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Sharper TF Representations of GW150914

Paolo Addesso?, Riccardo DeSalvo?!3, Maurizio Longo? Vincenzo Matta?,

Elena Mejuto-Villat4, Vincenzo Pierro!, Maria Principe! and Innocenzo M. Pinto*

"University of Sannio at Benevento (IT), INFN, LVC and KAGRA
2University of Salerno (IT), INFN, LVC and KAGRA

3California State University, Los Angeles (USA)
*‘Universidad de Oviedo (ESP) e

Most time-frequency representations In use

today in GW data analysis (including the Q,
Omega and Omicron pipelines) are based on
the Q-transform [1].

Many alternative TF representations exist.
The Wigner-Ville transform features the uni-
formly largest TF resolution, and nice mar-
ginal properties, but is plagued by intermo-
dulation artifacts, due to its nonlinearity [2].
The radial-gaussian kernel (RGK) smoothed
Wigner-Ville [3] offers a clever tradeoff be-
tween artifact suppression and loss in resolu-
tion. Resolution can be restored, In part, us-
INng reassignment [4], or enforcing a sparsity
constraint [5].

The (sharpest) Q-transform, the Wigner-Ville (WV), and some related TF distribution are visually compared below.
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Constant-Q transforms of GW150914 data from L1 and H1 for various Q values.

Alternative time —frequency representations of GW150914 (data resampled at 4096 Hz).
Left to right: Q-transform (Q=5); Wigner-Ville; pseudo Wigner-Ville (121 bin Hanning window), radial-gaussian kernel
smoothed Wigner-Ville (a la Baraniuk — Jones),; sparsified radial-gaussian kernel smoothed Wigner-Ville.

Improved visual sharpness allows accurate estimation of H1-L1 delay using sub-pixel accurate image co-
registration algorithms. It also makes easy to estimate the TF distribution ridge (peak locus), representing
the bona-fide frequency evolution of the signal. The ridge fits well the instantaneous frequency line com-
puted, e.g., from an IMR-PhenomB model using the official estimated chirp-mass of GW150914.
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Arrival time delay estimation based on TF contour co-reqistration of GW150914 data from L1 and H1. R BB e R ey e ans

Left: the RGK-smoothed WYV contour plots of the GW150914 data from L1 and H1 are segmented into 78 horizontal stripes (both with M..,... = 30.563M) and ridges of
between 70Hz and 250Hz, and for each stripe the time-shift is estimated using the PCR algorithm [5]. the TE RGngzvpo othed and Sop arsified RGK.
Center: quantile-quantilethe plot of the time-shift population residuals, showing almost Gaussian behaviour. smoothed Wigner Ville distributions
Confidence intervals are estimated using Efron bootstrap technique. Right: the results for different TF representations. (GW150914 H1 data)
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