Listening to the universe: detecting gravitational waves with laser interferometry

Direct detection of gravitational waves

GW150914: $h = \frac{\Delta L}{L} = 10^{-21}$

Wikimedia commons

We got one!

September 14th at 2:50 am

LIGO scientific collaboration, PRL **116** 061102 http://dx.doi.org/10.1103/PhysRevLett.116.061102

- First direct detection of gravitational waves
- First observation of binary black holes
- First observation of stellar black holes larger than 10 solar masses
- First observation of a merger of 2 black holes
- First test of general relativity in strong field, dynamic regime

PRL **116** 061102 http://dx.doi.org/10.1103/PhysRevLett.116.061102⁵

Strain sensitivity

How can we achieve this kind of strain sensitivity? First, separate the test masses as much as possible

4km arm length, displacement sensitivity requirement is 10⁻²⁰ meters

Photo: R Ward S Ballmer

Displacement sensitivity

http://arxiv.org/abs/1602.03838

Current displacement sensitivity: Limited by many types of technical noise

Noise budget courtesy of Evan Hall, Caltech

Advanced LIGO fundamental noises

Isolating test masses from the environment

Test mass motion should be < 10⁻¹⁹ [m/rtHz] at 10 Hz Ground Motion at 10 Hz ~ 10⁻⁹ [m/rtHz] 10 orders of magnitude of isolation needed for test masses!

Advanced LIGO fundamental noises

Suspension thermal noise

- Equipartion theorem sets total thermal energy in a oscillator ($kx^2 = k_B T/2$)
- Away from the resonance frequency, level of noise is set by quality factor of the oscillator
- Reducing mechanical dissipation reduces thermal fluctuations

Photos: LIGO Lab

Advanced LIGO fundamental noises

Coating thermal noise

- Dielectric coatings used in mirror coatings have high mechanical losses compared to substrate (Fused Silica)
- Brownian motion changes thickness of the coating

Quantum Noise: shot noise and radiation pressure noise

Current approach to quantum noise

Quantum noise in interferometers

Vacuum fluctuations (Caves, PRL 45 75-79, 1980):

Alternative solution: Squeezing

Quantum Light

The uncertainty principle

 $\Delta X_1 \Delta X_2 \ge 1$

Vacuum fluctuations

Squeezed light and squeezed vacuum

Squeezing in an interferometer

Squeezing in Enhanced LIGO

LIGO Scientific Collaboration, Nature Photonics 7 613-619 (2013)

No additional noise introduced

Squeezing with a radiation pressure noise limited interferometer

Astrophysical Benefits: Lynch et al, in prep

Frequency Dependent Squeezing

Evans et al, PRD 88 022002 (2013)

Frequency Dependent Squeezing

Frequency dependent squeezing recently demonstrated in the audio band

Oekler et al PRL Jan 2016 http://dx.doi.org/10.1103/PhysRevLett.116.041102

Future Plans: Next few months

- Increase input power from 20Watts to 50 Watts
 - Increase circulating power from ~100kW to ~250 kW
- Work on reducing low frequency noise
 - Important for sensitivity to binary black holes
- Prepare for next observing run in later part of the year

Observing Scenario

		Estimated	$E_{\rm GW} = 10^{-2} M_{\odot} c^2$				Number	% BNS Localized		
		Run	Burst Range (Mpc)		BNS Range (Mpc)		of BNS	within		
	Epoch	Duration	LIGO	Virgo	LIGO	Virgo	Detections	$5 deg^2$	$20 \mathrm{deg}^2$	
	2015	3 months	40 - 60	_	40 - 80	-	0.0004 - 3	-	_	
	2016 - 17	6 months	60 - 75	20 - 40	80 - 120	20 - 60	0.006 - 20	2	5 - 12	
	2017 - 18	9 months	75 - 90	40 - 50	120 - 170	60 - 85	0.04 - 100	1 - 2	10 - 12	
	2019 +	(per year)	105	40 - 80	200	65 - 130	0.2 - 200	3 – 8	8 - 28	
20	22+ (India)	(per year)	105	80	200	130	0.4 - 400	17	48	
	a-21	Advand	ced LIGO							
strain noise amplitude (Hz ^{-1/2})	0^{-22} 0^{-23} 0^{-24}	Early (2015, 40 – 80 Mpc) Mid (2016–17, 80 – 120 Mpc) Late (2017–18, 120 – 170 Mpc) Design (2019, 200 Mp) BNS–optimized (215 Mpc)				~20% in 20 sq deg HLV 2019 60°N 60°N 60°N 60°S 60°S 60°S 60°S Localization of source, Hanford, Livingston and Virgo detectors, Observing 2019				
	10' 10 ^c 10 [°] frequency (Hz)									
Trequency (HZ)										

Extending our reach to cosmological distances

Dwyer et al http://dx.doi.org/10.1103/PhysRevD.91.082001

Thanks for your attention!

- LIGO has detected gravitational waves from a binary black hole merger
- This required making the most precise displacement measurements ever made
- Several techniques, including squeezing, are available to improve the sensitivity further

Jorge Cham @ PhD comics

Extra Slides

A squeezer table

An alternative to high power operation in Advanced LIGO

Squeezer: Optical parametric oscillator

Classical OPO: Phase sensitive amplifier

Quantum OPO: Turns a vacuum state into squeezed vacuum