Observation of Gravitational Waves from a Binary Black Hope Merger

Hiro Yamamoto LIGO Lab / Caltech

LIGO-G1600270-v4

LIGO

Hiro Yamamoto ICRR seminar on February 22, 2016

1

Observation of Gravitational Waves from a Binary Black Hope Merger

Hiro Yamamoto LIGO lab/Caltech

- New Astronomy by gravitational wave signal at the 100th memorial year of general relativity
 - » Just the beginning ...
- How the GW signals look like
- Basics of interferometer or how to hear the GW signal?
- GW signal in advanced LIGO
- Scope for the future

GW150914:FACTSHEET

BACKGROUND IMAGES: TIME-FREQUENCY TRACE (TOP) AND TIME-SERIES (BOTTOM) IN THE TWO LIGO DETECTORS; SIMULATION OF BLACK HOLE HORIZONS (MIDDLE-TOP), BEST FIT WAVEFORM (MIDDLE-BOTTOM)

first direct detection of gravitational waves (GW) and first direct observation of a black hole binary

G1600220-v8

1.3Gly Redshift = 0.09 5.1σ 1/200,000 year

 $M_1=36 M^{\odot},$ $M_2=29 M^{\odot}$ $M_{final}=62 M^{\odot}$ $3 M^{\odot}$ radiated to GW wave

observed by	observed by LIGO L1, H1		duration from 30 Hz ~ 200 ms	
source type black hole (BH) binary		# cycles from 30 Hz ~10		1
date 14 Sept 2015		peak GW strain	1 x 10 ⁻²¹	
time	time 09:50:45 UTC		+0.002 fm	
likely distance	0.75 to 1.9 Gly 230 to 570 Mpc	interferometers arms frequency/wavelength 150 Hz, 2000 k		n
redshift	0.054 to 0.136	at peak GW strain	~ 0.6 c	
signal-to-noise ratio	24	peak GW luminosity	3.6 x 10 ⁵⁶ erg s ⁻¹	_
false alarm prob.	< 1 in 5 million	radiated GW energy	2.5-3.5 M⊙	
false alarm rate	false alarm rate < 1 in 200,000 yr		remnant ringdown freg. ~ 250 Hz	
Source Masses Mo		remnant damping time ~ 4 ms		
total mass	60 to 70	remnant size area $180 \text{ km} \cdot 3.5 \times 10^5 \text{ km}^3$		=
primary BH	32 to 41	consistent with	passes all tests	
secondary BH	25 to 33	general relativity?	performed	
remnant BH	58 to 67	graviton mass bound	< 1.2 x 10 ⁻²² eV	
mass ratio primary BH spin	0.6 to 1 < 0.7	coalescence rate of binary black holes	2 to 400 Gpc ⁻³ yr ⁻¹	2
secondary BH spin	< 0.9	online trigger latency	~ 3 min	
remnant BH spin	0.57 to 0.72	# offline analysis pipelines 5		
signal arrival time	arrived in L1 7 ms	CPU hours consumed PCs run for 100 c		
delay	before H1			
likely sky position	Southern Hemisphere	papers on Feb 11, 2016	13	
likely orientation resolved to	face-on/off ~600 sq. deg.	# researchers ~1000, 80 institutio in 15 countries		

Detector noise introduces errors in measurement. Parameter ranges correspond to 90% credible bounds. Acronyms: L1=LIGO Livingston, H1=LIGO Hanford; Gly=giga lightyear=9.46 x 10¹² km; Mpc=mega parsec=3.2 million lightyear, Gpc=10³ Mpc, fm=femtometer=10⁻¹⁵ m, M☉=1 solar mass=2 x 10³⁰ kg $h=10^{-21}$ n x arm = 10⁻¹⁸ m = proton / 1000 n x earth = 10⁻¹⁴

= 10 proton

2~400 1/Gpc³yr

LIGO-G1600270-v4

Black Hole Waves Simulation

Gravitational waves

- Gravitational waves are propagating dynamic fluctuations in the curvature of space-time ('ripples' in space-time)
- Emissions from rapidly accelerating non-spherical mass distributions
 - » Quadrupolar radiation

LIGO-G1600270-v4

Hiro Yamamoto ICRF

Interferometer for Gravitational Wave detection

LIGO-G1600270-v4

LIGO

Hiro Yamamoto ICRR seminar on February 22, 2016

The Chirp of Two Black Holes Colliding : GW150914 REAL

LIGO-G1600270-v4

Signal vs GR predictions

Primary black hole mass	$36^{+5}_{-4}M_{\odot}$
Secondary black hole mass	$29^{+4}_{-4} M_{\odot}$
Final black hole mass	$62^{+4}_{-4} M_{\odot}$
Final black hole spin	$0.67\substack{+0.05\\-0.07}$
Luminosity distance	410 ⁺¹⁶⁰ ₋₁₈₀ Mpc
Source redshift z	$0.09\substack{+0.03\\-0.04}$

How could we see the signal 1) better sensitivity

- September 12, 2015 ~ October 20, 2015 (January 12, 2016)
 » H1:70%, L1:55%, H1+L1:48% => 16 days of data analyzed for data
- Around 100 Hz, $h = 8 \times 10-24 / \sqrt{Hz}$.
- 30 M \odot black holes 1.3Gpc = 4.1 x iLIGO, rate x70
- 1.4 M^o neutron star 70–80Mpc = 3.5 x iLIGO, rate x40

Fundamental Sensitivity Limits in Advanced LIGO

Sensitivities during O1

LIGO-G1600270-v4

Hiro Yamamoto

Lock acquisition 1µm to 1pm ala iLIGO

Optics Letters Vol. 27, Issue 8, pp. 598-600 (2002)

How could we see the signal 2) better understanding of IFO

G1400628-v3 by P. Fritschel Speedier commissioning

- Lock acquisition strategy designed in from the start, including a new Arm Length Stabilization system
 - Enables a controlled acquisition process

- Better teams on hand
 - » More people and with more experience
 - » Observatory staff, including operators, involved from the beginning
- Better support structure in place
 - » Software tools in place
 - » Online web teels in pla

Having been there before helps a lot!

Project Integrated Testing Plan

- Integrated testing phases interleaved with installation
- Complementary division between LHO and LLO

GO

SEPTEMBER 14. 2015

- » Designed to address biggest areas of risk as soon as possible
- » H1 focused on long arm cavities; L1 worked outward from the vertex

LIGO Chronology idea to realization ~ 15 years

Weiss

producer & consultant of

"Intersteller"

23

movie

	1970s	5	Feasibility studies and early work on laser interferometer gravitational-wave detectors	
	1979		National Science Foundation (NSF) funds Caltech and MIT for laser interferometer R&	zD
	1984		Development of multiple pendulum Advanced LIGO Concept	
	1989	December	Construction proposal for LIGO submitted to the NSF (\$365M as of 2002)	
	1990	May	National Science Board approves LIGO construction proposal	
	1994	July	Groundbreaking at Hanford site	
	1999		LIGO Scientific Collaboration White Paper on a Advanced LIGO interferometer concep	pt
0	2000	October	Achieved "first lock" on Hanford 2-km interferometer in power-recycled configuration	L
	2002	August	First scientific operation of all three interferometers in S1 run	
.⊳.	2003		Proposal for Advanced LIGO to the NSF (\$205 NSF + \$30 UK+German	-
lle	2004	October	Approval by NSB of Advanced LIGO	3
le	2005	November	Start of initial LIGO Science run, S5, with design sensitivity	
	2008	April	Advanced LIGO Project start	
2	2009	July	Science run ("S6") starts with enhanced initial detectors	
C C	2014	May	Advanced LIGO Livingston first two-hour lock Vogt	ī
	2015	March	Advanced LIGO all interferometers accepted	
₫ 1	,2015	September	Advanced LIGO observation run 1 scheduled Execut	tive

Initial LIGO events Advanced LIGO events R&D of aLIGO using iLIGO facility

Thorn

LIGO-G1600270-v4

Real size R&D for the real detection

Hiro Yamamoto ICRR seminar on February 22, 2016

Advanced LIGO Data analysis

• Burst (generic transient search)

- » P1500229: Observing gravitational-wave transient GW150914 with minimal assumptions
- » All-sky search for generic GW transients, in low latency for EM follow up and deep, offline for 4σ detection confidence

Compact Binary Coalescence Search

- » P1500269 : <u>GW150914</u>: First results from the search for binary black hole coalescence with Advanced <u>LIGO</u>
- » Low latency, all-sky search for BNS and NS-BH systems
- » Search for binary neutron-star and black-hole systems (BNS, BHNS, BBH)

Continuous Wave

- » All-sky deep/broad search for isolated stars
- » Targeted search for high value, known pulsars

Stochastic Gravitational Wave background

- » P1500222: <u>GW150914</u>: Implications for the stochastic gravitational-wave background from binary black holes Directional and isotropic search for stochastic gravitational wave background
- » Constraints of a detected background of astrophysical origin with long transients

LIGO-G1600270-v4

Hiro Yamamoto ICRR seminar on February 22, 2016

Significance

Improving sensitivity

- Near term upgrade
 - » So far so good based on past experience
 - More challenges waiting
 - » Thermal compensation
 - » Parametric instability mirror vibration couples to field mode excitation
 - » Gas dumping
 - » Charge fluctuation in mass
 - » Low frequency unknown noise
- Long term upgrade
 - » Third IFO to be joined
 - » Voyager use LIGO facility, cryogenic, Silicon, 2µ laser
 - » Cosmic Explorer new facility, very long arm

#events by advanced LIGO ~ 1000 x #events by initial LIGO

Assumes NS-NS rate between 10⁻⁸ Mpc⁻³yr⁻¹ and 10⁻⁵ Mpc⁻³yr⁻¹

27

		Estimated			Number
		Run	BNS Range (Mpc)		of BNS
Observation run	Epoch	Duration	LIGO	Virgo	Detections
1	2015	3 months	40 - 80	_	0.0004 - 3
2	2016 - 17	6 months	80 - 120	20-60	0.006-20
3	2017 - 18	9 months	120-170	60 - 85	0.04 - 100
	2019 +	(per year)	200	65 - 130	0.2 - 200
	2022+ (India)	(per year)	200	130	0.4-400

LIGO-G1600270-v4

Hiro Yamamoto ICRR seminar on February 22, 2016

Planning for Advanced LIGO Science

LIGO-G1600270-v4

Hiro Yamamoto ICRR seminar on February 22, 2016

28

Aiming for the future beyond advanced LIGO

Ultimate R&D + Design			Cosmic Explorer – New Facility		
Si, Cryo	o, 1550nm R&D	Va	Voyager – Current Facility		
Coating, Susper	nsion R&D A+		Range $z > 1$ (10 x aLIGO) New facility \Rightarrow Major cost 40km arm bigger mass better		
Sqz R&D	A+	Color Simul Range~	coating, reduction of losses COGE: 2x A+ (700 MPc)		
Advanced	Range ~ 2x aLIGO (340Mp Cost O(\$10M)	Cost O(S Cryogen laser, Sili	O(\$50M~\$100M) genic (120K), 1550nm Silicon, better coating		
Now	Squeezing, bigger mass, be coating, reduced thermal no	tter bise			
2015	2020	2025	2030		

LIGO = LIGO Lab (CIT,MIT,UFL) + LSC (LIGO Science Collaboration)

• 1006 members, 83 institutions, 15 countries

LIGO Open Science Center

LIGO is operated by California Institute of Technology and Massachusetts Institute of Technology and supported by the National Science Foundation of the United States.

Welcome! The LIGO Open Science Center (LOSC, https://losc.ligo.org) provides access to a variety of LIGO data products, as well as documentation, tutorials, and online tools for finding and viewing data.

Gravitational-Wave Strain Data

- Tutorial on Signal Processing with Gravitational-Wave Strain Data
- About the Instruments and Collaborations
- Observing Gravitational-Wave Transient GW150914 with Minimal Assumptions
- GW150914: First Results from the Search for Binary Black Hole Coalescence with Advanced LIGO
- Properties of the binary black hole merger GW150914
- The Rate of Binary Black Hole Mergers Inferred from Advanced LIGO Observations Surrounding GW150914

International network

detection confidence locate the sources all detectors should have comparable sensitivity (~factor 2) decompose the polarization of gravitational waves open up a new field of astrophysics!

Localization poor because of only 2 IFOs

FIG. 4. An orthographic projection of the PDF for the sky location of GW150914 showing contours of the 50% and 90% credible regions plotted over a colour-coded PDF. The sky localization forms part of an annulus, set by the time delay of $6.9^{+0.5}_{-0.4}$ ms between the Livingston and Hanford detectors.

LIGO-G1600270-v4

6

33

Improvement of Binary Neutron Star Merger Localization by Adding LIGO-India

LIGO needs partner GW detectors with similar sensitivity

- LIGO is seriously seeking for third/fourth good IFOs
 - » AdVirgo is trying to join O2, but still have some problems to solve
 - » LIGO-India has been approved, many years to come
- To improve sky coverage, sensitivity > 0.5 of LIGO
 - » < 20 Mpc is useless

• To KAGRA

- » Eagerly waiting to join the international GW network
- » Good sensitivity is a must as a good partner
- » Sooner the better
 - Simpler configuration need to be considered

Multi-messenger astronomy collaborations with Groups Detecting other signals

- Discussions going toward the new astrophysical era
- Complementary alert system
- Complementary and supplemental information about the source
- Many MOUs exchanged with EM partners, covering the whole EM spectrum.

New era may be opening ...

- Fermi GBM Observations of LIGO Gravitational Wave event GW150914 (arXiv:1602.03920v2)
 - With an instantaneous view of 70% of the sky, the Fermi Gamma-ray Burst Monitor (GBM) is an excellent partner in the search for electromagnetic counterparts to gravitational wave (GW) events. GBM observations at the time of the Laser Interferometer Gravitational-wave Observatory (LIGO) event GW150914 reveal the presence of a weak transient source above 50 keV, 0.4 s after the GW event was detected, with a false alarm probability of 0.0022.
 - » Message from Tsune Kamae: FermiのGlastBurstMonitor(NaalとBGOのシンチレー タからなる、簡単にモニター)だけで、受かっています。信号は小さいのですが 、タイミングが、ほぼドンピシャリなので、本当に何かあったのだと思います。 NS-NSではもっと大量のガンマ線が出ると予想されています。ビーミングでずれ ていたのかもしれません。BH-BHなら、強いガンマ線が予言されていないのです が、どこまで精密に計算されているのかは判りません。
- ELECTROMAGNETIC COUNTERPARTS TO BLACK HOLE MERGERS DETECTED BY LIGO (non-LSC publication) (A. Loeb, arXiv:1602.04735v1)

Message from Patrick Brady : Welcome to astronomy! This is great.
 LIGO-G1600270-v4 Hiro Yamamoto ICRR seminar on February 22, 2016

End of slides

Test Masses with thermal compensation system

- Requires the state of the art in substrates, polishing and coating
 - » Fabri-Perot cavity is used to measure arm length or space distortion

- Half-nm flatness over 300mm diameter
- 0.2 ppm absorption at 1064nm
- Coating specs for 1064 and 532 nm
- Mechanical requirements: bulk and coating thermal noise, high resonant frequency

Three major issues (2) Parametric Instabilities

LIGO-G1600270-v4

Hiro Yamamoto ICRR seminar on February 22, 2016 114, 161102 (2015)

Three major issues (3) Squeeze film damping

- Small gap (5 mm) between ETM and its reaction mass increased damping from residual gas
 - » Current poor vacuum level at LLO end station means this is a significant thermal noise term below ~60 Hz
 - » At expected vacuum level, squeeze film damping noise will compete with radiation pressure noise at full power
- Beyond lower vacuum, the solution is a new, annular reaction mass (hole in the middle)
 - » Provides same amount of electro-static drive actuation 1
 - » Reduces damping force by a factor of 2.5x
 - » Working towards possible retrofit in early 2016

Squeezed Light in LIGO

suppressing quantum noise without increasing power

- Heisenberg Uncertainty Principle $\langle (\Delta \hat{X}_1)^2 \rangle \langle (\Delta \hat{X}_2)^2 \rangle > 1$
- Squeezed state
 - Reduce noise in one quadrature at the expense of the other
 - Shot noise phase, radiation pressure - amplitude

 X_1 and X_2 associated with amplitude and phase

L G

Aasi, et al., (LIGO Scientific Collaboration), Nature Physics, 7, 962 (2011); Nature Photonics 7 613 (2013).

RR seminar on February 22, 2016 42

Cryogenic in Voyger

LIGO-G1600270-v4

Long is good

- Coating noise
 - » Gain: L^{1.5}
 - » Cryogenic/Crystal: no need
- Displacement noise
 - » Gain: L
 - » Newtonian N. irrelevant
- Radiation pressure
 » Becomes irrelevant
- Shot noise
 - » Gain: ~sqrt(L)
 - » Freq. indep. Squeezing
- Vertical susp. Thermal
 » Gain: constant

LIGO-G1600270-v4

N39°35.31' W118°48.15'

Q

From G1101133 by D.H.Shoemaker

In the beginning

- Rai Weiss of MIT was teaching a course on GR in the late '60s
- Wanted a good homework problem for the students
- Why not ask them to work out how to use laser interferometry to detect gravitational waves?
- ...led to the instruction book we have been following ever since

QUARTERLY PROGRESS REPORT

APRIL 15, 1972 MASSACHUSETTS INSTITUTE OF TECHNOLOGY RESEARCH LABORATORY OF ELECTRONICS CAMBRIDGE, MASSACHUSETTS 02139

- (V. GRAVITATION RESEARCH)
- B. ELECTROMAGNETICALLY COUPLED BROADBAND GRAVITATIONAL ANTENNA
- 1. Introduction

The prediction of gravitational radiation that travels at the speed of light has bee

The Gravitational Wave Spectrum

Slide Credit: Matt Evans (MIT)