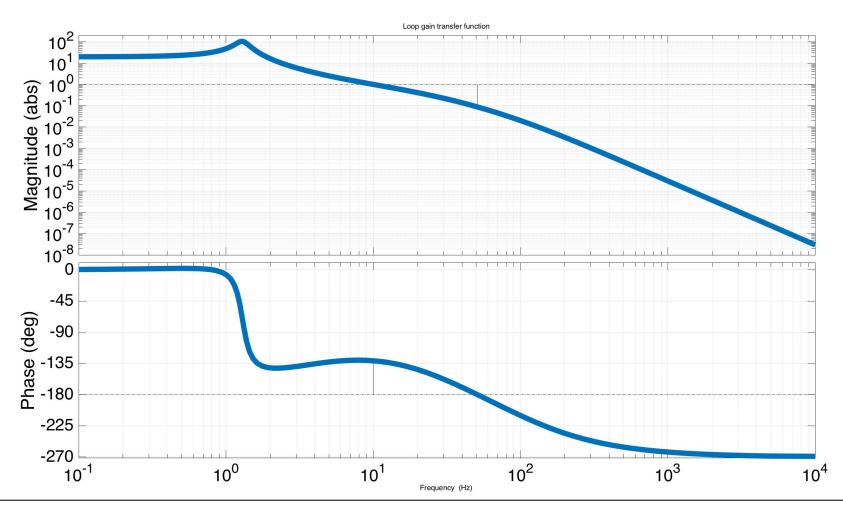
Seismic noise transmission

$$x = \frac{-P_a C}{1 + P_a C} n$$

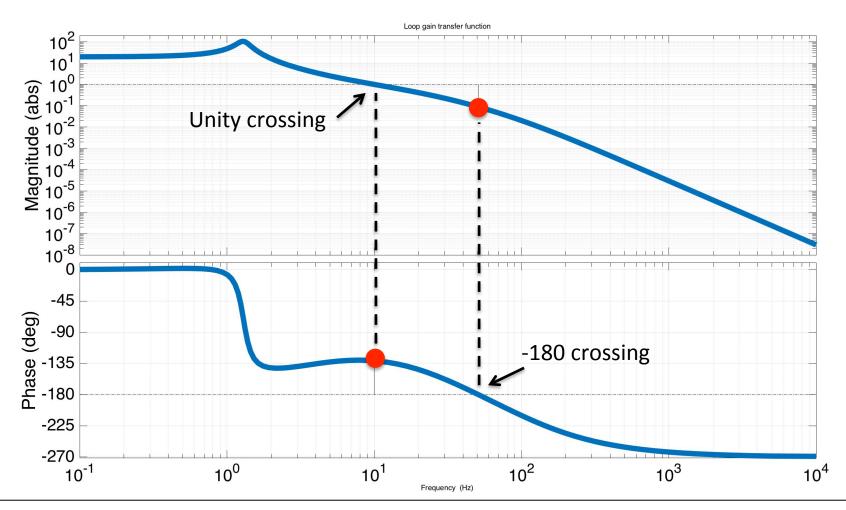
Sensor noise transmission

- When the loop gain is > 1, seismic noise is reduced, but the system tends to follow the sensor noise
- If the loop gain -> -1, the system goes unstable
- To study stability, just look at the loop gain

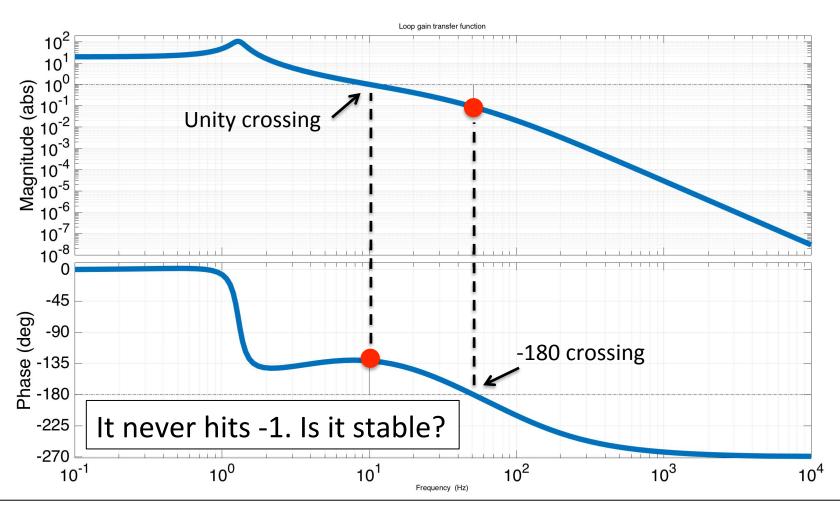
Ex. Loop Gain TF: P_aC



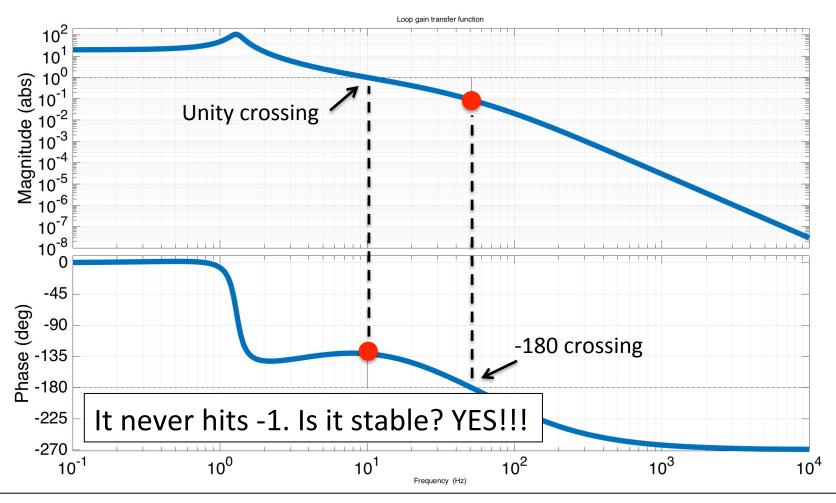
Ex. Loop Gain TF: P_aC



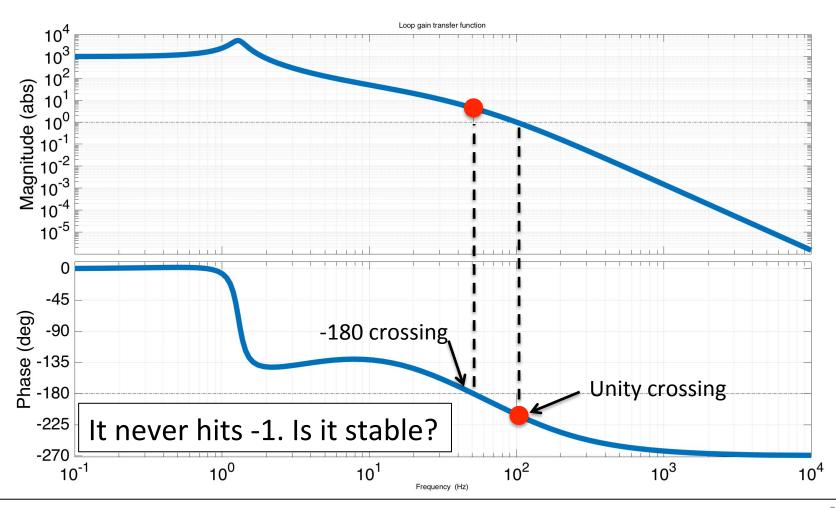
Ex. Loop Gain TF: P_aC



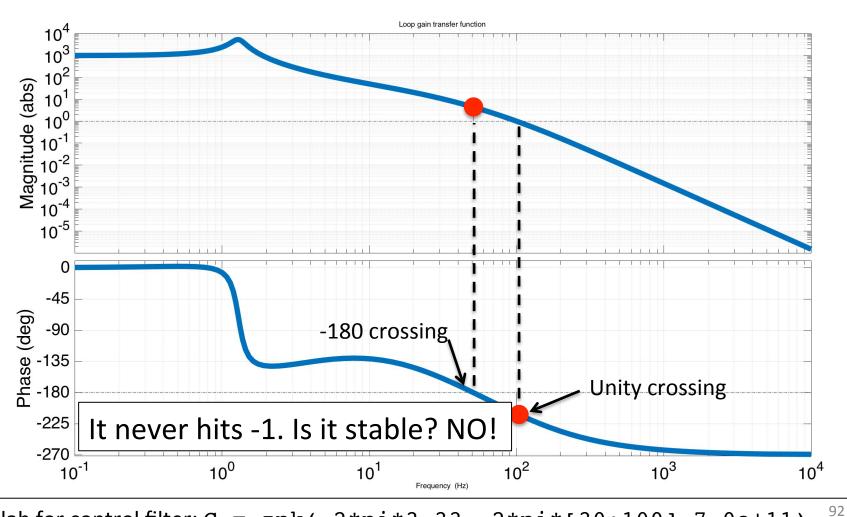
Ex. Loop Gain TF: P_aC



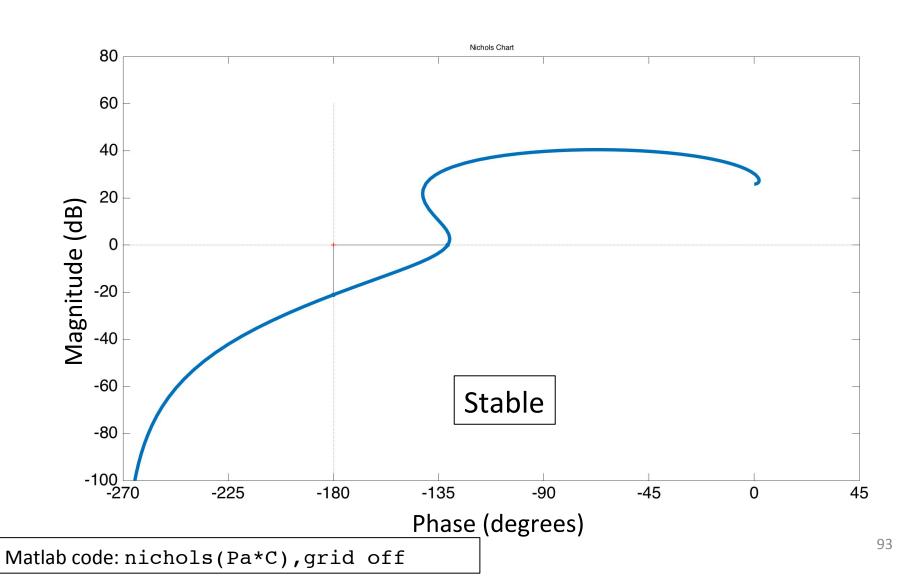
LIGO Ex. Loop Gain TF: $50*P_aC$



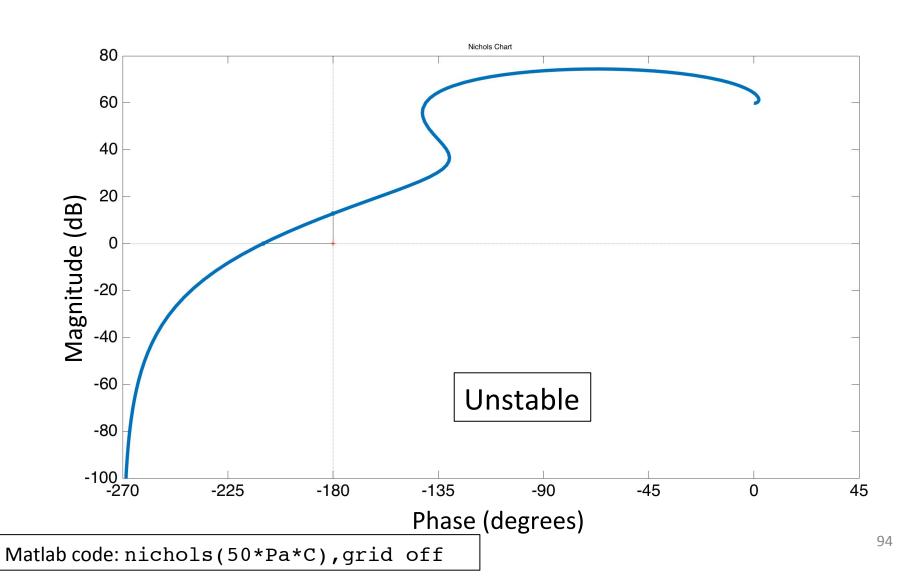
LIGO Ex. Loop Gain TF: $50*P_aC$



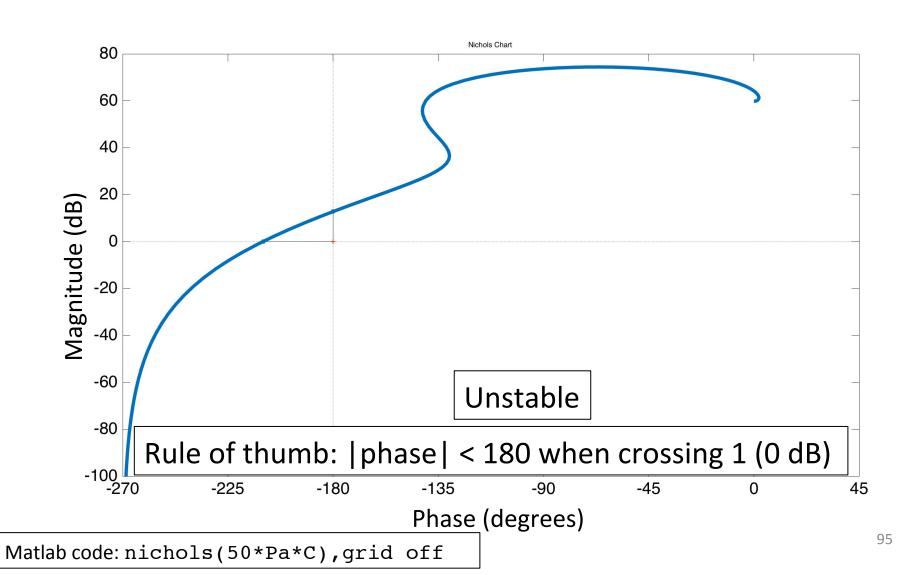
LIGO Loop Gain Nichols Plot: P_aC



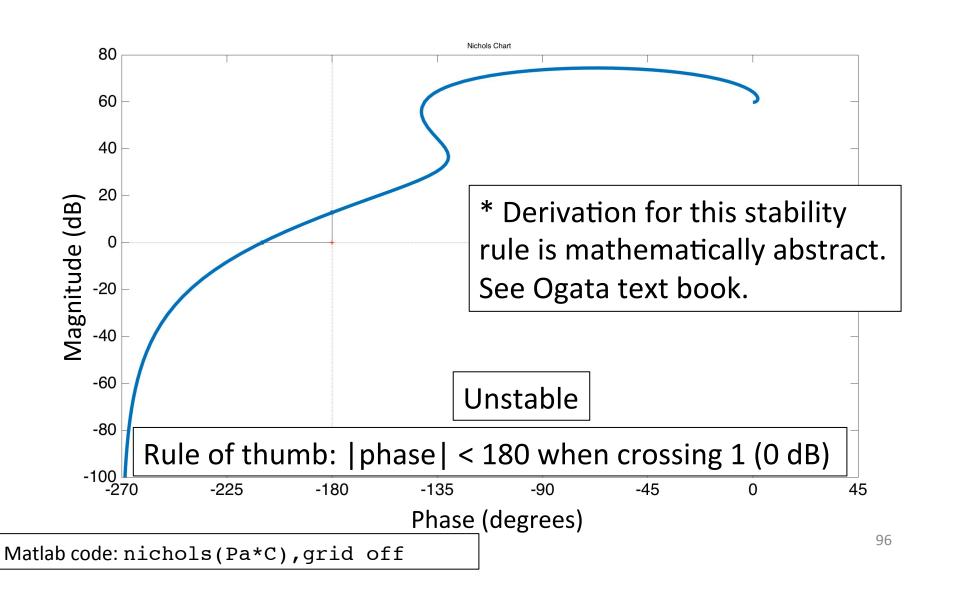
LIGO Loop Gain Nichols Plot: $50*P_aC$



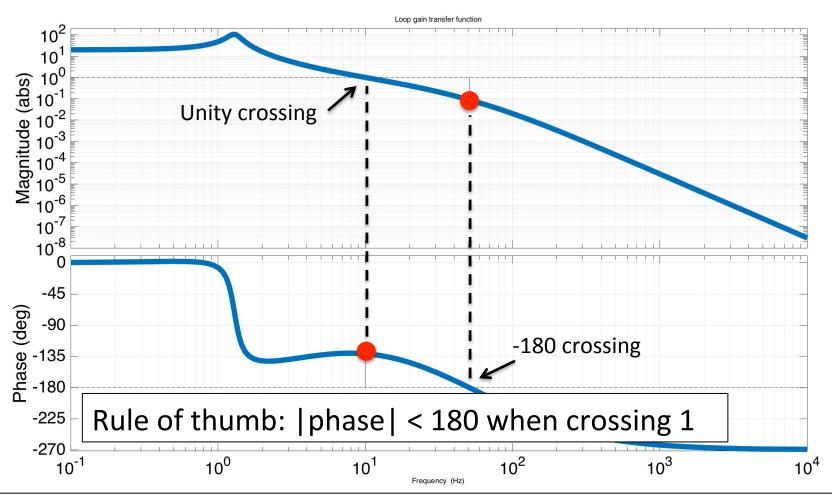
LIGO Loop Gain Nichols Plot: $50*P_aC$



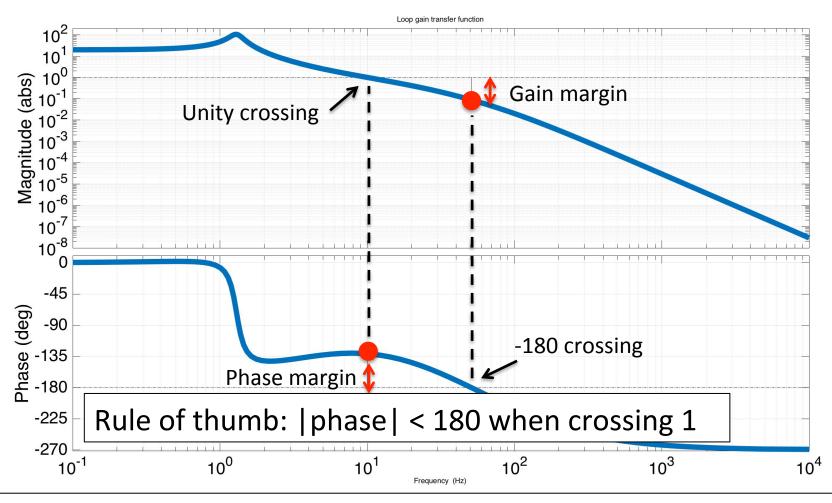
LIGO Loop Gain Nichols Plot: $50*P_aC$



Loop Gain TF: P_aC



Loop Gain TF: P_aC



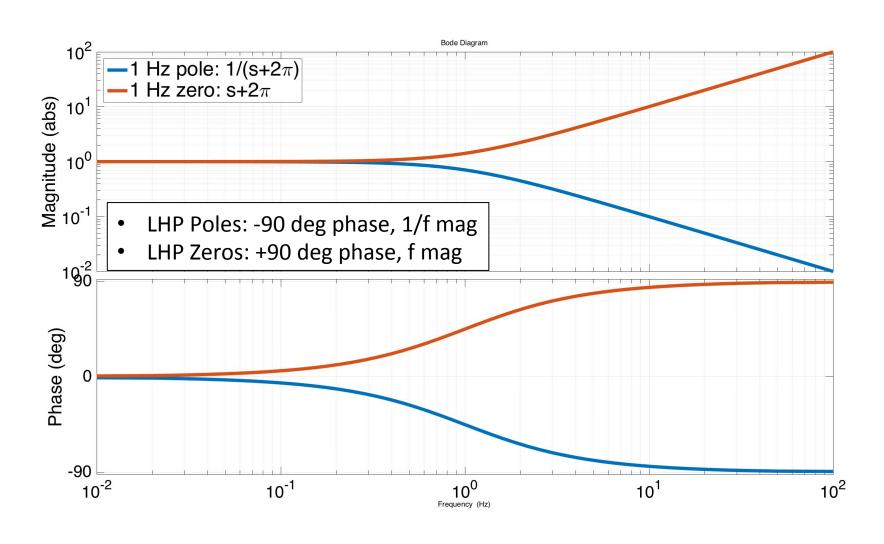
Matlab for control filter: C = zpk(-2*pi*3.33, -2*pi*[30;100], 1.4e+10)

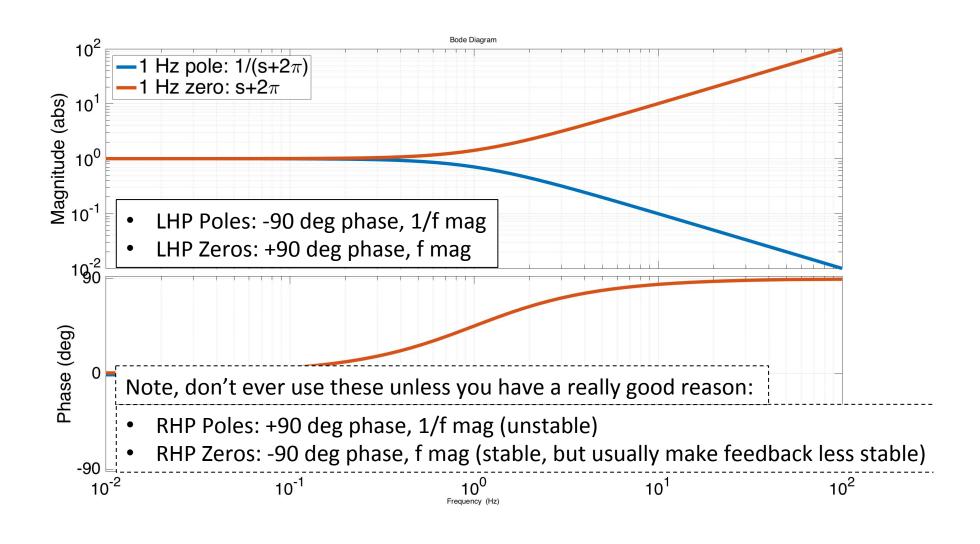
How to do control design

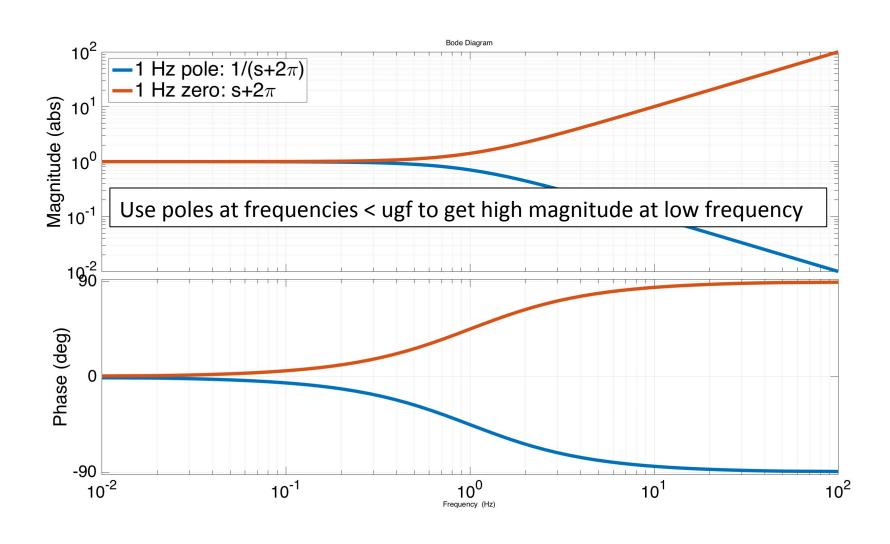
Multiple methods, but the most common is called 'loop shaping'

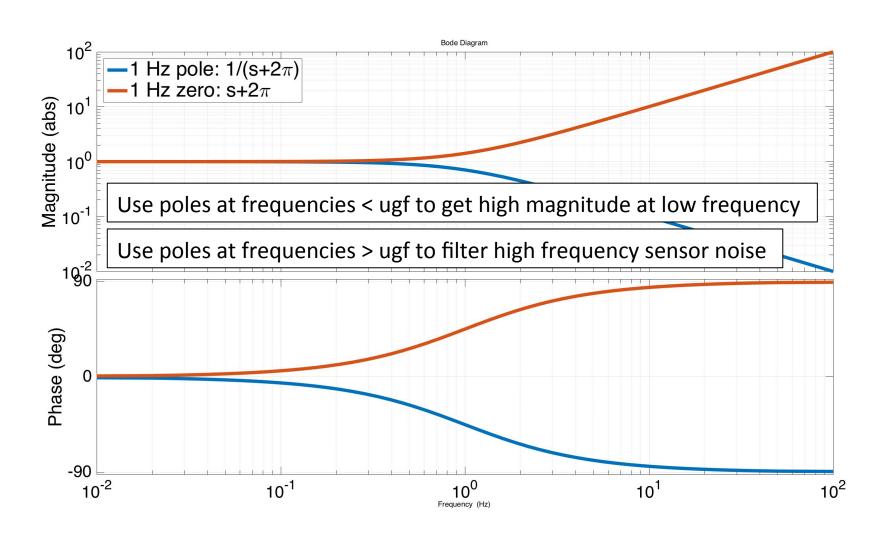
$$C = \frac{\prod_{j=1}^{m} (s + z_j)}{\prod_{k=1}^{n} (s + p_k)}$$

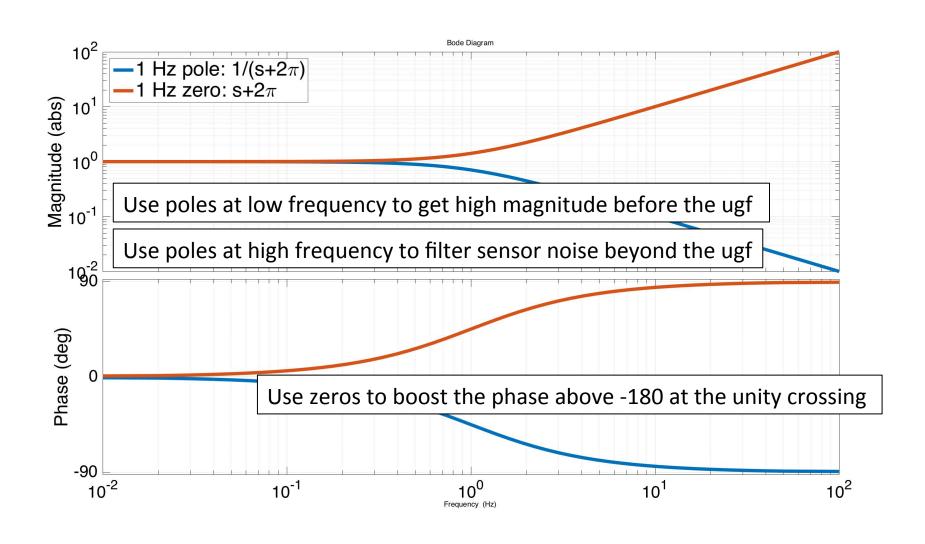
- Place poles and zeros until the loop gain is 'shaped' the way you like it
- Causal filters require at least as many poles as zeros: n ≥ m. Noncausal filters respond with infinite magnitude and positive phase at infinite frequency, which they can only do if they have access to future data.

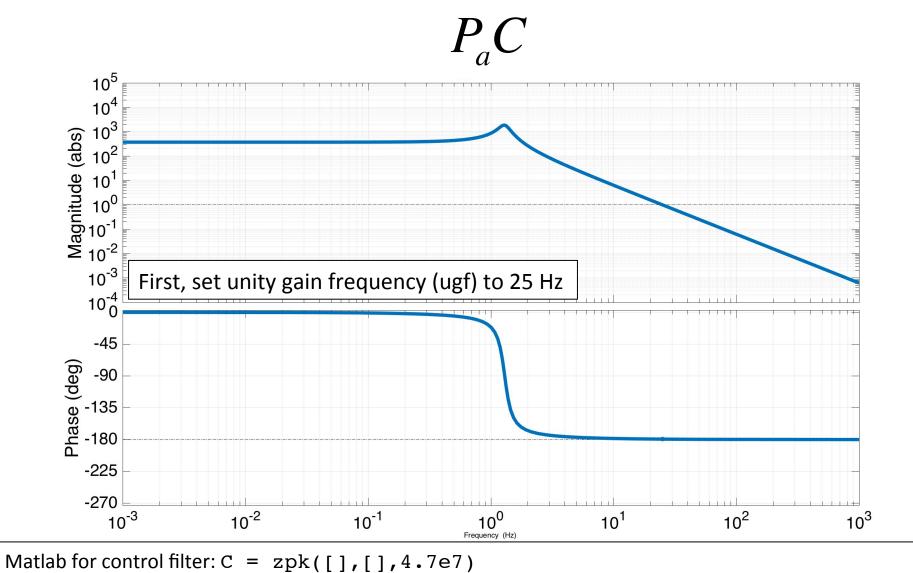


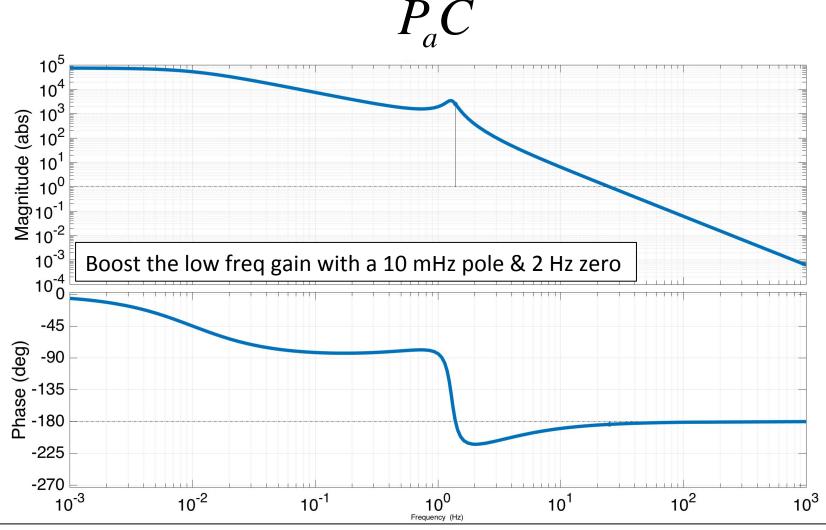




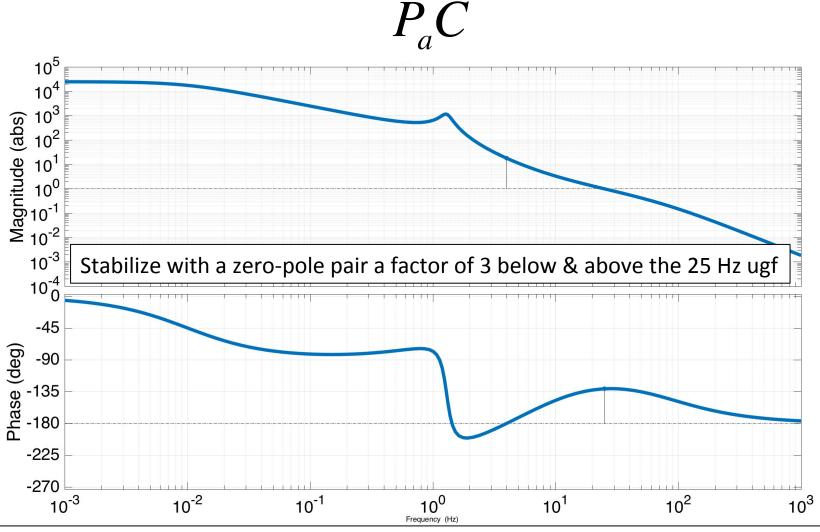




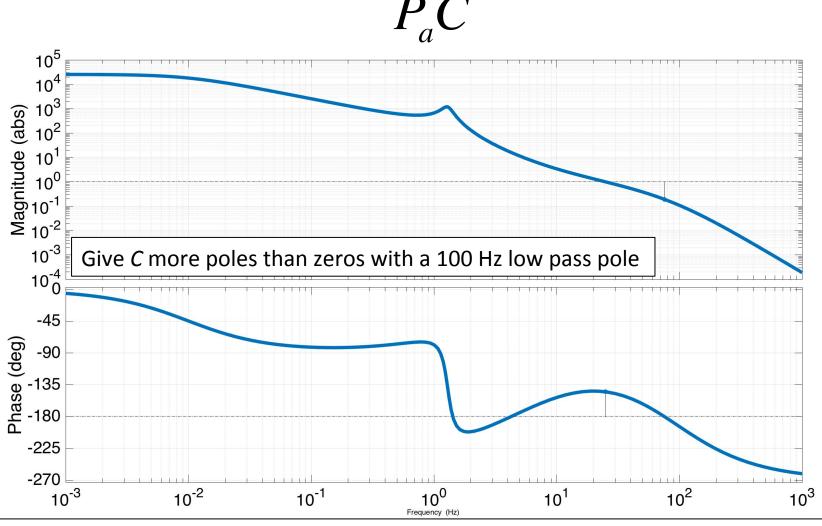




Matlab for control filter: C = zpk(-2*pi*[2],-2*pi*[0.01],4.7e7)

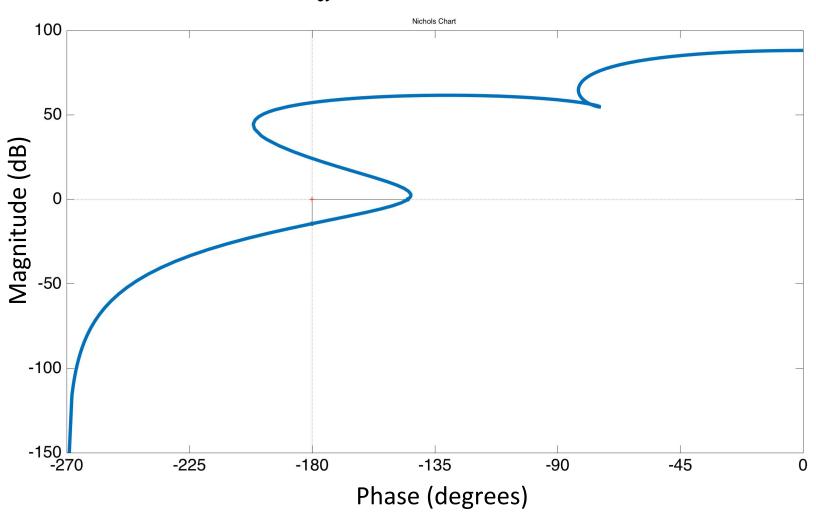


Matlab for control filter: C = zpk(-2*pi*[2,25/3],-2*pi*[0.01,25*3],1.4e8)

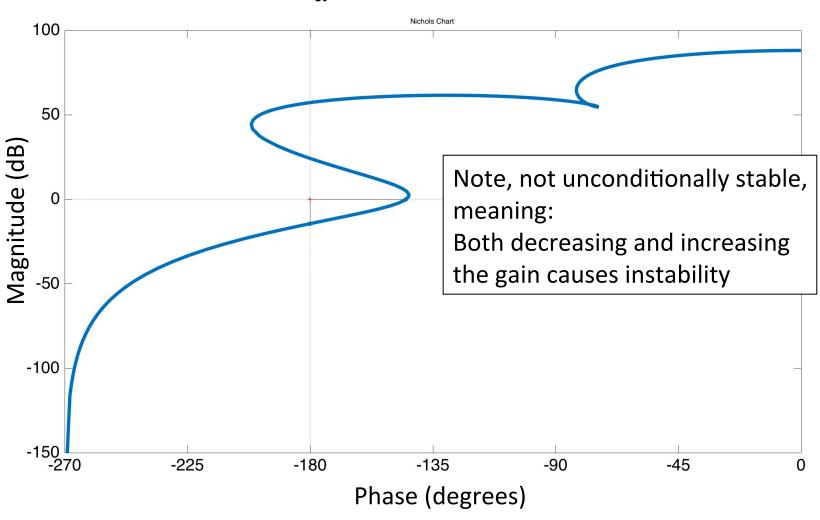


Matlab for control filter: C = zpk(-2*pi*[2,25/3],-2*pi*[0.01,25*3,100],9.1e10)

P_aC Nichols Plot



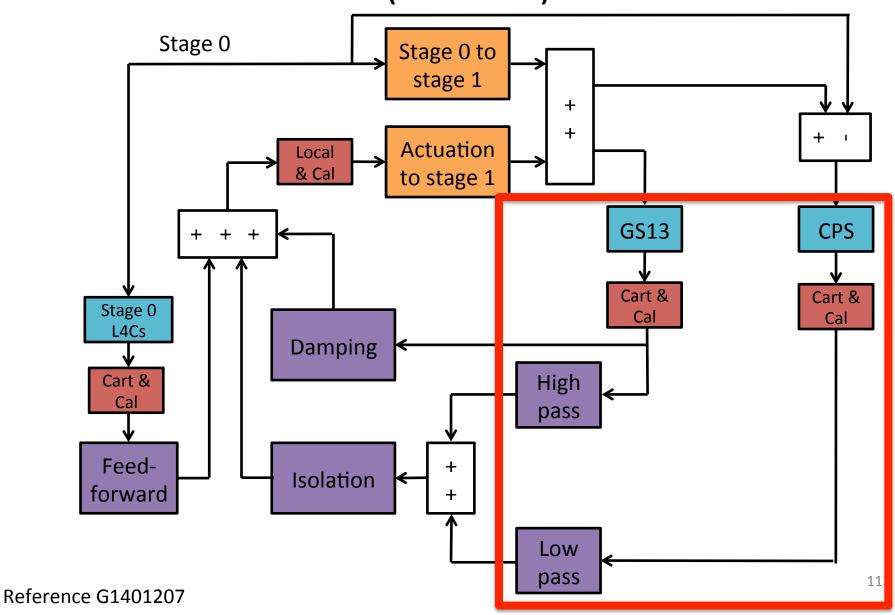
P_aC Nichols Plot



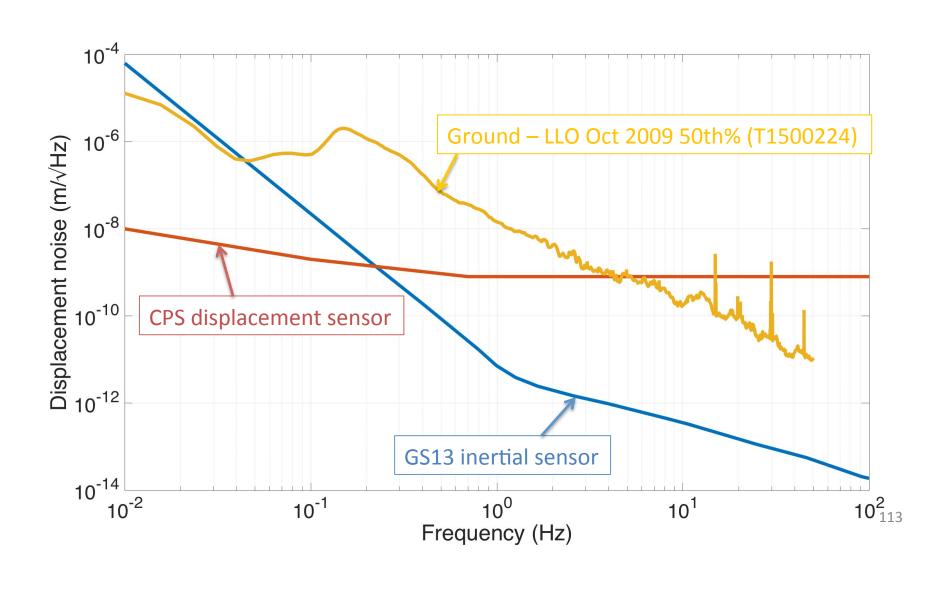
Lecture 2 – Part 3

Sensor Blending

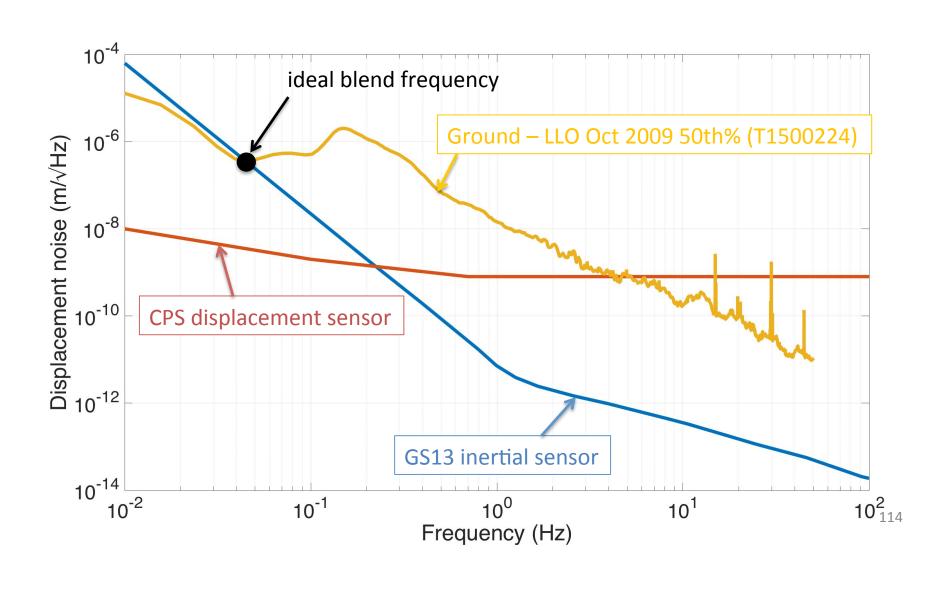
Stage 1 of 1-stage of in-vacuum isolation table (HAM-ISI)



LIGO HAM ISI Sensor Noises



LIGO HAM ISI Sensor Noises



Blend filter design

- Low pass the inertial sensor, high pass the displacement sensor
- Low pass + high pass = 1

Blend filter design

- Low pass the inertial sensor, high pass the displacement sensor
- Low pass + high pass = 1

Simple approach

 $B_{\scriptscriptstyle LP}$ Make some low pass filter

Blend filter design

- Low pass the inertial sensor, high pass the displacement sensor
- Low pass + high pass = 1

Simple approach

$$B_{\scriptscriptstyle LP}$$
 Make some low pass filter

Then, the high pass is simply

$$B_{HP} = 1 - B_{LP}$$

Blend filter design

- Low pass the inertial sensor, high pass the displacement sensor
- Low pass + high pass = 1

Simple approach

$$B_{\scriptscriptstyle LP}$$
 Make some low pass filter

Then, the high pass is simply

$$B_{HP} = 1 - B_{LP}$$

This works, but hard to tune both simultaneously.

Blend filter design

- Low pass the inertial sensor, high pass the displacement sensor
- Low pass + high pass = 1

Simple approach

$$B_{LP}$$
 Make some low pass filter

Then, the high pass is simply

$$B_{HP} = 1 - B_{LP}$$

This works, but hard to tune both simultaneously. Try this instead:

$$B_{LP} = \frac{B_{LP_prototype}}{B_{LP_prototype} + B_{HP_prototype}} \qquad B_{HP} = \frac{B_{HP_prototype}}{B_{LP_prototype} + B_{HP_prototype}}$$

Blend filter design

But be careful!

$$B_{LP} = \frac{B_{LP_prototype}}{B_{LP_prototype} + B_{HP_prototype}}$$

Blend filter design

But be careful!

$$B_{LP} = \frac{B_{LP_prototype}}{B_{LP_prototype} + B_{HP_prototype}}$$

$$B_{LP} = \frac{1}{B_{LP_prototype}} \frac{B_{LP_prototype}}{1 + B_{HP_prototype} / B_{LP_prototype}}$$

This looks like a closed loop TF, where the 'loop gain' is the ratio of the prototype filters.

Blend filter design

But be careful!

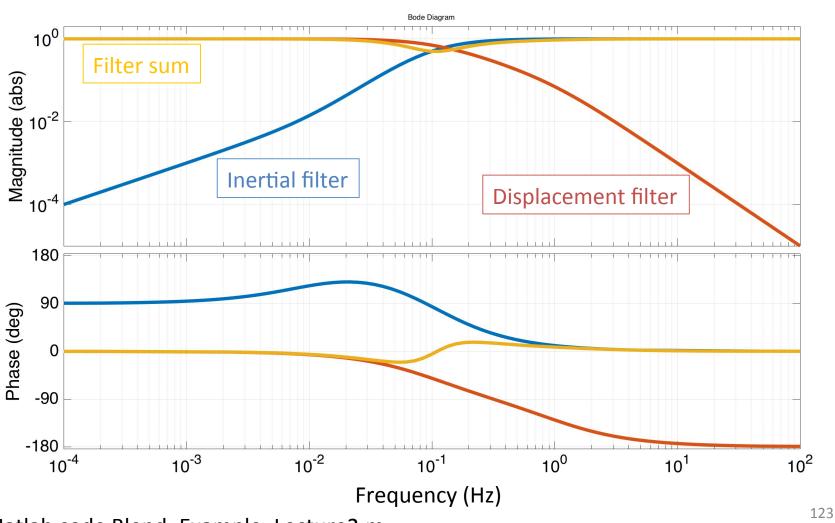
$$B_{LP} = \frac{B_{LP_prototype}}{B_{LP_prototype} + B_{HP_prototype}}$$

$$B_{LP} = \frac{1}{B_{LP_prototype}} \frac{B_{LP_prototype}}{1 + B_{HP_prototype} / B_{LP_prototype}}$$

This looks like a closed loop TF, where the 'loop gain' is the ratio of the prototype filters.

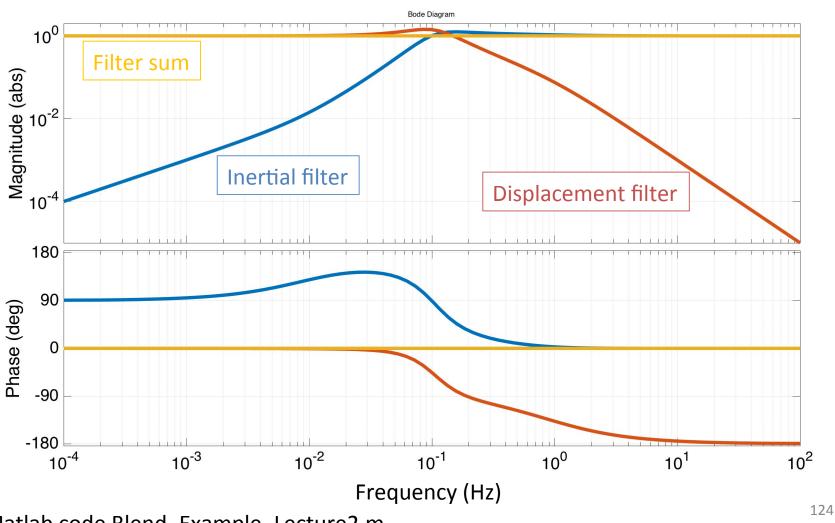
- We must watch out for stability.
- In practice, just keep the filters within 180 degrees of each other when their magnitudes cross.
- With this approach we've traded some stability for more design parameters

Prototype Blends



See Matlab code Blend_Example_Lecture2.m

Implemented Blends



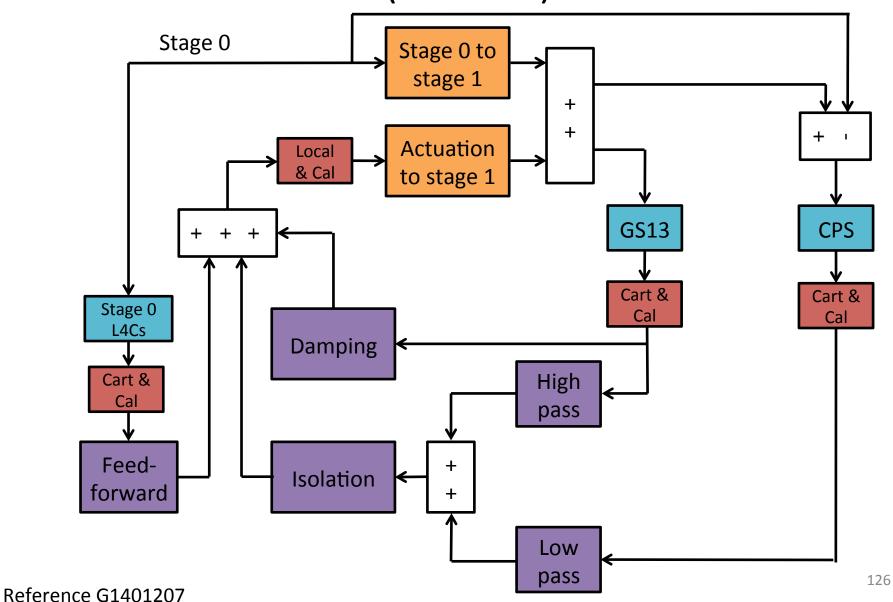
See Matlab code Blend_Example_Lecture2.m

Lecture 2 Summary

- Seismic feedforward control depends only on the system's connection to the ground.
- For feedback stability the abs(phase) < 180
 when the magnitude drops below 1
- Sensor blending uses the displace sensor at low frequencies, the inertial sensor at high frequencies. Stability rules apply.

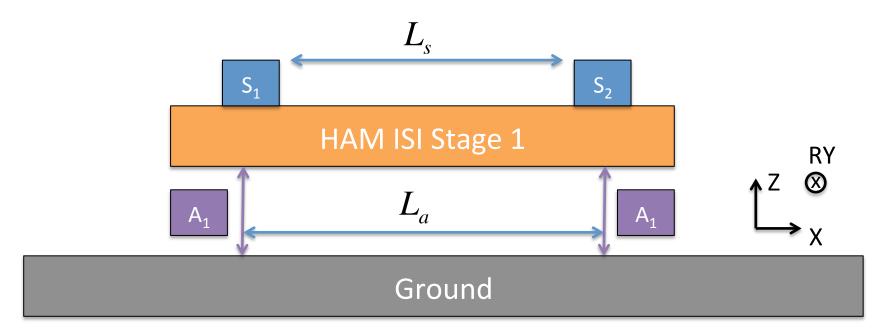
G1600726

Stage 1 of 1-stage of in-vacuum isolation table (HAM-ISI)



Lecture 2 – Backups

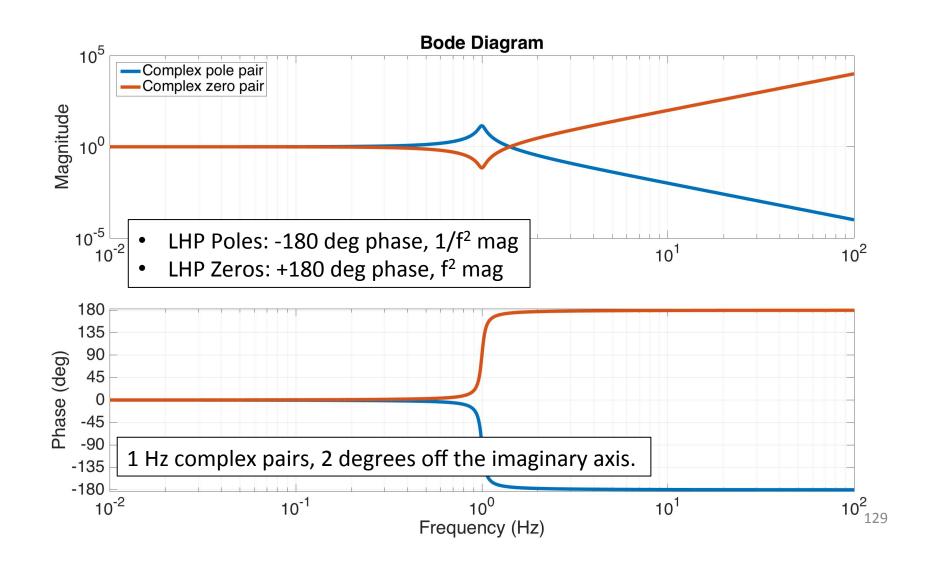
Matrix transformations



Sensing matrix
$$\begin{bmatrix} Z_s \\ RY_s \end{bmatrix} = \begin{bmatrix} 0.5 & 0.5 \\ 1/L_s & -1/L_s \end{bmatrix} \begin{bmatrix} S_1 \\ S_2 \end{bmatrix}$$

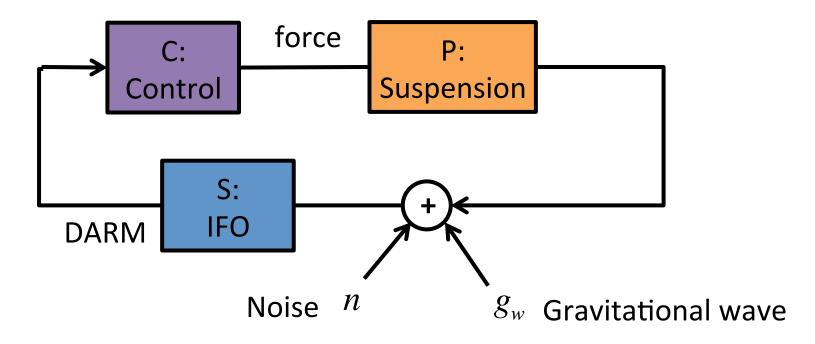
Actuation matrix
$$\begin{bmatrix} A_1 \\ A_2 \end{bmatrix} = \begin{bmatrix} 0.5 & 1/L_a \\ 0.5 & -1/L_a \end{bmatrix} \begin{bmatrix} Z_a \\ RY_a \end{bmatrix}$$

LIGOComplex pairs of poles and zeros



Extracting the GW signal

More detail in G1600412

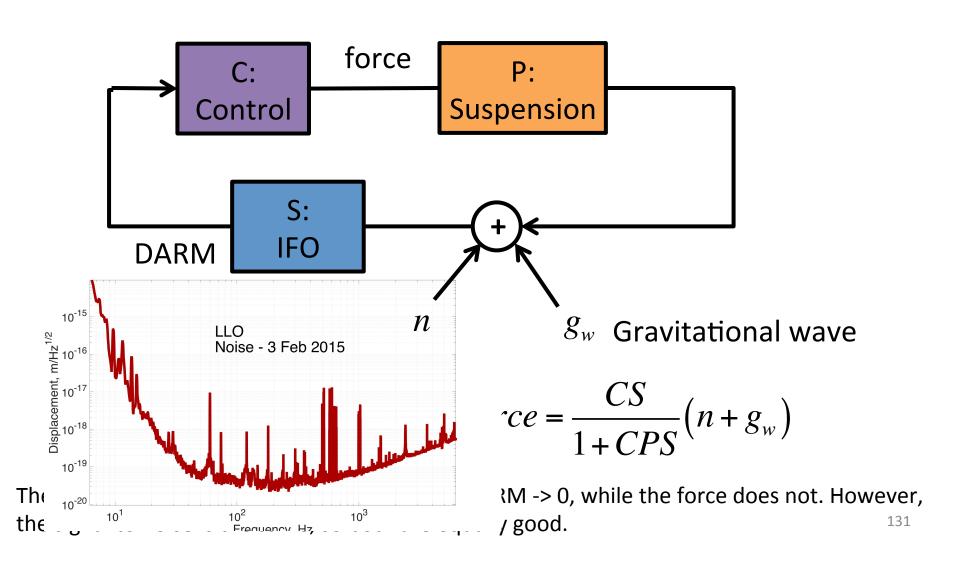


$$DARM = \frac{S}{1 + CPS}(n + g_w) \qquad force = \frac{CS}{1 + CPS}(n + g_w)$$

The GW exists in both signals. For large gains, DARM -> 0, while the force does not. However, the signal to noise is the same, so both are equally good.

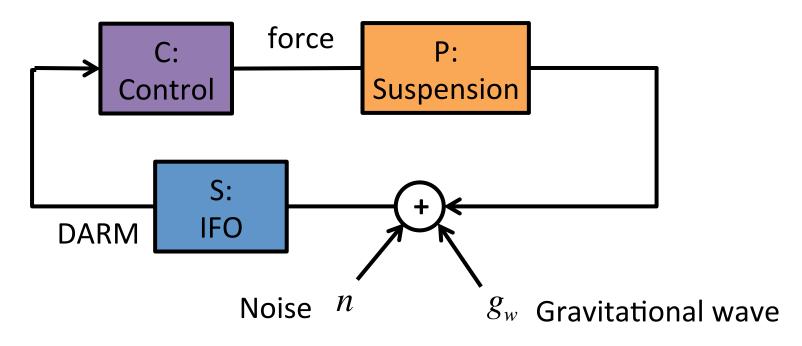
Extracting the GW signal

More detail in G1600412



Extracting the GW signal

More detail in G1600412



$$DARM = \frac{S}{1 + CPS} (n + g_w)$$

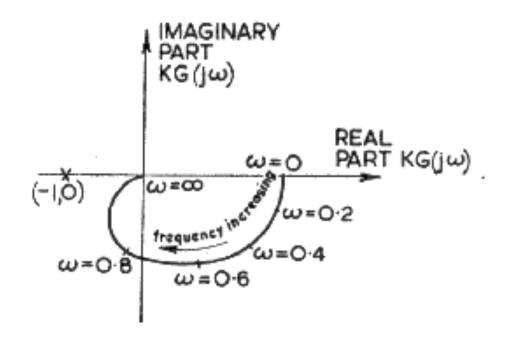
$$g_w \approx DARM \frac{1 + \hat{C}\hat{P}\hat{S}}{\hat{S}}$$

If noise is small enough!

Hat indicates a system model

Nyquist plot

- These plots are traditionally shown over Nichols plots, but are harder to look at since they can't be put in logspace.
- Stability is achieved by not circling the -1 point



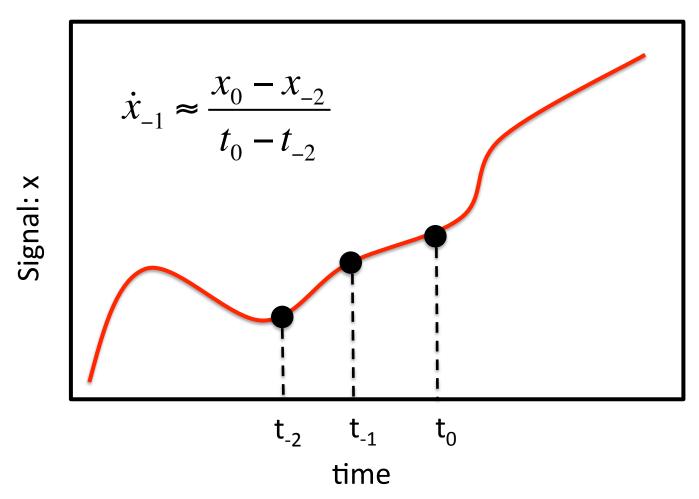
If a plant has unstable poles, then the rules change. See Ogata text.

Closed Loop TFs

$$x = \boxed{\frac{1}{1 + P_a C}} P_g x_g$$

S is called the 'sensitivity' TF and is common to all closed loop TFs in a loop

Another explanation for causality



A zero-pole pair (where the pole is at higher freq) is like a derivative approximation, where the pole determines the effective sampling time. Deleting the pole is the same as setting it to infinite frequency, which makes the time step = 0, which means we'd effectively be seeing the future by knowing the slope instantaneously.