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In	this	lecture,	we’ll	use	the	HAM-ISI	as	an	illustra8ve	example	of	control	system	
design.	The	concepts	applied	to	this	system	apply	to	many	other	systems	as	well.		
	
We’ll	model	the	HAM-ISI	as	a	single	degree	of	freedom	(DOF)	mass-spring-damper	
system.	Here	is	the	equa8on	of	mo8on	we	saw	in	Lecture	1,	with	the	external	force	
input.	
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More	generally,	there	is	also	a	ground	mo8on	input,	which	adds	driving	terms	to	the	
right	side	of	the	equa8on.	
	
The	goals	here	are	to	apply	external	forces,	f,	to	minimize	the	influence	of	the	ground	
displacements	xg,	without	amplifying	the	mo8on	of	the	ISI	with	sensor	noise.		
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In	the	end,	the	control	of	the	HAM-ISI	we	use	to	achieve	these	goals	can	be	
represented	with	a	block	diagram	like	this.	The	hope	is	that	by	the	end	of	this	lecture,	
we’ll	understand	each	piece	of	this	diagram.	
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This	is	the	feedforward	part	of	this	block	diagram.	There	is	a	sensor	that	measures	
the	ground	mo8on,	and	a	feedforward	filter	that	drives	the	actuators	to	cancel	this	
ground	mo8on.	
	
We	won’t	focus	on	the	Cart	&	Cal	matrix	transforma8ons	here.	For	more	informa8on	
on	these	matrix	transforma8ons,	see	the	Lecture	2	backup	slides.	
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With	feedforward	control,	we	simply	try	measure	the	ground	mo8on,	and	cancel	out	
its	terms	on	the	right	side	of	the	equa8on	directly.	This	is	limited	by	how	good	our	
sensor	is,	how	much	coherence	it	has	with	the	ISI’s	mo8on,	and	how	good	our	model	
of	the	ISI	is	(e.g.	how	well	we	know	k	and	c).	
	
The	feedforward	control	does	not	depend	on	the	feedback	design.	This	is	because	
feedback	reacts	aXer	the	error	has	already	begun	to	increase,	while	feedforward	is	
proac8ve,	ac8ng	before	the	error	has	a	chance	to	change.	Thus,	feedforward	acts	
before	the	feedback	has	a	chance	to	respond.	From	the	point	of	view	of	the	
feedback,	the	feedforward	has	done	nothing	more	than	reduce	the	amount	of	
ground	mo8on.	
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In	prac8ce,	we	don’t	have	perfect	models	of	our	systems.	For	example,	we	don’t	
know	the	calibra8ons	of	our	sensors	and	actuators	perfectly,	in	addi8on	to	not	
knowing	k	and	c	perfectly.	So	we	base	the	feedforward	control	off	measurements.	
The	first	step	is	to	measure	a	transfer	func8on	between	the	sensor	on	the	ground	
and	the	sensors	on	the	ISI.	
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The	second	step	is	to	drive	the	actuators	and	measure	the	transfer	func8on	between	
the	actuators	and	the	sensors	on	the	ISI.	
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The	third	step	divides	the	first	transfer	func8on	by	the	second.	This	gives	us	a	transfer	
func8on	in	units	of	(actuator	force)	/	(ground	displacement).	This	describes	the	
feedforward	control	we	want	to	apply.	No8ce	that	it	is	the	Laplace	transform	of	the	
ideal	feedforward	law	discussed	a	few	slides	ago.	The	4th	and	final	step	is	to	fit	a	filter	
to	this	measurement,	that	matches	in	magnitude	and	phase.	This	filter	is	the	
feedforward	controller	we	apply.	
	
Any	uncertain8es	in	the	sensor	and	actuator	calibra8ons,	and	the	ISI	parameters,	will	
be	taken	into	account	with	these	measurements.	
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These	blocks	represent	the	HAM-ISI	feedback.	Don’t	be	confused	by	the	fact	that	
there	are	two	blocks	here,	Damping	and	Isola8on.	They	have	the	same	purpose,	but	
are	used	in	different	states	of	the	interferometer.	Damping	provides	a	small	amount	
of	isola8on,	but	is	very	robust,	and	prevents	the	pla_orm’s	resonance	frequencies	
from	ringing	up.	Isola8on	is	less	robust,	but	provides	very	high	performance	isola8on.	
Typically,	when	turning	the	interferometer	on,	we	start	with	the	damping	feedback,	
and	then	engage	the	isola8on	feedback.	

73	



To	see	how	feedback	works,	let’s	remove	all	elements	in	the	bock	diagram	except	for	
the	isola8on	path	(recall,	isola8on	an	damping	have	the	same	basic	roll,	so	let’s	pick	
just	one	of	them).	
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Let’s	add	some	sensor	noise	to	this	diagram,	since	it	is	important,	but	wasn’t	included	
before.	
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Let’s	now	write	down	the	uncontrolled	transfer	func8on	from	ground	displacement	
to	pla_orm	displacement.	
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Then,	when	we	turn	on	the	feedback	loop,	we	just	add	one	more	term.	
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We	can	then	solve	for	pla_orm	displacement,	x,	as	a	func8on	of	ground	
displacement,	xg.	This	is	the	closed	loop	transfer	func8on	from	the	ground	to	the	
pla_orm.	
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Similarly,	we	can	find	the	closed	loop	transfer	func8on	from	sensor	noise,	n,	to	
pla_orm	displacement,	x.	
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Note,	all	closed	loop	transfer	func8ons	in	this	loop	will	have	the	same	denominator,	
with	the	form	1	+	something.	
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That	something	is	called	the	loop	gain	transfer	func8on.	It	is	a	product	of	all	the	
boxes	in	the	closed	loop.	It	is	this	loop	gain	transfer	func8on	that	we	analyze	to	study	
the	loop’s	stability.	Just	to	clarify,	this	means	we	are	analyzing	the	loop’s	open	loop	
characteris8cs	to	study	its	closed	loop	behavior.	
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The	numerator	changes	depending	on	which	inputs	and	outputs	you	are	examining.	It	
will	always	turn	out,	that	the	numerator	is	just	the	product	of	the	boxes	between	the	
input	and	output.	In	this	case,	we	have	the	isola8on	block	and	Pa	block	between	the	
sensor	noise	and	the	plant	displacement.	Therefore,	it	is	very	straigh_orward	to	find	
a	closed	loop	transfer	func8on	just	by	inspec8ng	the	block	diagram.	No	need	to	solve	
the	algebraic	equa8ons	each	8me.	
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Let’s	now	compare	the	two	closed	loop	transfer	func8ons	that	we	have:	the	seismic	
transmission,	and	sensor	noise	transmission.	
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In	the	seismic	case,	when	the	loop	gain	is	large,	the	seismic	noise	is	reduced.	
However,	in	the	sensor	noise	case,	the	transfer	func8on	approaches	-1.	Thus,	the	
pla_orm	is	driven	to	follow	the	sensor	noise.	This	is	fine	at	frequencies	where	the	
sensor	noise	is	small;	specifically	less	than	how	much	the	pla_orm	would	respond	to	
the	seismic	noise	without	control.	However,	at	other	frequencies	where	sensor	noise	
is	larger,	big	loop	gains	would	cause	the	pla_orm	to	move	more	than	it	would	
without	control.	So	in	general,	we	want	to	have	large	loop	gains	where	seismic	noise	
moves	the	pla_orm	a	lot,	and	small	loop	gains	everywhere	else	to	minimize	the	
influence	of	sensor	noise.	(some8mes	suppressing	seismic	noise	at	low	frequencies	is	
important	enough	it	is	best	to	tolerate	some	sensor	noise	at	high	frequencies)	
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Note,	that	if	the	loop	gain	equals	-1,	the	closed	loop	transfer	func8on	goes	to	infinity.	
Clearly,	the	-1	point	must	be	meaningful	for	stability.	
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In	prac8ce,	it	is	not	just	loop	gain	=	-1,	but	how	it	approaches	-1	that	is	important	for	
stability.	As	men8oned	before,	we	can	study	stability	just	by	examining	the	
proper8es	of	the	loop	gain,	in	par8cular	its	magnitude	and	phase	(Bode	plot).	
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Here	is	a	Bode	plot	of	an	example	loop	gain	for	the	HAM-ISI,	using	the	HAM-ISI	model	
from	lecture	1,	and	the	feedback	filter	C	shown	here.	
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Let’s	see	how	close	it	approaches	to	the	-1	point.	Note,	-1	is	equal	to	a	magnitude	of	
1	and	phase	of	+-180	degrees.	Here,	when	the	magnitude	is	1,	the	phase	is	about	
-135.	So	where	have	a	phase	margin	of	180-135	=	45	degrees.	Then,	when	the	phase	
reaches	-180,	the	gain	is	about	0.1,	so	we	have	a	gain	margin	of	1/0.1	=	10.	
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So	we’re	45	degrees	away	from	-1	at	one	point,	and	an	order	of	magnitude	at	the	
other.	Is	it	stable?	
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Indeed,	it	is	in	this	case.	
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Let’s	look	at	another	example.	Here	we	have	exactly	the	same	loop	gain,	except	the	
magnitude	is	50	8mes	larger.	When	it	crosses	unity	magnitude,	the	phase	is	about	
-220.	So	the	phase	margin	is	180-220	=	-40.	When	it	crosses	-180,	the	magnitude	is	
about	10.	So	we	have	a	gain	margin	of	1/10	=	0.1.	As	before,	we	never	actually	pass	
through	-1.	Is	this	loop	stable?	
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No,	it	isn’t.	As	men8oned	before,	how	you	approach	-1	is	just	as	important	as	
avoiding	it.	In	general	you	need	posi8ve	phase	margins,	and	gain	margins	that	are	
greater	than	1.	
	
The	mathema8cal	proof	for	what	makes	a	system	stable	or	unstable	is	very	abstract,	
and	has	to	do	with	loop	gain	encirclements	of	the	-1	point.	Generally,	you’ll	see	this	
proof	in	a	controls	class	once,	and	then	never	see	it	again.	If	you’re	interested	in	it,	
the	Ogata	text	men8oned	at	the	beginning	of	lecture	1	discusses	this.	In	the	end,	it	
suffices	to	know	what	the	resul8ng	stability	rules	are.	
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These	stability	rules	are,	in	my	opinion,	best	represented	by	the	Nichols	plot	of	the	
loop	gain.	This	Nichols	plot	is	of	the	stable	loop	gain	we	just	saw.	It	shows	the	same	
informa8on	as	the	bode	plot,	except	here	we	have	magnitude	on	the	ver8cal	axis	(in	
dB	units	where	0	dB	=	1)	and	phase	on	the	horizontal.	We	don’t	typically	look	at	these	
plots	when	designing	loops	(perhaps	we	should).	Typically	we	just	look	at	the	Bode	
plot	and	pick	off	phase	and	gain	margins.	However,	stability	is	much	more	obvious	in	
these	Nichols	plots	than	the	Bode	plots,	so	it	is	very	useful	to	at	least	have	these	in	
mind	when	looking	at	the	loop	gain	bode	plots.	The	similar	Nyquist	plots	are	good	
too,	and	more	tradi8onal	than	these	Nichols	plots,	however,	Nichols	plots	are	easier	
in	my	opinion	because	they	are	log	spaced.	In	these	Nichol’s	plots	a	system	is	
unstable	if	the	-1	point	is	enclosed	by	the	area	under	the	curve.	Here,	it	is	not,	so	it	
is	stable.	
Note,	if	the	uncontrolled	plant	has	any	unstable	poles,	the	rules	are	subtly	different.	
We’ll	assume	all	our	plants	are	naturally	stable,	so	the	rules	discussed	here	apply.	
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Here	is	the	Nichol’s	plot	with	the	unstable	loop	gain.	See	how	the	-1	point	is	now	
enclosed	by	the	area	under	the	curve.	
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In	general,	you	can	keep	a	system	stable	simply	by	ensuring	the	loop	gain	phase	is	
within	+-180	degrees	whenever	the	loop	gain	magnitude	crosses	unity.	
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As	men8oned	before,	the	deriva8on	for	these	stability	rules	is	mathema8cally	
abstract.	See	the	Ogata	text	for	details	on	the	deriva8on.	
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We	typically	measure	stability	with	phase	and	gain	margin.	So	here	is	the	stable	loop	
gain	again.	
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Stable	phase	margins	are	posi8ve,	where	they	are	measured	as	the	distance	above	
the	-180	degree	line	(and	below	the	+180	degree	line).	Here	it	is	about	45	degrees	
(180-135).	
	
Stable	gain	margins	are	measured	as	the	factor	below	unity	whenever	+-180	degrees	
is	crossed.	Here	it	is	about	10,	since	the	magnitude	is	10	8mes	below	unity	when	
crossing	-180.	
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In	the	next	few	slides,	we	follow	an	example	of	designing	a	feedback	filter	using	the	
most	common	method,	called	loop	shaping.	Other	design	techniques	exist,	but	this	is	
by	far	the	most	common.	
The	technique	involves	placing	poles	and	zeros	in	the	feedback	filter	un8l	the	loop	
gain	has	the	characteris8cs	you	desire.	
Note,	causal	filters	must	have	at	least	as	many	poles	as	zeros.	If	it	is	not	causal,	the	
filter	can	not	be	used	in	real-8me,	because	it	would	require	informa8on	from	future	
data.	Causality	is	not	really	in	the	scope	of	this	lecture,	but	we’ll	touch	on	it	briefly	on	
the	next	slide.	There	is	also	a	backup	slide	in	this	lecture	for	it.	
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Before	beginning	the	feedback	design	example,	it	is	useful	to	look	at	a	bode	plot	of	a	
single	zero,	in	red,	and	pole,	in	blue.	Here	both	are	set	to	1	Hz.	Note	that	the	zero	
magnitude	increases	linearly	with	frequency,	and	the	phase	transi8ons	to	+90	
degrees.	The	pole	is	the	exact	opposite.	The	magnitude	is	inversely	propor8onal	to	
frequency,	and	the	phase	goes	to	-90	degrees.	(you	can	kind	of	think	of	the	zeros	and	
poles‘turning	on’	as	you	move	past	them	in	frequency)	For	complex	airs	of	poles	and	
zeros,	see	the	backup	slides.	
	
For	the	case	of	non-causal	filters,	we	would	have	more	zeros	than	poles,	which	
means	to	magnitude	would	increase	up	to	infinity	at	infinite	frequency,	with	posi8ve	
phase.	This	means	the	filter	output	would	occur	before	the	input.	In	real8me	clearly	
this	can’t	happen.	Non-real8me	filters,	for	offline	data	processing,	can	have	more	
zeros	than	poles.	
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Note,	these	zero	and	pole	proper8es	are	only	valid	for	leX	half	plane	(LHP)	poles	and	
zeros.	Right	half	plane	(RHP)	poles	and	zeros	have	the	reverse	phase	characteris8cs	
(poles	->	+90	phase,	zeros	-90	phase).	It	is	best	to	avoid	using	either	of	these	unless	
you	have	a	really	good	reason.	RHP	poles	are	naturally	unstable.	RHP	zeros	are	
actually	stable,	however,	they	tend	to	make	feedback	less	stable	(because	of	their	
nega8ve	phase).	RHP	poles	are	zeros	are	not	completely	useless	it	turns	out,	but	you	
should	have	a	good	reason	for	using	them.	For	example,	some8mes	the	only	way	to	
stabilize	an	unstable	plant	is	to	use	RHP	poles.	This	is	a	bit	weird	because	it	means	
you’re	using	an	unstable	controller	to	stabilize	an	unstable	plant.	In	any	case,	nearly	
all	our	LIGO	plants	are	stable	(excep8ons	being	some	modes	of	the	op8cs	under	high	
laser	power,	due	to	coupling	to	radia8on	pressure).	
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In	general,	the	loop	shaping	design	approach	is	to	place	poles	at	frequencies	below	
the	unity	gain	frequency	(ugf)	to	get	high	low	frequency	gain.	
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And,	to	place	them	at	at	frequencies	greater	than	the	ugf	to	filter	out	sensor	noise	at	
high	frequencies.	
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Then,	the	zeros	are	used	primarily	to	boost	the	phase	above	-180	at	the	UGF	so	the	
loop	is	stable.	
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So	here	is	an	example	of	a	loop	gain	bode	plot	for	the	HAM-ISI.	At	this	point	the	filter	
C	is	just	a	sta8c	gain	value,	chosen	to	set	the	ugf	at	25	Hz.	25	Hz	–	30	Hz	is	where	the	
UGFs	end	up	on	the	ISIs	in	prac8ce,	due	to	various	limita8ons	with	going	higher	
(primarily	phase	loss	from	sampling	and	con8nuous	body	vibra8onal	modes).	
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Then,	we	want	to	get	more	gain	at	low	frequencies	to	reduce	the	influence	of	seismic	
noise	where	it	is	greatest.	To	do	this,	I	have	added	a	pole-zero	pair,	with	the	pole	at	
0.01	Hz	and	the	zero	at	2	Hz.	We	could	do	this	without	the	zero,	but	the	zero	
minimizes	the	phase	loss	at	the	UGF.	However,	the	phase	is	s8ll	not	quite	stable	at	
the	UGF.	
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So	we	add	another	zero-pole	pair,	just	to	boost	the	phase	around	the	UGF.	These	are	
centered	around	the	UGF,	with	the	zero	a	factor	of	3	below,	and	the	pole	a	factor	of	3	
above.	Note,	there	is	a	compromise	in	doing	this.	If	you	flip	between	this	slide	and	
the	previous	one,	you	see	that	we	have	lost	some	low	frequency	gain.	However,	that	
gain	does	us	no	good	if	the	system	is	unstable.	
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Finally,	we	add	a	single	pole	at	100	Hz,	just	to	filter	away	high	frequency	noise.	In	
general	it	is	good	prac8ce	to	ensure	your	filters	have	more	poles	than	zeros,	just	so	
the	response	approaches	zero	at	infinite	frequency.	This	not	only	filters	noise,	but	
helps	ensure	the	actuators	don’t	consume	so	much	voltage	that	they	saturate.	
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This	is	the	Nichols	plot	of	the	resul8ng	loop	gain.	The	area	under	the	curve	does	not	
include	the	-1	point,	so	it	is	stable.	
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However,	the	-1	point	is	surrounded	above	and	below	by	those	lobes.	This	means	
that	if	we	either	increase	or	decrease	the	gain	(curve	moves	up	and	down	
respec8vely)	the	system	will	go	unstable.	In	this	case	we	say	the	system	is	not	
uncondi1onally	stable.	An	uncondi8onally	stable	system	is	one	that	is	stable	for	all	
gains	below	a	certain	value.	Non-uncondi8onanly	stable	systems	are	fine,	we	use	
them	all	the	8me,	you	just	have	to	1)	be	sure	that	the	value	of	the	gain	is	not	going	to	
change,	and	2)	be	careful	how	you	turn	the	feedback	filter	on.		
	
You	can’t	just	ramp	the	filter’s	gain	on	like	we	usually	do	in	this	case.	So	you	either	
have	to	turn	it	on	all	at	once,	or	turn	it	on	in	pieces,	where	you	start	with	an	
uncondi8onally	stable	piece,	ramp	its	gain	on,	and	then	turn	on	the	non-
uncondi8onally	stable	piece.	
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The	final	part	of	this	loop	is	the	sensor	blending.	The	HAM-ISI	uses	a	combina8on	of	
rela8ve	capaci8ve	displacement	sensors	(CPSs)	and	iner8al	sensors	(the	GS13	is	a	
commercial	geophone).	These	must	be	blended	together	into	a	single	‘super-sensor’	
that	we	can	send	to	the	isola8on	feedback.	
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This	plot	illustrates	why	we	need	sensor	blending.	It	shows	the	displacement	noise	of	
the	CPSs	and	the	GS13,	compared	to	a	typical	ground	mo8on	spectrum.	Note	that	at	
low	frequencies	the	CPS	noise	is	berer,	and	at	high	frequencies	the	GS13	noise	is	
berer.	
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We’re	most	interested	in	iner8al	isola8on	though,	so	the	important	crossover	
frequency	is	not	where	the	sensor	noises	intersect,	but	where	the	iner8al	sensor	
noise	intersects	the	ground	mo8on.	Here	it	is	about	0.045	Hz.	So	we	should	use	the	
displacement	sensor	below	this,	and	the	iner8al	sensor	above.	Thus	the	best	‘blend	
frequency’	is	0.045	Hz.	
	
Note	this	ignores	the	issue	of	8lt-horizontal	coupling	all	iner8al	sensors	are	subject	
to,	which	is	not	within	the	scope	of	this	lecture.	In	general,	horizontal	iner8al	sensors	
are	sensi8ve	to	being	8lted.	This	sensi8vity	is	propor8onal	to	g/w^2,	where	g	is	
gravity	and	omega	is	2*pi*frequency.	So	at	low	frequencies,	8lt	becomes	a	serious	
issue.	This	oXen	limits	how	low	we	set	the	blend	frequency	(depending	on	the	
weather).	For	more	informa8on	see	P080073.	
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To	do	the	blending,	we	need	to	low	pass	the	displacement	sensor,	and	high	pass	the	
iner8al	sensor.	Then	we	sum	the	two	outputs	to	make	a	single	sensor	signal.	Thus,	to	
preserve	units,	the	sum	of	the	low	pass	and	high	pass	must	be	1	(assuming	the	two	
sensors	are	already	calibrated	to	the	same	units).	Strictly	speaking,	we	don’t	need	to	
enforce	the	sum	=	1,	but	not	doing	so	would	make	the	loop	gain	(and	stability)	
dependent	on	the	blending.	We	prefer	to	have	the	loop	gain	be	the	same	for	all	blend	
configura8ons.	With	this	sum	=	1	requirement,	the	filters	are	said	to	be	
‘complementary	pairs’.	
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The	simplest	approach	to	designing	blend	filters	with	the	sum	=	1	constraint	is	to	
simply	choose	a	low	pass	filter	for	the	displacement	sensor	(or	the	high	pass).	
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Then	the	high	pass	for	the	iner8al	is	just	1	–	the	low	pass.	(Or	vice-versa).	
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This	is	fine,	but	then	the	high	pass	design	completely	depends	on	the	low	pass.	We	
would	prefer	to	have	the	freedom	to	design	both	independently.	
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So	instead,	we	take	a	different	approach.	We	design	the	low	pass	and	high	pass	we	
would	like	to	have.	These	are	called	the	‘prototype’	filters.	Then	we	normalize	each	
by	the	sum	of	these	prototypes.	Therefore,	the	resul8ng	low	and	high	pass	filters	
must	be	complementary	pairs.	
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There	is	a	price	we	pay	for	doing	this	though!	
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If	you	factor	out	one	of	the	prototype	filters	from	the	denominator,	you	get	a	
denominator	with	1	+	something.		
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This	is	kind	of	like	when	we	have	1	+	loopgain.	Actually,	it	is	exactly	like	that.	And	all	
the	same	stability	rules	apply.	Thus,	we	must	ensure	that	the	two	prototype	filters	
are	stable	with	each	other.	In	prac8ce,	you	just	need	to	make	sure	their	phases	are	
within	180	degrees	of	each	other	when	their	phases	cross.	
	
So	we	have	made	a	trade	where	we	sacrifice	some	stability	to	generate	more	design	
parameters.	
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Here	is	an	example	of	two	prototype	blend	filters.	See	the	example	matlab	code	with	
this	lecture.	
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Then,	when	you	do	the	normaliza8on	to	make	the	complimentary	pairs	we	actually	
implement,	you	get	these	filters.	

124	



125	



126	



127	



This	backup	slide	describes	the	matrix	transforma8ons	that	are	shown	in	the	example	
HAM-ISI	control	block	diagram.	Consider	that	we	have	2	ver8cal	sensors	and	2	
ver8cal	actuators.	We	can	combine	the	signals	of	the	sensors	to	generate	a	Z	sensor	
signal	and	an	RY	sensor	signal.	For	Z,	we	simply	take	the	average	of	the	2	(S1+S2)/2,	
which	keeps	the	Z	signal	in	the	same	units	as	the	individual	sensors	(e.g.	meters).	For	
RY,	we	take	the	difference,	normalized	by	the	length	between	the	sensors,	so	that	we	
have	units	of	rota8on	(e.g.	radians).	These	transforma8ons	are	grouped	into	a	matrix,	
as	shown	here	by	the	sensing	matrix.	
Similarly,	we	can	combine	the	actuator	signals	to	generate	Z	and	RY	actuator	signals,	
as	shown	by	the	Actua8on	matrix.	The	actua8on	matrix	is	the	transpose	of	the	
sensing	matrix	if	La	=	Ls	(or	more	generally,	if	the	sensors	and	actuators	are	
collocated).	
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Complex	pairs	of	poles	and	zeros	are	in	many	ways	just	like	2	repeated	real	poles	and	
zeros.	The	main	difference	is	that	they	have	a	damping	term,	which	depends	on	the	
angle	they	make	with	the	imaginary	axis	of	the	complex	plane.	In	this	case	the	angle	
is	only	2	degrees,	so	the	damping	is	small,	where	Quality	factor	=	1	/	(2	*	sin(angle)	).	
Lightly	damped	poles	have	a	large	resonance	peak,	and	a	short	phase	transi8on	from	
0	to	-180	degrees.	Lightly	damped	zeros	have	a	large	‘notch’	feature,	and	a	short	
phase	transi8on	from	0	to	+180	degrees.	For	zero	damping,	the	pole	peak	goes	to	
infinite	magnitude,	and	the	zero	notch	goes	to	zero	magnitude.	The	phase	transi8on	
is	instantaneous.	
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The	arm	cavity	feedback	control	holds	the	arms	at	a	fixed	length.	So	how	do	we	get	
the	gravitaBonal	wave	signal	from	the	interferometer	if	the	arm	lengths	aren’t	
allowed	to	change?	
First,	the	feedback	control	doesn’t	zero	out	the	length	fluctua8ons,	it	just	makes	
them	smaller.	The	length	fluctua8ons	are	suppressed	by	1+loopgain	(if	S	=	1).	So	if	we	
have	a	good	model	of	the	loop	gain	(which	can	be	measured	easily	enough),	we	just	
mul8ply	the	measured	photodiode	signal	(DARM)	by	1+loopgain.	You	can	think	of	this	
more	physically	as	taking	into	account	how	much	force	the	control	is	applying	to	
minimize	the	length	fluctua8ons.	The	loop	also	happens	to	suppress	the	cavity	noise	
by	the	same	amount	as	the	gravita8onal	wave,	so	the	signal	to	noise	ra8o	of	the	
gravita8onal	wave	is	unchanged	by	the	feedback.	We	could	also	get	the	signal	from	
any	other	place	in	the	loop.	For	example,	the	gravita8onal	wave	signal	also	appears	in	
the	feedback	force	we	apply	with	the	actuators.	

130	



Here,	the	cavity	noise	is	the	same	curve	we	see	when	we	look	at	the	aLIGO	sensi8vity	
plots.	
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If	the	gravita8onal	wave	is	bigger	than	all	other	noise	sources,	than	our	measurement	
of	it	is	the	measured	DARM	signal	8mes	our	model	for	the	inverse	of	the	closed	loop	
transfer	func8on.	Here,	the	hats	indicate	models	of	the	real	system.	It	is	the	job	of	
the	aLIGO	calibra8on	group	to	ensure	these	models	are	good	representa8ons	of	what	
we	have.	
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