

The Dawn of Gravitational-Wave Astronomy

John T. Whelan john.whelan@astro.rit.edu

Center for Computational Relativity & Gravitation & School of Mathematical Sciences Rochester Institute of Technology

> RIT Physics Colloquium 2016 February 24 LIGO-G1600265-v2

- Gravitational Waves
 - Crash Course in Gravitational Wave Physics
 - Gravitational Wave Detectors
 - Gravitational-Wave Sources & Signals
- Road to the First Detection
 - Inspiral-Merger-Ringdown Signals and Searches
 - Observation of the Binary Black Hole Merger GW150914
- Outlook for Gravitational Wave Astronomy
 - Future Advanced Detector Observations
 - Transient Signals
 - Long-Lived Signals

- Crash Course in Gravitational Wave Physics
- Gravitational Wave Detectors
- Gravitational-Wave Sources & Signals
- - Inspiral-Merger-Ringdown Signals and Searches
 - Observation of the Binary Black Hole Merger GW150914
- - Future Advanced Detector Observations
 - Transient Signals

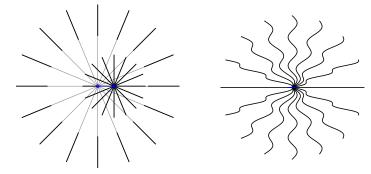
- Crash Course in Gravitational Wave Physics
- Gravitational-Wave Sources & Signals
- - Inspiral-Merger-Ringdown Signals and Searches
 - Observation of the Binary Black Hole Merger GW150914
- - Future Advanced Detector Observations
 - Transient Signals

Basics

What are Gravitational Waves?

- PopSci answer: Ripples in the fabric of spacetime
- Physics answer:
 - Gravitational analogue of electromagnetic waves
 - Consequence of relativistic causality

Gravitational Waves
Road to the First Detection
Outlook for Gravitational Wave Astronomy


Basics

avitational Wave Detectors

V Sources

Gravity + Causality = Gravitational Waves

- In Newtonian gravity, force dep on distance btwn objects
- If massive object suddenly moved, grav field at a distance would change instantaneously
- In relativity, no signal can travel faster than light
 - \longrightarrow time-dep grav fields must propagate like light waves

Gravity as Geometry

 Minkowski Spacetime (Special Relativity): Invariant spacetime interval (all inertial observers agree):

$$ds^{2} = -c^{2}(dt)^{2} + (dx)^{2} + (dy)^{2} + (dz)^{2}$$

$$= \begin{pmatrix} dt \\ dx \\ dy \\ dz \end{pmatrix}^{tr} \begin{pmatrix} -c^{2} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} dt \\ dx \\ dy \\ dz \end{pmatrix} = \sum_{\mu=0}^{3} \sum_{\nu=0}^{3} \eta_{\mu\nu} dx^{\mu} dx^{\nu}$$

General Spacetime:

$$ds^{2} = \begin{pmatrix} dx^{0} \\ dx^{1} \\ dx^{2} \\ dx^{3} \end{pmatrix}^{\text{tr}} \begin{pmatrix} g_{00} & g_{01} & g_{02} & g_{03} \\ g_{10} & g_{11} & g_{12} & g_{13} \\ g_{20} & g_{21} & g_{22} & g_{23} \\ g_{30} & g_{31} & g_{32} & g_{33} \end{pmatrix} \begin{pmatrix} dx^{0} \\ dx^{1} \\ dx^{2} \\ dx^{3} \end{pmatrix} = \sum_{\mu=0}^{3} \sum_{\nu=0}^{3} g_{\mu\nu} dx^{\mu} dx^{\nu}$$

Metric tensor $\{g_{\mu\nu}(\{x^{\lambda}\})\}\$ determined by masses via Einstein's equations. (10 non-linear PDEs!)

Gravitational Wave as Metric Perturbation

• For GW propagation & detection, work to 1st order in $h_{\mu\nu} \equiv$ difference btwn actual metric $g_{\mu\nu}$ & flat metric $\eta_{\mu\nu}$:

$$g_{\mu\nu}=\eta_{\mu\nu}+h_{\mu\nu}$$

 $(h_{\mu\nu}$ "small" in weak-field regime, e.g. for GW detection)

- $h_{\mu\nu}$ analogous to electromagnetic potential $\{A_{\mu}\}=\{arphi, \vec{A}\}$
- Small coord changes induce "gauge transformation" on $h_{\mu\nu}$ Convenient choice of gauge is transverse-traceless: In this gauge:
 - Vacuum Einstein eqns \Longrightarrow wave equation for $\{h_{ij}\}$:

$$\left(-\frac{1}{c^2}\frac{\partial^2}{\partial t^2} + \nabla^2\right) h_{ij} = 0$$

- Test particles w/constant coords are freely falling
- EM (spin-1 massless photon) & grav (spin-2 massless "graviton") waves both have two polarization states

Effects of Gravitational Wave

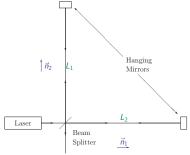
Fluctuating geom changes distances bywn particles in free-fall:

Plus (+) Polarization	Cross (x) Polarization

- Crash Course in Gravitational Wave Physics
- Gravitational Wave Detectors
- Gravitational-Wave Sources & Signals
- Road to the First Detection
 - Inspiral-Merger-Ringdown Signals and Searches
 - Observation of the Binary Black Hole Merger GW150914
- Outlook for Gravitational Wave Astronomy
 - Future Advanced Detector Observations
 - Transient Signals
 - Long-Lived Signals

Effects of Gravitational Wave

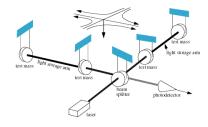
Fluctuating geom changes distances btwn particles in free-fall:


Plus (+) Polarization	Cross (x) Polarization

Measuring GWs w/Laser Interferometry

Interferometry: Measure GW-induced distance changes

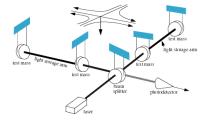
Measure small change in


$$L_1 - L_2 \approx L_0 \frac{h_{11} - h_{22}}{2} \sim L_0 h_+$$

- Plausible signals: $h \le 10^{-20}$ \rightarrow need L_0 very big!
- For LIGO, $L_0 = 4 \text{ km}$

Interferometry: Measure GW-induced distance changes

• Measure small change in $L_1-L_2 \approx L_0 \frac{h_{11}-h_{22}}{2} \sim L_0 h_+$

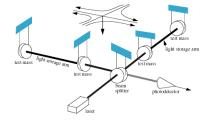

• For LIGO, $L_0 = 4 \text{ km}$

G1600265-v2

Interferometry: Measure GW-induced distance changes

• Measure small change in $L_1-L_2 \approx L_0 \frac{h_{11}-h_{22}}{2} \sim L_0 h_+$

- Plausible signals: h ≤ 10⁻²⁰
 → need L₀ very big!
- For LIGO, $L_0 = 4 \text{ km}$


Note: other detection methods include resonant bars, pulsar timing arrays & planned space-based interferometers (space-based ifos measure low-freq GWs, PTA very low-freq)

-

Interferometry: Measure GW-induced distance changes

• Measure small change in $L_1-L_2 \approx L_0 \frac{h_{11}-h_{22}}{2} \sim L_0 h_+$

- Plausible signals: h ≤ 10⁻²⁰
 → need L₀ very big!
- For LIGO, $L_0 = 4 \text{ km}$

Note: other detection methods include resonant bars, pulsar timing arrays & planned space-based interferometers (space-based ifos measure low-freq GWs, PTA very low-freq) Note: LISA Pathfinder technology mission underway!

Rogues' Gallery of Ground-Based Interferometers

LIGO Hanford (Washington, USA)

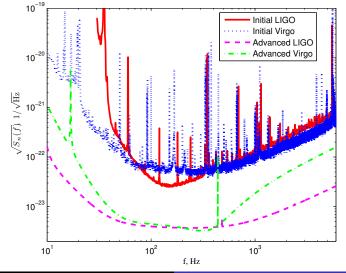
LIGO Livingston (Louisiana, USA)

GEO-600 (Germany)

Virgo (Italy)

Gravitational Wave Detectors GW Sources

Rogues' Gallery of Ground-Based Interferometers


GW Observatory Network

- "Initial Detector Era" for large ground-based interferometers $\sim 2002 - 2011$
- "Advanced Detector Era" started September 2015
 - Germany: GEO-600 (600m) used for technology development (laser power, squeezed light, ...) & "astrowatch" in case a transient event occurs when other detectors offline.
 - USA: LIGO Hanford & LIGO Livingston (4km) First observing run ("O1") Sept 2015-Jan 2016
 - Italy: Virgo (3km) Expected to start observing 2016
 - Japan: KAGRA (formerly LCGT) (3km, underground, cryogenic, under construction)
 - India: LIGO India (4km, planned)

Detectors distributed on the Earth useful for sky localization of transient signals

Sensitivity of Initial & Advanced Detectors

Results of Initial Detector Observations

- ~ 100 Observational papers from initial LIGO/Virgo/GEO: https://www.lsc-group.phys.uwm.edu/ppcomm/Papers.html
- No detections (although some analyses still trickling out)
- Assortment of null results and upper limits
- As sensitivity improved, some results gave new information to complement other astronomical observations:
 "Multi-Messenger Astronomy"
- Some highlights:
 - GW associated w/ γ -ray bursts (rule out nearby NS merger)
 - GW from known pulsars (beat spindown limit)
 - Stochastic background of GWs (beat nucleosynthesis limit)

- Crash Course in Gravitational Wave Physics
- Gravitational Wave Detectors
- Gravitational-Wave Sources & Signals
- Road to the First Detection
 - Inspiral-Merger-Ringdown Signals and Searches
 - Observation of the Binary Black Hole Merger GW150914
- Outlook for Gravitational Wave Astronomy
 - Future Advanced Detector Observations
 - Transient Signals
 - Long-Lived Signals

Generation of Gravitational Waves

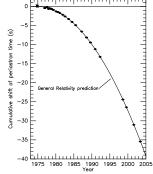
- EM waves generated by moving/oscillating charges
- GW generated by moving/oscillating masses

Gravitational Waves

- Lowest multipole is quadrupole
- Different types of signals:
 - Burst (transient, unmodelled)
 - Stochastic (long-lived, unmodelled)
 - Binary coalescence (transient, modelled)
 - Periodic (long-lived, modelled)

Gravitational Waves from Binary Orbit

Orbital motion → oscillating quadrupole moment → GWs

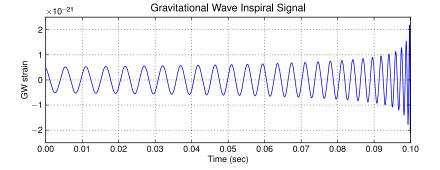

Gravitational Waves from Binary Orbit

- Orbital motion → oscillating quadrupole moment → GWs
- $\begin{tabular}{ll} \hline \bullet & GW & emission removes energy \to orbit gets tighter \\ \to amplitude & freq increase in "chirp" \\ \hline \end{tabular}$

Hulse & Taylor saw this evolution in binary pulsar 1913+16

1993 Nobel Prize

Weisberg, Nice & Taylor *ApJ* **722**, 1030 (2010)



Grav

Gravitational Waves from Binary Orbit

- $\bullet \ \, \text{Orbital motion} \to \text{oscillating quadrupole moment} \to \text{GWs}$
- GW emission removes energy → orbit gets tighter
 → amplitude & freq increase in "chirp"

Compact Binary Inspiral

- For first part of inspiral, orbits not too relativistic can expand in powers of $\frac{v}{c} \longrightarrow \text{post-Newtonian}$ methods Can estimate orb vel from Kepler's 3rd law: $v \approx (\pi GMf)^{1/3}$
 - Low Mass \longrightarrow plunge @ high freq 1.4 M_{\odot} /1.4 M_{\odot} NS/NS binary has $v\approx 0.3c$ @ 800 Hz; PN OK in LIGO band
 - High Mass \rightarrow plunge @ low freq $10M_{\odot}/10M_{\odot}$ BH/BH binary has $v\approx 0.4c$ @ 200 Hz; merges in LIGO band
- Different template families used for different mass ranges

- GR is scale-invariant: inspiral of $15M_{\odot}+20M_{\odot}$ binary looks just like $1.5M_{\odot}+2.0M_{\odot}$, but with times & distances increased $10\times$
- Perturbation theory breaks down when the binary merges
 - For neutron stars, matter breaks the scaling, but it happens at higher frequencies
 - Inspiral-only waveforms adequate for detection
 - Black holes merge in LIGO's most sensitive band; have to model

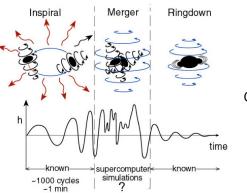
Inspiral: post-Newtonian perturbation theory

Merger: requires numerical simulations

Ringdown: final black hole settles down; also perturbative

- - Crash Course in Gravitational Wave Physics

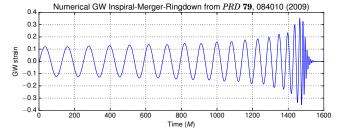
 - Gravitational-Wave Sources & Signals
- Road to the First Detection
 - Inspiral-Merger-Ringdown Signals and Searches
 - Observation of the Binary Black Hole Merger GW150914
- - Future Advanced Detector Observations
 - Transient Signals



- Gravitational Waves
 - Crash Course in Gravitational Wave Physics
 - Gravitational Wave Detectors
 - Gravitational-Wave Sources & Signals
- Road to the First Detection
 - Inspiral-Merger-Ringdown Signals and Searches
 - Observation of the Binary Black Hole Merger GW150914
- Outlook for Gravitational Wave Astronomy
 - Future Advanced Detector Observations
 - Transient Signals
 - Long-Lived Signals

Template Waveforms for Binary Coalescence

- Inspiralling binaries produce well-modelled GW signals; Search with pattern-match filter
- Compact object binary coalescence consists of inspiral / plunge / merger / ringdown


Cartoon by Kip Thorne

Template Waveforms for Binary Coalescence

- Inspiralling binaries produce well-modelled GW signals;
 Search with pattern-match filter
- Compact object binary coalescence consists of inspiral / plunge / merger / ringdown

Campanelli et al, PRD **79**, 084010 (2009) http://ccrg.rit.edu/downloads/waveforms

Numerical Simulations of Binary Black Holes

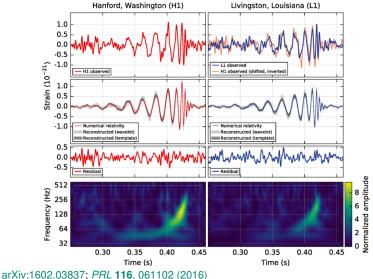
Anecdotal history:

- Despite "Grand Challenge" of 1990s, simulations of orbiting BHs were stymied by instabilities
- "Next Generation" of numerical relativists addressed the problem w/novel coordinates & methods (excision, punctures) in 2000s
- Major breakthroughs came in 2005:
 - Pretorious PRL 95, 121101 (2005); gr-qc/0507014
 - Campanelli et al PRL 96, 111101 (2006); gr-qc/0511048
 - Baker et al PRL 96, 111102 (2006); gr-qc/0511103
- Many groups now have long simulations:
 - Initially stitched onto PN inspiral for "hybrid" waveforms
 - Now the whole inspiral-merger-ringdown can be simulated

Inspiral-Merger-Ringdown Template Families

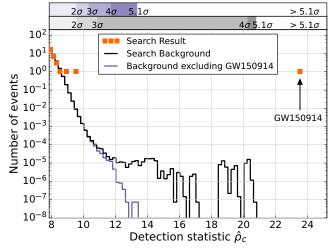
- For binary neutron star inspiral searches, post-Newtonian waveforms generated on a grid of points in m_1 - m_2 space
- Even with scale invariance & long simulations, impractical to build full "template bank" of numerical waveforms for BBH
- Use analytical waveform families tuned to mimic NR
 - EOBNR: effective-one-body waveforms w/extra NR-tuned terms Buonanno et al PRD 79, 124028 (2009); arXiv:0902.0790 etc
 - IMRPhenom: parametrized functional models w/coeffs from NR Ajith et al *PRD* 77, 104017 (2008); arXiv:0710.2335 etc
- First IMR searches in initial LIGO S5 & S6 runs PRD 83, 122005 (2011); arXiv:1102.3781 PRD 87, 022002 (2013); arXiv:1209.6533
- Including spin can improve SNR; initial attempts increased FAR too much First demonstration of improved efficiency at same FAR: Privitera. Mohapatra et al PRD 89, 024003 (2014); arXiv:1310.5633 As of O1, detection templates include one spin parameter

- Crash Course in Gravitational Wave Physics
- Gravitational-Wave Sources & Signals
- Road to the First Detection
 - Inspiral-Merger-Ringdown Signals and Searches
 - Observation of the Binary Black Hole Merger GW150914
- - Future Advanced Detector Observations
 - Transient Signals

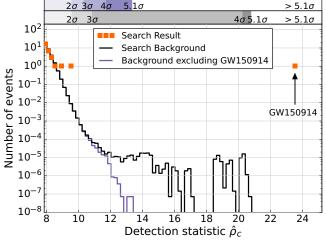


Observation of a BBH Merger

- While preparing for 1st Observing Run (O1) start in 2015 Sep End of 8th Engineering Run (ER8) meant "soft start": experimental, data collection & analysis systems transitioning to final configuration
- Online burst analysis reported "loud" trigger on 2015 Sep 14 consistent with high-mass binary black hole merger Real-time inspiral analysis looks for lower-mass systems (Expect electromagnetic counterpart only if neutron star involved)
- Configuration frozen to collect 16 days of two-detector data:
 Observing period 2015 Sep 12-Oct 20 (BBH analysis results released)
- Official O1 2015 Sep 18-2016 Jan 12 (analyses still under review)

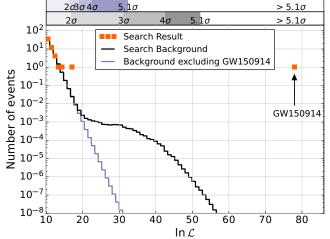

Convincing Pictures

Detection Confidence: Matched Filter #1



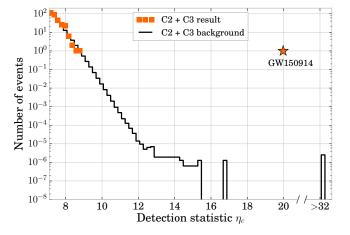
Estimate coincident false alarm rate w/time shifts: $< 1/2 \times 10^5 \, \text{yr}$

Detection Confidence: Matched Filter #1


arXiv:1602.03839; Second, marginal candidate "LVT151012" w/FAR 1/2.3 yr

No detection claim, but influences rate estimates

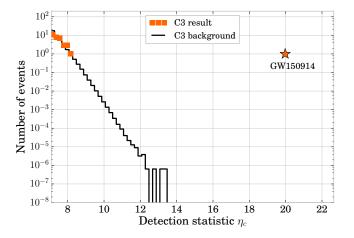
Detection Confidence: Matched Filter #2



Estimate coincident false alarm probability from singles rates

arXiv:1602.03839

Detection Confidence: Unmodelled Coherent Search


Estimate coincident false alarm rate w/time shifts: $< 1/8 \times 10^3$ yr arXiv:1602.03843

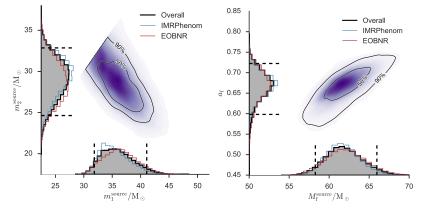
2016 Feb 24

Detect. Conf.: Minimally Modelled Coherent Search

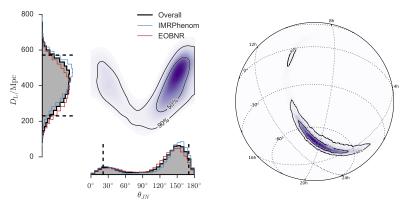
Estimate coincident false alarm rate w/time shifts: $< 1/2 \times 10^4$ yr arXiv:1602.03843

John T. Whelan

2016 Feb 24


Parameter Estimation

- Determine properties (masses, spins, location) using Markov Chain Monte Carlo & Nested Sampling with parametrized waveforms
- Main waveforms are EOB & Phenom families tuned to NR.
- Also check w/some numerical waveforms.

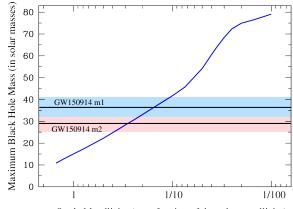

Parameter Estimation: Masses & Spins

arXiv:1602.03840

Parameter Estimation: Distance & Sky Position

arXiv:1602.03840: Distance degenerate w/inclination angle; Triangulation gives ring on sky, broken by polarization: 90% credible region is 590 deg²

Astrophysical Implications


- GW150914 masses: $29 \pm 4 M_{\odot}$ & $36^{+5}_{4} M_{\odot}$; final $62 \pm 4 M_{\odot}$
- Electromagnetic observations of black holes:
 - X-ray binaries: most $5 10M_{\odot}$; some $10 20M_{\odot}$; maybe pushing $30M_{\odot}$.
 - Quasars: supermassive $\geq 10^7 M_{\odot}$, at centers of galaxies
- Discovery of "heavy" stellar-mass black holes implies higher metallicity than previously known

arXiv:1602.03846; ApJL 818, L22 (2016)

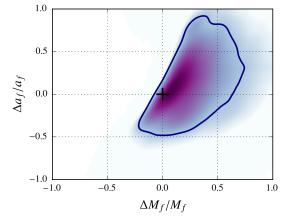
Astrophysical Implications: Metallicity

Star's Metallicity (as a fraction of the solar metallicity)

arXiv:1602.03846; *ApJL* **818**, L22 (2016) (Belczynski et al arXiv:0904.2784; *ApJ* **714**, 1217 (2010))

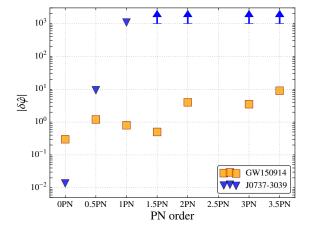
G1600265-v2

Astrophysical Implications: Event Rates


- Pre aLIGO BBH rate estimates 0.1/5/300 Gpc⁻³ yr⁻¹ (low/"realistic"/high) CQG 27, 173001 (2010); arXiv:1003.2480
- Expected # events scales like observable volume × time 16-day data set had $VT = 0.082^{+0.053}_{-0.032}$ Gpc yr for BBH
- Observation of GW150914 & LVT151012 rate estimates of 2–400 Gpc⁻³ yr⁻¹
- Expected # events
 \underset volume \underset time \underset sensitivity³ \underset time 16 days of O1 > all of initial LIGO!

arXiv:1602.03842

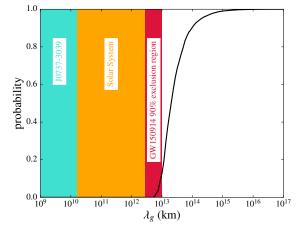
32/47



Final BH mass & spin arXiv:1602.03841

Testing General Relativity w/GW150914 ("Einstein was right")

Post-Newtonian phasing (compare double pulsar)


John T. Whelan

arXiv:1602.03841

Testing General Relativity w/GW150914 ("Einstein was right")

Graviton compton wavelength

arXiv:1602.03841

Observation of GW150914

List of Papers

http://papers.ligo.org/ http://dcc.ligo.org/P150914/public

- Observation of Gravitational Waves from a Binary Black Hole Merger arXiv:1602.03837; PRL 116, 061102 (2016)
- GW150914: The Advanced LIGO Detectors in the Era of First Discoveries arXiv:1602.03838
- GW150914: First results from the search for binary black hole coalescence with Advanced LIGO arXiv:1602 03839
- Properties of the binary black hole merger GW150914 arXiv:1602.03840
- Tests of general relativity with GW150914 arXiv:1602.03841
- The Rate of Binary Black Hole Mergers Inferred from Advanced LIGO Observations Surrounding GW150914 arXiv:1602.03842
- Observing gravitational-wave transient GW150914 with minimal assumptions arXiv:1602.03843
- Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914 arXiv:1602.03844
- Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914 arXiv:1602 03845
- Astrophysical Implications of the Binary Black-Hole Merger GW150914 arXiv:1602.03846; ApJL 818, L22 (2016)
- GW150914: Implications for the stochastic gravitational-wave background from binary black holes arXiv:1602 03847
- 12 High-energy Neutrino follow-up search of Gravitational Wave Event GW150914 with IceCube and ANTARES arXiv:1602.05411
- Localization and broadband follow-up of the gravitational-wave transient GW150914 LIGO-P1500227

Public Outreach Science Summaries

http://ligo.org/science/outreach.php

- Main detection paper: http://ligo.org/science/Publication-GW150914/
- Parameters/Astrophysics/Rates: http://ligo.org/science/Publication-GW150914Astro/
- Implications for stochastic background: http://ligo.org/science/Publication-GW150914Stoch/
- More to come!

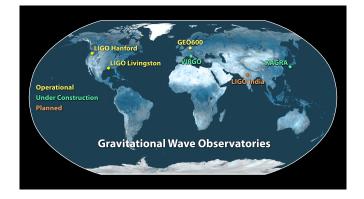
Also public data release:

https://losc.ligo.org/events/GW150914/

Outline

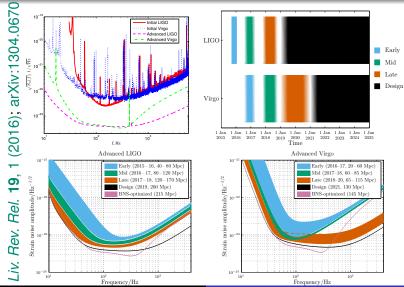
- - Crash Course in Gravitational Wave Physics

 - Gravitational-Wave Sources & Signals
- - Inspiral-Merger-Ringdown Signals and Searches
 - Observation of the Binary Black Hole Merger GW150914
- **Outlook for Gravitational Wave Astronomy**
 - Future Advanced Detector Observations
 - Transient Signals
 - Long-Lived Signals



- Crash Course in Gravitational Wave Physics
- Gravitational Wave Detectors
- Gravitational-Wave Sources & Signals
- Road to the First Detection
 - Inspiral-Merger-Ringdown Signals and Searches
 - Observation of the Binary Black Hole Merger GW150914
- Outlook for Gravitational Wave Astronomy
 - Future Advanced Detector Observations
 - Transient Signals
 - Long-Lived Signals

Advanced GW Detector Network



Credit: LIGO

Future Observations Transient Signals Long-Lived Signals

Advanced Detector Timeline

Expansion of the GW Detector Network

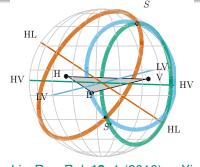


Figure from Liv. Rev. Rel. 19, 1 (2016); arXiv:1304.0670

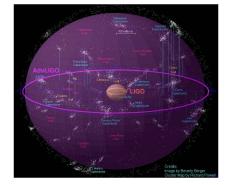
- Sky loc for GW transients can be found by triangulation
- Spread detectors around globe to make this more accurate
- Put 3rd LIGO detector in India to improve sky localization and aid in identification of electromagnetic counterparts
- 2016 Feb 17: "In Principle" approval from Indian cabinet!

Improvement in Triangulation with LIGO-India

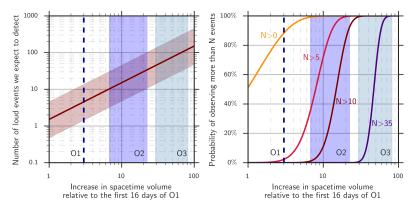
John T. Whelan

Outline

- Gravitational waves
 - Crash Course in Gravitational Wave Physics
 - Gravitational wave Detectors
 - Gravitational-Wave Sources & Signals
- Road to the First Detection
 - Inspiral-Merger-Ringdown Signals and Searches
 - Observation of the Binary Black Hole Merger GW150914
- Outlook for Gravitational Wave Astronomy
 - Future Advanced Detector Observations
 - Transient Signals
 - Long-Lived Signals

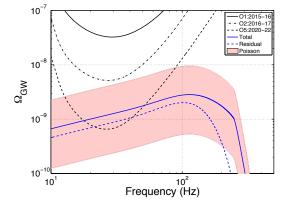


Expected Event Rates w/Advanced Detectors


CQG **27**, 173001 (2010)

- Advanced detectors should see NS binary inspiral up to 400 Mpc & BH binary coalescence up to 2 Gpc away
- Expect between a few and hundreds of events/year

arXiv:1602.03842



Gravitational Waves

- Crash Course in Gravitational Wave Physics
- Gravitational Wave Detectors
- Gravitational-Wave Sources & Signals
- Road to the First Detection
 - Inspiral-Merger-Ringdown Signals and Searches
 - Observation of the Binary Black Hole Merger GW150914
- Outlook for Gravitational Wave Astronomy
 - Future Advanced Detector Observations
 - Transient Signals
 - Long-Lived Signals

GW150914 Implications for Stochastic Background

arXiv:1602.03847 BBH mergers more common than expected; unresolved background might be detectable at advanced design

Transient Signals
Long-Lived Signals

Periodic GW From Spinning Neutron Stars

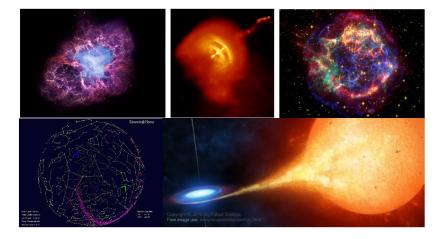
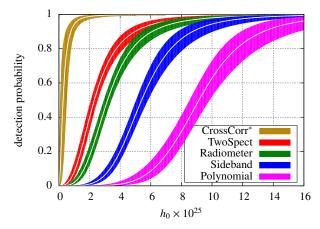


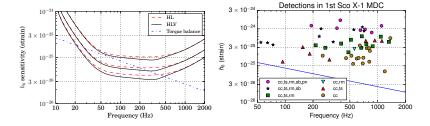
Image Credits (clockwise): Hubble/Chandra; Chandra; Spitzer/Hubble/Chandra; Fahad Sulehria, http://www.novacelestia.com/; http://www.einsteinathome.org/

Gravitational Waves from Low-Mass X-Ray Binaries


- LMXB: compact object (neutron star or black hole) in binary orbit w/companion star
- If NS, accretion from companion provides "hot spot"; rotating non-axisymmetric NS emits gravitational waves
- Bildsten ApJL 501, L89 (1998) suggested GW spindown may balance accretion spinup; GW strength can be estimated from X-ray flux
- Torque balance would give ≈ constant GW freq
- Signal at solar system modulated by binary orbit

Scorpius X-1 Mock Data Challenge

Scorpius X-1: brightest LMXB & promising ADE source



Messenger et al PRD 92, 023006 (2015)

Prospects for Sco X-1 w/Advanced Detectors

Whelan et al arXiv:1504.05890; PRD 91, 102005 (2015) Messenger et al arXiv:1504.05889; PRD 92, 023006 (2015) Leaci & Prix arXiv:1502.00914; PRD 91, 102003 (2015)

Summary

- Gravitational waves: predicted by Einstein confirmed indirectly (Hulse-Taylor binary pulsar)
- Advanced LIGO has made 1st direct detection of GW GW150914: Binary Black Hole Merger
- The era of gravitational-wave astronomy has begun

Links:

- http://ccrg.rit.edu/GW150914
- http://papers.ligo.org/
- https://www.lsc-group.phys.uwm.edu/ppcomm/Papers.html
- https://losc.ligo.org/events/GW150914/

EXTRA SLIDES

Gravitational Wave Polarization States

- ullet Far from source, GW looks like plane wave prop along $ec{k}$
- TT conditions mean, in convenient basis,

$$\{k_i\} \equiv \mathbf{k} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \qquad \{h_{ij}\} \equiv \mathbf{h} = \begin{pmatrix} h_+ & h_\times & 0 \\ h_\times & -h_+ & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

where $h_+\left(t-\frac{x^3}{c}\right)$ and $h_\times\left(t-\frac{x^3}{c}\right)$ are components in "plus" and "cross" polarization states

 EM (spin-1 massless photon) & grav (spin-2 massless "graviton") waves both have two polarization states

Methods for Measuring Gravitational Waves

- Cosmic Microwave Background Perturbations $(f_{\rm gw} \sim H_0 \sim 10^{-18}\,{\rm Hz})$
- Pulsar Timing Arrays ($10^{-9}\,\mathrm{Hz} \lesssim \mathit{f}_{\mathrm{gw}} \lesssim 10^{-7}\,\mathrm{Hz}$)
- Laser Interferometers
 - Space-Based (10^{-3} Hz $\lesssim f_{\rm gw} \lesssim 10^{-1}$ Hz) (eLISA scheduled for 2034; LISA Pathfinder technology demonstration underway now)
 - \implies Ground-Based (10¹ Hz $\lesssim f_{gw} \lesssim 10^3$ Hz)

Note, observable GW freq cover 20 orders of magnitude, similar to EM radiation, but the frequencies are much lower (10^3 Hz $\lesssim f_{em} \lesssim 10^{23}$ Hz)

A Few Words About Collaborations

- LIGO Scientific Collaboration
 thundreds of researchers at dozens of institutions world-wide working on instrument science, data analysis, astrophysics, etc.
 - LSC scientists operate GEO detectors
 - and indisoconsortium are LSC members
- MOJIVIRGO Collaboration operates Virgo (Italy) and includes institutions in Italy, France, Netherlands, Poland & Hungary
 - LIGO & Virgo conduct data analysis jointly
- KAGRA: Japanese collaboration constructing detector in Kamioka mine

Brightest LMXB: Scorpius X-1

- Scorpius X-1
 - $1.4M_{\odot}$ NS w/0.4 M_{\odot} companion
 - unknown params are f_0 , $a \sin i$, orbital phase
 - Parameters from Steeghs & Casares ApJ 568, 273 (2002)
 Update by Galloway et al ApJ 781, 14 (2014)
- Promising source for Advanced Detectors
- Initial LSC/Virgo searches for Sco X-1:
 - Coherent F-stat search w/6 hr of S2 data
 Abbott et al (LSC) PRD 76, 082001 (2007)
 - Directed stochastic ("radiometer") search (unmodelled)
 Abbott et al (LSC) PRD 76, 082003 (2007)
 Abbott et al (LSC) PRL 107, 271102 (2011)
- Mock data challenge to compare Sco X-1 search methods
 Poster by Messenger et al at GWPAW 2013
- One method: Cross-corr specialized to periodic signal Dhurandhar et al PRD 77, 082001 (2008)