Lecture 2

Basic control design

- Part 1: Feedforward

- Part 2: Feedback

- Part 3: Sensor blending
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LIGO Example system — HAM ISI

G070156 mx+cx+kx= f

In this lecture, we’ll use the HAM-ISI as an illustrative example of control system
design. The concepts applied to this system apply to many other systems as well.

We'll model the HAM-ISI as a single degree of freedom (DOF) mass-spring-damper
system. Here is the equation of motion we saw in Lecture 1, with the external force

input.



LIGO Example system — HAM ISI

G070156 m)'c'+cic+kx=cicg+kxg+f

Goals:
* Use fto reduce the influence of ground displacement, x,, on the ISI

* Don’t amplify the ISI motion with sensor noise

More generally, there is also a ground motion input, which adds driving terms to the
right side of the equation.

The goals here are to apply external forces, f, to minimize the influence of the ground
displacements x,, without amplifying the motion of the ISI with sensor noise.
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Stage 1 of 1-stage of in-vacuum isolation table

(HAM-ISI)
Stage 0 StageOto |
stage 1
+ ¢ Y.
+ P
Actuation )
to stage 1
A 4
GS13 CPS

+
+

-l

In the end, the control of the HAM-ISI we use to achieve these goals can be

Reference G1401207

represented with a block diagram like this. The hope is that by the end of this lecture,

we’ll understand each piece of this diagram.
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Lecture 2 — Part 1
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Stage 1 of 1-stage of in-vacuum isolation table

(HAM-ISI)
Stage 0 StageOto |
stage 1
+ & Y.
+ P
Actuation )
to stage 1
A 4

GS13 CPS

Stage 0

+
+
Reference G1401207 -

This is the feedforward part of this block diagram. There is a sensor that measures
the ground motion, and a feedforward filter that drives the actuators to cancel this
ground motion.

We won’t focus on the Cart & Cal matrix transformations here. For more information
on these matrix transformations, see the Lecture 2 backup slides.
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LIGO Feedfoward Control

mx +cx+kx=cx, +kx, + f

Ideal feedforward controller —— f = _ng — kx

* Aninertial sensor on the ground measures x,
* The actuator applies the correcting force f before the ISI responds
- it’s like the ground never even moved
* Performance is limited by how well the controller is tuned, and how much
coherence there is between the ground sensor and the ISl sensor.
* The feedforward controller does not depend on the feedback design

G070156

8

With feedforward control, we simply try measure the ground motion, and cancel out
its terms on the right side of the equation directly. This is limited by how good our
sensor is, how much coherence it has with the ISI’s motion, and how good our model

of the ISl is (e.g. how well we know k and c).

The feedforward control does not depend on the feedback design. This is because
feedback reacts after the error has already begun to increase, while feedforward is
proactive, acting before the error has a chance to change. Thus, feedforward acts
before the feedback has a chance to respond. From the point of view of the
feedback, the feedforward has done nothing more than reduce the amount of

ground motion.

68



LIGO Feedfoward Control

In practice, the feedforward control is achieved with

the following 4 steps: L |—> x()
1. Measure the TF between the ground and the ISI k ’—»
2. Measure the TF between the actuator and the ISI f
3. Calculate the ratio of step 1 to step 2 \ m —_—
4. Fit a filter to this TF ratio. This is the feedforward N ]—

control filter. b ¢
2 cs+k

X
_ 2
x, ms +ces+k

In practice, we don’t have perfect models of our systems. For example, we don’t
know the calibrations of our sensors and actuators perfectly, in addition to not
knowing k and c perfectly. So we base the feedforward control off measurements.
The first step is to measure a transfer function between the sensor on the ground
and the sensors on the ISI.
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LIGO Feedfoward Control

In practice, the feedforward control is achieved with

t

the following 4 steps: Y |—> Fﬁ)
1. Measure the TF between the ground and the ISI k
2. Measure the TF between the actuator and the ISI f
3. Calculate the ratio of step 1 to step 2 m —
4. Fit a filter to this TF ratio. This is the feedforward N ]—

control filter. b ¢
V] x cs+k 2 x 1

T PR

x, ms +cs+k [ ms +cs+k

The second step is to drive the actuators and measure the transfer function between
the actuators and the sensors on the ISI.
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LIGO Feedfoward Control

In practice, the feedforward control is achieved with

the following 4 steps: L |—> x()

1. Measure the TF between the ground and the ISI k ’—»

2. Measure the TF between the actuator and the ISI f
3. Calculate the ratio of step 1 to step 2 \ m —_—
4. Fit a filter to this TF ratio. This is the feedforward N ]—

control filter.

1) cs+k 2| x 1

X
_ 2
x, ms +ces+k

3)
= L=cs+k

Xe

f ms*+cs+k

The third step divides the first transfer function by the second. This gives us a transfer
function in units of (actuator force) / (ground displacement). This describes the
feedforward control we want to apply. Notice that it is the Laplace transform of the
ideal feedforward law discussed a few slides ago. The 4t and final step is to fit a filter
to this measurement, that matches in magnitude and phase. This filter is the
feedforward controller we apply.

Any uncertainties in the sensor and actuator calibrations, and the ISI parameters, will
be taken into account with these measurements.
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Lecture 2 — Part 2
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Stage 1 of 1-stage of in-vacuum isolation table

(HAM-ISI)
Stage 0 StageOto |
stage 1

+ ¢ Y.
+ +

_)-_> Actuation [

tostage 1
y A 4
+ o+ o+ GS13 CPS
N A
A4

Stage 0
L4Cs

Reference G1401207

These blocks represent the HAM-ISI feedback. Don’t be confused by the fact that
there are two blocks here, Damping and Isolation. They have the same purpose, but
are used in different states of the interferometer. Damping provides a small amount
of isolation, but is very robust, and prevents the platform’s resonance frequencies

from ringing up. Isolation is less robust, but provides very high performance isolation.

Typically, when turning the interferometer on, we start with the damping feedback,
and then engage the isolation feedback.
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Stage 1 of 1-stage of in-vacuum isolation table
(HAM-ISI)

Stage 0 = Xq

P,: Stage 0 to
stage 1

P,: Actuation
tostage 1

Sensor

-C: Isolation [€

To see how feedback works, let’s remove all elements in the bock diagram except for
the isolation path (recall, isolation an damping have the same basic roll, so let’s pick
just one of them).
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Stage 1 of 1-stage of in-vacuum isolation table

(HAM-ISI)
age0=4, Py:StageOto [
stage 1
+
5| PaiActuation | | ' *
to stage 1
y
f Sensor

ﬁf— N Sensor noise
-C: Isolation

Let’s add some sensor noise to this diagram, since it is important, but wasn’t included

before.
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Stage 1 of 1-stage of in-vacuum isolation table

(HAM-ISI)
Stage0=X, P: StageOto |
stage 1
+
P,: Actuation N ¥ .
tostage 1
y

f Sensor

hﬁ(‘ I Sensor noise
-C: ion

* Uncontrolled TF from ground to stage 1
X = P.a'xg

Let’s now write down the uncontrolled transfer function from ground displacement
to platform displacement.
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Stage 1 of 1-stage of in-vacuum isolation table

(HAM-ISI)
Stage0=X, P: StageOto |
stage 1
+
P,: Actuation N ¥ .
tostage 1
y

f Sensor

hﬁ(‘ N Sensor noise
-C: Isolation

Close loop TF from ground to stage 1

X = quq - PUCX (Ignoring the sensor response for now)

Then, when we turn on the feedback loop, we just add one more term.
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Stage 1 of 1-stage of in-vacuum isolation table

(HAM-ISI)
Stage0=X, P: StageOto |
stage 1
+
P,: Actuation N ¥ .
tostage 1
y

f Sensor

(_ﬁ(‘ N Sensor noise
-C: Isolation

Close loop TF from ground to stage 1

X = PL,)CQ - PUCX (Ignoring the sensor response for now)
P,
= - xg’
1+PC -

We can then solve for platform displacement, x, as a function of ground

displacement, x,. This is the closed loop transfer function from the ground to the

platform.
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Stage 1 of 1-stage of in-vacuum isolation table

(HAM-ISI)
Stage0=X, P: StageOto |
stage 1
+
P,: Actuation N ¥ .
tostage 1
y

f Sensor

hﬁ(‘ N Sensor noise
-C: Isolation

Close loop TF from sensor noise to stage 1

X = —PHC(I’I + x) (Ignoring the sensor response for now)
X —R.C n
1+PC

Similarly, we can find the closed loop transfer function from sensor noise, n, to
platform displacement, x.

79



Stage 1 of 1-stage of in-vacuum isolation table

(HAM-ISI)
Stage0=X, P: StageOto |
stage 1
+
P,: Actuation N ¥ .
tostage 1
y

f Sensor

(_ﬁ(‘ N Sensor noise
-C: Isolation

Close loop TF from sensor noise to stage 1
X = —PHC(I’I + x) (Ignoring the sensor response for now)

- -P.C n All closed loop TFs in this loop
1+PC| will have the same denominator

Note, all closed loop transfer functions in this loop will have the same denominator,
with the form 1 + something.



Stage 1 of 1-stage of in-vacuum isolation table

(HAM-ISI)
Stage0=X, P: StageOto |
stage 1
+
P,: Actuation N ¥ .
tostage 1
y

f Sensor

hﬁ(‘ N Sensor noise
-C: Isolation

Close loop TF from sensor noise to stage 1
X = —PHC(I’I + x) (Ignoring the sensor response for now)
-P.C

X=—7Z2==n
1————— Loop gain TF: important for studying stability

That something is called the loop gain transfer function. It is a product of all the
boxes in the closed loop. It is this loop gain transfer function that we analyze to study
the loop’s stability. Just to clarify, this means we are analyzing the loop’s open loop
characteristics to study its closed loop behavior.



Stage 1 of 1-stage of in-vacuum isolation table

(HAM-ISI)

Stage0=X, P: StageOto |
stage 1
+
P,: Actuation N ¥ .
tostage 1
y
f GS13 Inertial sensor

hﬁ(‘ N Sensor noise
-C: Isolation

Close loop TF from sensor noise to stage 1
X = —PHC(I’I + x) (Ignoring the sensor response for now)

X =

RAS

Numerator: boxes between input and output

+— Loop gain TF: important for studying stability

The numerator changes depending on which inputs and outputs you are examining. It
will always turn out, that the numerator is just the product of the boxes between the
input and output. In this case, we have the isolation block and P, block between the
sensor noise and the plant displacement. Therefore, it is very straightforward to find
a closed loop transfer function just by inspecting the block diagram. No need to solve

the algebraic equations each time.
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LIGO Closed Loop TFs

P

— —g _xg
1+PC
Seismic noise transmission
-PC
=—-"—n
1+PC

Sensor noise transmission

X

X

Let’s now compare the two closed loop transfer functions that we have: the seismic
transmission, and sensor noise transmission.



LIGO Closed Loop TFs

P

X 8

B 1+ PC Yo * When the loop gain is > 1, seismic
a noise is reduced, but the system tends

T : T to follow the sensor noise
Seismic noise transmission

-PC
=—4—n
1+PC

Sensor noise transmission

X

In the seismic case, when the loop gain is large, the seismic noise is reduced.
However, in the sensor noise case, the transfer function approaches -1. Thus, the
platform is driven to follow the sensor noise. This is fine at frequencies where the
sensor noise is small; specifically less than how much the platform would respond to
the seismic noise without control. However, at other frequencies where sensor noise
is larger, big loop gains would cause the platform to move more than it would
without control. So in general, we want to have large loop gains where seismic noise
moves the platform a lot, and small loop gains everywhere else to minimize the
influence of sensor noise. (sometimes suppressing seismic noise at low frequencies is
important enough it is best to tolerate some sensor noise at high frequencies)
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LIGO Closed Loop TFs

P

X 8

[ A x . .. . .
1 p C g When‘the loop gain is > 1, seismic
+ a noise is reduced, but the system tends
to follow the sensor noise

Seismic noise transmission

* If the loop gain -> -1, the system goes

_ _PaC n unstable
1+PC

Sensor noise transmission

X

Note, that if the loop gain equals -1, the closed loop transfer function goes to infinity.
Clearly, the -1 point must be meaningful for stability.



LIGO Closed Loop TFs

P

X 8

[ A x . .. . .
1 p C g When‘the loop gain is > 1, seismic
+ a noise is reduced, but the system tends
to follow the sensor noise

Seismic noise transmission
* If the loop gain -> -1, the system goes

_PaC unstable

=—I
1 + PaC * To study stability, just look at the loop
gain

X

Sensor noise transmission

In practice, it is not just loop gain = -1, but how it approaches -1 that is important for
stability. As mentioned before, we can study stability just by examining the
properties of the loop gain, in particular its magnitude and phase (Bode plot).



LIGO Ex. Loop Gain TF: P,C

=)

> -
=1

® -135
172}

©

£ -
o

-225

-270
107! 10° 10 o

! 102 10° 10

4

‘Matlabforcontrolﬁlterzc = zpk(-2*pi*3.33,-2*pi*[30;100],1.4e+10)

Here is a Bode plot of an example loop gain for the HAM-ISI, using the HAM-ISI model

from lecture 1, and the feedback filter C shown here.
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LIGO Ex. Loop Gain TF: P,C

/7

<102 Unity crossing

-180 crossing

Phase (deg)
3

-270
10 10° w10 10° 10*

‘Matlabforcontrolﬁlter:C = zpk(-2*pi*3.33,-2*pi*[30;100],1.4e+10) ‘

Let’s see how close it approaches to the -1 point. Note, -1 is equal to a magnitude of
1 and phase of +-180 degrees. Here, when the magnitude is 1, the phase is about
-135. So where have a phase margin of 180-135 = 45 degrees. Then, when the phase
reaches -180, the gain is about 0.1, so we have a gain margin of 1/0.1 = 10.



LIGO Ex. Loop Gain TF: P,C

/7

Unity crossing

-180 crossing

Phase (deg)
3

-225

It never hits -1. Is it stable?

-270
107!

10° 10' 102 10° 10

Frequency (Hz)

4

‘Matlabforcontrolﬁlterzc = zpk(-2*pi*3.33,-2*pi*[30;100],1.4e+10)

So we’re 45 degrees away from -1 at one point, and an order of magnitude at the

other. Is it stable?
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LIGO Ex. Loop Gain TF: P,C

/7

2 o2l Unity crossing

.
kel "
E' -180 crossing
S 180
o

225 | [t never hits -1. Is it stable? YES!!!

270 \

107! 10° 10' 102 10° 10*

Frequency (Hz)

‘Matlabforcontrolﬁlter:C = zpk(-2*pi*3.33,-2*pi*[30;100],1.4e+10)

Indeed, it is in this case.
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LIGO Ex. Loop Gain TF: 50*P C

Phase (deg)

Unity crossin
/ y g

2251 |t never hits -1. Is it stable?

-270
107! 10° 10°

102 10° 10*

‘Matlabforcontrolﬁlter:C = zpk(-2*pi*3.33,-2*pi*[30;100],7.0e+11) ‘

Let’s look at another example. Here we have exactly the same loop gain, except the
magnitude is 50 times larger. When it crosses unity magnitude, the phase is about
-220. So the phase margin is 180-220 =-40. When it crosses -180, the magnitude is

about 10. So we have a gain margin of 1/10 = 0.1. As before, we never actually pass
through -1. Is this loop stable?



LIGO Ex. Loop Gain TF: 50*P C

Unity crossing

. o
225 |t never hits -1. Is it stable? NO! '\

-270
107! 10° 10° 102 10° 10

Phase (deg)

4

‘Matlabforcontrolﬁlter:C = zpk(-2*pi*3.33,-2*pi*[30;100],7.0e+11) ‘

No, it isn’t. As mentioned before, how you approach -1 is just as important as
avoiding it. In general you need positive phase margins, and gain margins that are

greater than 1.

The mathematical proof for what makes a system stable or unstable is very abstract,
and has to do with loop gain encirclements of the -1 point. Generally, you’ll see this
proof in a controls class once, and then never see it again. If you’re interested in it,
the Ogata text mentioned at the beginning of lecture 1 discusses this. In the end, it

suffices to know what the resulting stability rules are.
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LIGO Loop Gain Nichols Plot: P,C

80

60

40

20

0

-20

Magnitude (dB)

-40

-60

Stable

-80

-100
-270 -225 -180 -135 -90 -45 0 45

Phase (degrees)
I Matlab code: nichols (Pa*C),grid off

These stability rules are, in my opinion, best represented by the Nichols plot of the
loop gain. This Nichols plot is of the stable loop gain we just saw. It shows the same
information as the bode plot, except here we have magnitude on the vertical axis (in
dB units where 0 dB = 1) and phase on the horizontal. We don’t typically look at these
plots when designing loops (perhaps we should). Typically we just look at the Bode
plot and pick off phase and gain margins. However, stability is much more obvious in
these Nichols plots than the Bode plots, so it is very useful to at least have these in
mind when looking at the loop gain bode plots. The similar Nyquist plots are good
too, and more traditional than these Nichols plots, however, Nichols plots are easier
in my opinion because they are log spaced. In these Nichol’s plots a system is
unstable if the -1 point is enclosed by the area under the curve. Here, it is not, so it
is stable.

Note, if the uncontrolled plant has any unstable poles, the rules are subtly different.
We'll assume all our plants are naturally stable, so the rules discussed here apply.
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LIGO Loop Gain Nichols Plot: 50*P_C

80

60

40

20

o
z
o 0
Ee]
2 20
C
oo
@ -40
>

-60

Unstable
-80
-100
-270 -225 -180 -135 -90 -45 0 45

Phase (degrees)
I Matlab code: nichols (50*Pa*C),grid off

Here is the Nichol’s plot with the unstable loop gain. See how the -1 point is now
enclosed by the area under the curve.
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LIGO Loop Gain Nichols Plot: 50*P_C

80

60

40

20

0

-20

-40

Magnitude (dB)

-60

Unstable

-80

—

o Rule of thumb: |phase| < 180 when crossing 1 (0 dB)

-270 -225 -180 -135 -90 -45 0 45
Phase (degrees)
I Matlab code: nichols (50*Pa*C),grid off

In general, you can keep a system stable simply by ensuring the loop gain phase is
within +-180 degrees whenever the loop gain magnitude crosses unity.
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LIGO Loop Gain Nichols Plot: 50*P_C

80

60

40

20
* Derivation for this stability

rule is mathematically abstract.
See Ogata text book.

Magnitude (dB)

Unstable

-80
_wol Rule of thumb: |phase| < 180 when crossing 1 (0 dB)
-270 -225 -180 -135 -90 -45 0 45
Phase (degrees)
I Matlab code: nichols(Pa*C),grid off

As mentioned before, the derivation for these stability rules is mathematically
abstract. See the Ogata text for details on the derivation.
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LIGO

Loop Gain TF: P,C

S o2 Unity crossing

/7

1
1
)
1
]
1
1
1
1
1
1
: -180 crossing
1

Phase (deg)
3

225 | Rule of thumb: |phase| <180 when crossing 1

-270

107! 10° 10

! 102 10° 10*

Frequency (Hz)

‘ Matlab for control filter: C

= zpk(-2%pi*3.33,-2%pi*[30;100],1.4e+10) \

We typically measure stability with phase and gain margin. So here is the stable loop

gain again.
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LIGO Loop Gain TF: P,C

Gain margin

/7

S gpey. Unity crossing

-180 crossing

Phase margin$

Phase (deg)
3

225 | Rule of thumb: |phase| <180 when crossing 1

-270
10 10° L [0 10° 10*

‘Matlabforcontrolﬁlter:C = zpk(-2*pi*3.33,-2*pi*[30;100],1.4e+10) ‘

Stable phase margins are positive, where they are measured as the distance above
the -180 degree line (and below the +180 degree line). Here it is about 45 degrees
(180-135).

Stable gain margins are measured as the factor below unity whenever +-180 degrees
is crossed. Here it is about 10, since the magnitude is 10 times below unity when
crossing -180.



LIGO How to do control design

Multiple methods, but the most common is called ‘loop shaping’

* Place poles and zeros until the
(S + Zj) loop gain is ‘shaped’ the way you
3 like it

* Causal filters require at least as
(S + pk) many poles as zeros: n > m. Non-
1 causal filters respond with infinite
magnitude and positive phase at
infinite frequency, which they can
only do if they have access to
future data.

In the next few slides, we follow an example of designing a feedback filter using the
most common method, called loop shaping. Other design techniques exist, but this is
by far the most common.

The technique involves placing poles and zeros in the feedback filter until the loop
gain has the characteristics you desire.

Note, causal filters must have at least as many poles as zeros. If it is not causal, the
filter can not be used in real-time, because it would require information from future
data. Causality is not really in the scope of this lecture, but we’ll touch on it briefly on

the next slide. There is also a backup slide in this lecture for it.
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LIGO Control design: poles and zeros

—1 Hz pole: 1/(s+27)
-1 Hz zero: s+27

Magnitude (abs)
=

10" |« | HP Poles: -90 deg phase, 1/f mag
* LHP Zeros: +90 deg phase, f mag

Phase (deg)
o

-90
107 10 10° 10’ 10

Before beginning the feedback design example, it is useful to look at a bode plot of a
single zero, in red, and pole, in blue. Here both are set to 1 Hz. Note that the zero
magnitude increases linearly with frequency, and the phase transitions to +90
degrees. The pole is the exact opposite. The magnitude is inversely proportional to
frequency, and the phase goes to -90 degrees. (you can kind of think of the zeros and
poles‘turning on’ as you move past them in frequency) For complex airs of poles and

zeros, see the backup slides.

For the case of non-causal filters, we would have more zeros than poles, which
means to magnitude would increase up to infinity at infinite frequency, with positive
phase. This means the filter output would occur before the input. In realtime clearly
this can’t happen. Non-realtime filters, for offline data processing, can have more

zeros than poles.
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LIGO Control design: poles and zeros

—1 Hz pole: 1/(s+27)
-1 Hz zero: s+27

107 |« LHP Poles: -90 deg phase, 1/f mag
* LHP Zeros: +90 deg phase, f mag

>

Q

i

o O= ;
@ i Note, don’t ever use these unless you have a really good reason:
h . < ") !
o

i« RHP Poles: +90 deg phase, 1/f mag (unstable)
i » RHP Zeros: -90 deg phase, f mag (stable, but usually make feedback less stable)

Note, these zero and pole properties are only valid for left half plane (LHP) poles and
zeros. Right half plane (RHP) poles and zeros have the reverse phase characteristics
(poles -> +90 phase, zeros -90 phase). It is best to avoid using either of these unless
you have a really good reason. RHP poles are naturally unstable. RHP zeros are
actually stable, however, they tend to make feedback less stable (because of their
negative phase). RHP poles are zeros are not completely useless it turns out, but you
should have a good reason for using them. For example, sometimes the only way to
stabilize an unstable plant is to use RHP poles. This is a bit weird because it means
you’re using an unstable controller to stabilize an unstable plant. In any case, nearly
all our LIGO plants are stable (exceptions being some modes of the optics under high

laser power, due to coupling to radiation pressure).
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LIGO Control design: poles and zeros

—1 Hz pole: 1/(s+27)
—1 Hz zero: s+2m

Magnitude (abs)
=

Use poles at frequencies < ugf to get high magnitude at low frequency ‘

Phase (deg)
o

-90
102 107 10

In general, the loop shaping design approach is to place poles at frequencies below
the unity gain frequency (ugf) to get high low frequency gain.
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LIGO Control design: poles and zeros

—1 Hz pole: 1/(s+27)
—1 Hz zero: s+2m

T T r—

‘ Use poles at frequencies < ugf to get high magnitude at low frequency ‘

, I Use poles at frequencies > ugf to filter high frequency sensor noise K
%o

Magnitude (abs)
=
o

Phase (deg)
o

-90

102 107 10° 10' 10

And, to place them at at frequencies greater than the ugf to filter out sensor noise at
high frequencies.
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LIGO Control design: poles and zeros

—1 Hz pole: 1/(s+27)
—1 Hz zero: s+2m

Magnitude (abs)
=
o

T T r—

‘ Use poles at low frequency to get high magnitude before the ugf ‘

, I Use poles at high frequency to filter sensor noise beyond the ugf }\

Qo

=)

()

k=X

g 0 T . .
k:: Use zeros to boost the phase above -180 at the unity crossing
o

-90
102 107 10 10' 102

Then, the zeros are used primarily to boost the phase above -180 at the UGF so the

loop is stable.
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LIGO Control design: loop shaping

PC

10| First, set unity gain frequency (ugf) to 25 Hz

Phase (deg)
3

-225

-270
107 1072 107 10° 10’ 10° 10°

| Matlab for control filter: C = zpk([1,[]1,4.7e7) ‘

So here is an example of a loop gain bode plot for the HAM-ISI. At this point the filter
Cis just a static gain value, chosen to set the ugf at 25 Hz. 25 Hz — 30 Hz is where the
UGFs end up on the ISIs in practice, due to various limitations with going higher
(primarily phase loss from sampling and continuous body vibrational modes).
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LIGO Control design: loop shaping

PC

10°{ Boost the low freq gain with a 10 mHz pole & 2 Hz zero

Phase (deg)
3

-225

-270
107 1072 107 10° 10’ 10° 10°

|Mat|abforcontro|ﬁlter:c = zpk(-2*pi*[2],-2*pi*[0.01],4.7e7)

Then, we want to get more gain at low frequencies to reduce the influence of seismic
noise where it is greatest. To do this, | have added a pole-zero pair, with the pole at
0.01 Hz and the zero at 2 Hz. We could do this without the zero, but the zero
minimizes the phase loss at the UGF. However, the phase is still not quite stable at

the UGF.
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LIGO Control design: loop shaping

PC

107 ’ Stabilize with a zero-pole pair a factor of 3 below & above the 25 Hz ugf r

Phase (deg)

-225

-270
107 1072 107 10° 10’ 10°

|Mat|abforcontro|ﬁlter:c = zpk(-2*pi*[2,25/3],-2*pi*[0.01,25%3],1.4e8)

So we add another zero-pole pair, just to boost the phase around the UGF. These are
centered around the UGF, with the zero a factor of 3 below, and the pole a factor of 3
above. Note, there is a compromise in doing this. If you flip between this slide and
the previous one, you see that we have lost some low frequency gain. However, that

gain does us no good if the system is unstable.
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LIGO Control design: loop shaping

PC

10®| Give C more poles than zeros with a 100 Hz low pass pole

Phase (deg)
3

-225

-270
107 1072 107

10° 10’ 10° 10°
zpk(-2*pi*[2,25/3],-2*pi*[0.01,25%3,100],9.1e10)

| Matlab for control filter: C =

Finally, we add a single pole at 100 Hz, just to filter away high frequency noise. In
general it is good practice to ensure your filters have more poles than zeros, just so
the response approaches zero at infinite frequency. This not only filters noise, but
helps ensure the actuators don’t consume so much voltage that they saturate.
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LIGO Control design: loop shaping

P C Nichols Plot

50

Magnitude (dB)

-150
-270 -225 -180 -135 -90 -45 0
Phase (degrees)

This is the Nichols plot of the resulting loop gain. The area under the curve does not
include the -1 point, so it is stable.
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LIGO Control design: loop shaping

P, C Nichols Plot

50

Note, not unconditionally stable,
meaning:

Both decreasing and increasing
the gain causes instability

Magnitude (dB)

-150,
-270 -225 -180 -135 -90 -45 0

Phase (degrees)

However, the -1 point is surrounded above and below by those lobes. This means
that if we either increase or decrease the gain (curve moves up and down
respectively) the system will go unstable. In this case we say the system is not
unconditionally stable. An unconditionally stable system is one that is stable for all
gains below a certain value. Non-unconditionanly stable systems are fine, we use
them all the time, you just have to 1) be sure that the value of the gain is not going to
change, and 2) be careful how you turn the feedback filter on.

You can’t just ramp the filter’s gain on like we usually do in this case. So you either
have to turn it on all at once, or turn it on in pieces, where you start with an
unconditionally stable piece, ramp its gain on, and then turn on the non-
unconditionally stable piece.
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Lecture 2 — Part 3

G1600726
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Stage 1 of 1-stage of in-vacuum isolation table

(HAM-ISI)
Stage 0 StageOto |
stage 1
+ & Y
. + +
_)‘ Actuation [
tostage 1

GS13 CPS

Reference G1401207

The final part of this loop is the sensor blending. The HAM-ISI uses a combination of
relative capacitive displacement sensors (CPSs) and inertial sensors (the GS13 is a
commercial geophone). These must be blended together into a single ‘super-sensor’
that we can send to the isolation feedback.
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LIGO HAM ISI Sensor Noises

107% | cps displacement sensor

Displacement noise (m/vHz)

o
e,
S

GS13 inertial sensor

107"
10° 107! 10° 10° 102
Frequency (Hz)

This plot illustrates why we need sensor blending. It shows the displacement noise of
the CPSs and the GS13, compared to a typical ground motion spectrum. Note that at
low frequencies the CPS noise is better, and at high frequencies the GS13 noise is
better.
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LIGO HAM ISI Sensor Noises

ideal blend frequency

/

o
on
IS

CPS displacement sensor

Displacement noise (m/vHz)

_.
ol
S

GS13 inertial sensor
-14
10° 107! 10° 10 102
Frequency (Hz)

We're most interested in inertial isolation though, so the important crossover
frequency is not where the sensor noises intersect, but where the inertial sensor
noise intersects the ground motion. Here it is about 0.045 Hz. So we should use the

displacement sensor below this, and the inertial sensor above. Thus the best ‘blend
frequency’ is 0.045 Hz.

Note this ignores the issue of tilt-horizontal coupling all inertial sensors are subject
to, which is not within the scope of this lecture. In general, horizontal inertial sensors
are sensitive to being tilted. This sensitivity is proportional to g/w”2, where g is
gravity and omega is 2*pi*frequency. So at low frequencies, tilt becomes a serious
issue. This often limits how low we set the blend frequency (depending on the
weather). For more information see PO80073.
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LIGO Blend filter design

* Low pass the inertial sensor, high pass the displacement sensor
* Low pass + high pass =1

To do the blending, we need to low pass the displacement sensor, and high pass the
inertial sensor. Then we sum the two outputs to make a single sensor signal. Thus, to
preserve units, the sum of the low pass and high pass must be 1 (assuming the two
sensors are already calibrated to the same units). Strictly speaking, we don’t need to
enforce the sum = 1, but not doing so would make the loop gain (and stability)
dependent on the blending. We prefer to have the loop gain be the same for all blend

configurations. With this sum = 1 requirement, the filters are said to be
‘complementary pairs’.
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LIGO Blend filter design

* Low pass the inertial sensor, high pass the displacement sensor
* Low pass + high pass =1

Simple approach

BLP Make some low pass filter

The simplest approach to designing blend filters with the sum =1 constraint is to
simply choose a low pass filter for the displacement sensor (or the high pass).
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LIGO Blend filter design

* Low pass the inertial sensor, high pass the displacement sensor
* Low pass + high pass =1

Simple approach
BLP Make some low pass filter

Then, the high pass is simply

BHP =1- BLP

Then the high pass for the inertial is just 1 — the low pass. (Or vice-versa).
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LIGO Blend filter design

* Low pass the inertial sensor, high pass the displacement sensor
* Low pass + high pass =1

Simple approach

BLP Make some low pass filter
Then, the high pass is simply

By, = 1- B,

This works, but hard to tune both simultaneously.

This is fine, but then the high pass design completely depends on the low pass. We
would prefer to have the freedom to design both independently.
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LIGO Blend filter design

* Low pass the inertial sensor, high pass the displacement sensor
* Low pass + high pass =1

Simple approach

BLP Make some low pass filter

Then, the high pass is simply

BHP =1- BLP
This works, but hard to tune both simultaneously.
Try this instead:

BLP _ prototype BH P _ prototype

BLP = BHP =

B LP _ prototype + B HP _ prototype LP _ prototype + B HP _ prototype

So instead, we take a different approach. We design the low pass and high pass we
would like to have. These are called the ‘prototype’ filters. Then we normalize each
by the sum of these prototypes. Therefore, the resulting low and high pass filters

must be complementary pairs.
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LIGO Blend filter design

But be careful!

B

B _ LP _ prototype
LP —

B +B

LP _ prototype HP _ prototype

There is a price we pay for doing this though!
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LIGO Blend filter design

But be careful!

B

BLP = LP _ prototype
B +B
LP _ prototype HP _ prototype
l BLP _ prototype
B, =
1+B /B

LP _ prototype HP _ prototype LP _ prototype

This looks like a closed loop TF,
where the ‘loop gain’ is the ratio of the prototype filters.

If you factor out one of the prototype filters from the denominator, you get a

denominator with 1 + something.
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LIGO Blend filter design

But be careful!

B _ B LP _ prototype
LP —
B LP _ prototype + B HP _ prototype
B _ l B LP _ prototype
LP
B LP _ prototype 1+ BHP _ prototype / BLP — prototype

This looks like a closed loop TF,
where the ‘loop gain’ is the ratio of the prototype filters.

We must watch out for stability.
In practice, just keep the filters within 180 degrees of each other

when their magnitudes cross.
With this approach we’ve traded some stability for more design parameters

This is kind of like when we have 1 + loopgain. Actually, it is exactly like that. And all
the same stability rules apply. Thus, we must ensure that the two prototype filters
are stable with each other. In practice, you just need to make sure their phases are

within 180 degrees of each other when their phases cross.

So we have made a trade where we sacrifice some stability to generate more design

parameters.
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LIGO Prototype Blends

S—
10° ——
m
Qo
=
2
810
2
5
& Inertial filter ) .
=g Displacement filter
180

>‘

Phase (deg)
o

-90

-180
107 10 102 107 10° 10 10
Frequency (Hz)

See Matlab code Blend_Example_Lecture2.m

Here is an example of two prototype blend filters. See the example matlab code with
this lecture.
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LIGO |mplemented Blends

10°
@
o
A
-2
810
2
5
@ Inertial filter ) .
=4 Displacement filter
180
5 90_/_\
Q
2
o O
172}
©
£
o .90

-180
107 10 102 10™ 10° 10’ 10

Frequency (Hz)
See Matlab code Blend_Example_Lecture2.m

Then, when you do the normalization to make the complimentary pairs we actually
implement, you get these filters.
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LIGO Lecture 2 Summary

 Seismic feedforward control depends only on
the system’s connection to the ground.

* For feedback stability the abs(phase) < 180
when the magnitude drops below 1

» Sensor blending uses the displace sensor at
low frequencies, the inertial sensor at high
frequencies. Stability rules apply.

G1600726
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Stage 1 of 1-stage of in-vacuum isolation table

(HAM-ISI)
Stage 0 StageOto |
stage 1
+ v
. + +
Actuation N

to stage 1

+ + +
N A
<

-

Reference G1401207
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Lecture 2 — Backups

G1600726

127



LIGO Matrix transformations

L

\)

s | s

RY
zZ ®
La T—’

] A .
Z, 05 05 5
Sensing matrix RY, N /L, -1/L; | S,

. . A 05 1/, Z,

Actuation matrix A, | o5 -1/L, RY

a

This backup slide describes the matrix transformations that are shown in the example
HAM-ISI control block diagram. Consider that we have 2 vertical sensors and 2
vertical actuators. We can combine the signals of the sensors to generate a Z sensor
signal and an RY sensor signal. For Z, we simply take the average of the 2 (51+52)/2,
which keeps the Z signal in the same units as the individual sensors (e.g. meters). For
RY, we take the difference, normalized by the length between the sensors, so that we
have units of rotation (e.g. radians). These transformations are grouped into a matrix,
as shown here by the sensing matrix.

Similarly, we can combine the actuator signals to generate Z and RY actuator signals,
as shown by the Actuation matrix. The actuation matrix is the transpose of the
sensing matrix if La = Ls (or more generally, if the sensors and actuators are
collocated).
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LIGOComplex pairs of poles and zeros

Magnitude

Phase (deg)

10°
10'150,2 * LHP Poles: -180 deg phase, 1/f2 mag 0 102
* LHP Zeros: +180 deg phase, f2 mag
180
135
90
45
0
-45 \
-90
135 | 1 Hz complex pairs, 2 degrees off the imaginary axis. ‘
-180 ~—
102 107 10° 10 10°

5 Bode Diagram

- Complex pole pair
- Complex zero pair

10

Frequency (Hz)

Complex pairs of poles and zeros are in many ways just like 2 repeated real poles and
zeros. The main difference is that they have a damping term, which depends on the
angle they make with the imaginary axis of the complex plane. In this case the angle
is only 2 degrees, so the damping is small, where Quality factor =1 / (2 * sin(angle) ).
Lightly damped poles have a large resonance peak, and a short phase transition from
0 to -180 degrees. Lightly damped zeros have a large ‘notch’ feature, and a short
phase transition from 0 to +180 degrees. For zero damping, the pole peak goes to
infinite magnitude, and the zero notch goes to zero magnitude. The phase transition

is instantaneous.
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LIGO Extracting the GW signal

More detail in G1600412

C: force p-
" control Suspension
St (+)e
DARM | IFO /%4\
Noise 7 8. Gravitational wave

S CS
DARM = ——— = .
1+CPS(n+g“') Jorce 1+CPS (n+8.)

The GW exists in both signals. For large gains, DARM -> 0, while the force does not. However,
the signal to noise is the same, so both are equally good.

The arm cavity feedback control holds the arms at a fixed length. So how do we get
the gravitational wave signal from the interferometer if the arm lengths aren’t
allowed to change?

First, the feedback control doesn’t zero out the length fluctuations, it just makes
them smaller. The length fluctuations are suppressed by 1+loopgain (if S = 1). So if we
have a good model of the loop gain (which can be measured easily enough), we just
multiply the measured photodiode signal (DARM) by 1+loopgain. You can think of this
more physically as taking into account how much force the control is applying to
minimize the length fluctuations. The loop also happens to suppress the cavity noise
by the same amount as the gravitational wave, so the signal to noise ratio of the
gravitational wave is unchanged by the feedback. We could also get the signal from
any other place in the loop. For example, the gravitational wave signal also appears in
the feedback force we apply with the actuators.
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Here, the cavity noise is the same curve we see when we look at the aLIGO sensitivity

plots.

LIGO Extracting the GW signal

Displacement, m/Hz'?

The

More detail in G1600412

force p:
Suspension
{ +)e
DARM /"\
N wo o n 8\ Gravitational wave

1020

10’ 10? 10°
the C.gicn o oo oo Fenuancyy oo oo

i mi = —q--../ gOOd. 131

-

“Tecps ")

M -> 0, while the force does not. However,
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LIGO Extracting the GW signal

More detail in G1600412

S
DARM = ———
1+CPS (n * gw)

C: force p-
“| control Suspension
St (+)e
DARM | IFO /*4\
Noise 7 8\ Gravitational wave

gw ~ DARM T e—
S

AAA

1+CPS

If noise is small enough!
Hat indicates a system model

If the gravitational wave is bigger than all other noise sources, than our measurement
of it is the measured DARM signal times our model for the inverse of the closed loop
transfer function. Here, the hats indicate models of the real system. It is the job of
the aLIGO calibration group to ensure these models are good representations of what

we have.
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Nyquist plot

* These plots are traditionally shown over Nichols plots,
but are harder to look at since they can’t be put in logspace.
» Stability is achieved by not circling the -1 point

| IMAGINARY
PART
KG (jw)

REAL
w=02

_*—_ e ————A———
(-10) (w-m éf
.\‘t.
fraquenct
~_Aw=04

w=08 w=06

» If a plant has unstable poles, then the rules change. See Ogata text.
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LIGO Closed Loop TFs

1
X =l———|P x
1+PC|[*°

S

Sis called the ‘sensitivity’ TF and is common to all closed loop TFsin a
loop
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Another explanation for causality

Signal: x

time

A zero-pole pair (where the pole is at higher freq) is like a derivative approximation, where the
pole determines the effective sampling time. Deleting the pole is the same as setting it to
infinite frequency, which makes the time step = 0, which means we’d effectively be seeing the
future by knowing the slope instantaneously.
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