Simulated Plant Approach

LIGO Caltech

Koji Arai, Jameson Rollins, Joe Betzwieser, Rana Adhikari

2016 March LVC Meeting

LIGO DCC G1600511

- is an IFO emulator for digital control system
- is realized by realtime codes of the digital control system itself
- imitates responses of interferometer components

What is this? Why do we need this? How can we make it? What has been done so far?

Simplified view of the interferometer control: Local control (suspension, seismic platform) + Global control (interferometer)

Simplified view of the interferometer control: Local control (suspension, seismic platform) + Global control (interferometer)

Replace the hardware responses with digital filters ==> simulated plants The controllers do not notice the swap

The entire IFO/control could be realized on a single or small number of machines

Simulated Plant version of LIGO IFO and Control

Comparison with other tools

LIGO-G1600511 Koji Arai P.7

Simulated plant ≠ a precise time-domain simulator Limitations: computational cost, sampling rate, ...

rather like a development environment for IFO controls => fill the gap between the simulations and IFOs

Benefit (1)

- Separate software issues from IFO issues Software R&D / initial test without using IFO time

e.g. Control models Diagnostic tests Scripts / Guardian codes Screens Measurement codes

Usual tools can be used (e.g. dtt, dataviewer, NDS2, ...)

IFO time is getting more precious Let's minimize downtime for code implementation

Benefit (2)

 Designing / tesing control system for 3G detectors before the hardware becomes ready

Reflect experiences with the emulator to the design

Save eventual commissioning time

Benefit (3)

LIGO-G1600511 Koji Arai P.10

- Enables offline study on implementation of complex / advanced control systems

... may require custom C codes Adaptive control Modern control

... may require many repeated trials Machine learning Genetic algorithm => multiple accelerated IFO emulation?

Simulated Plant Realization

LIGO-G1600511 Koji Arai P.11

- Examples:

Damping control of a suspension system (LIGO-G1100590, Betzwieser J., Rollins J.G., et al.) Control model of HEPI / HAM-ISI

(LIGO-G1300850, Castillo J, Betzwieser J.)

Simulated Plant Realization

LIGO-G1600511 Koji Arai P.12

How to realize SP? LIGO CDS (Control and Data System) e.g. Suspension Local control

Suspension

Simulated Plant Realization

LIGO-G1600511 Koji Arai P.13

- How to realize SP? LIGO CDS (Control and Data System) Suspension Sim-Planr / Controller

Suspension Sim-plant

LIGO-G1600511 Koji Arai P.14

Formed by matrices and arrays(or matrices) of filter modules

Suspension Sim-plant

LIGO-G1600511 Koji Arai P.15

Formed by matrices and arrays(or matrices) of filter modules

Global sim-plant

LIGO-G1600511 Koji Arai P.16

global control ~ Multiple machine case RFM/Dolphin communication (globally-shared memory)

Global sim-plant

Length Controller ~ Multiple machine case RFM/PCIe communication (globally-shared memory)

IFO Simulated Plant

Formed by matrices and arrays(or matrices) of filter modules

IFO Simulated Plant

Formed by matrices and arrays(or matrices) of filter modules

Some thoughts

LIGO-G1600511 Koji Arai P.20

- We want a standalone CDS with no ADC/DAC/timing hardware
- Can CDS codes be run at an accelerated rate?
- How to realize nonlinear responses of subsystems?
- How to implement IFO responses Simple filters are already useful at the beginning How much details can we implement?

Summary

- Simulated plant: an IFO emulator
 - Realized by the digital control system itself
 - Offers environment for control development
- Run an IFO and its control system on software
 - Releases IFO time from SW development
 - Enables us to work on control system design complex / advanced control problems without having the real detector
 - Possibility to have multiple / accelerated IFOs
- Progress & Future
 - Proof of concept test with local/global control
 - Next: work on more complicated control examples

Spare slides

Benefit (3)

- Enables offline study on implementation of complex / advanced control systems ... may require custom C codes **Adaptive control Modern control** may require many repeated trials **Machine learning Genetic algorithm** => multiple accelerated **IFO emulation?**

Learning how to swing with genetic algorithm (x64) https://youtu.be/w1MF0Iz0p40

LIGO-G1600511

P.23

Koji Arai

