
Relationship between complex refractive index and
absorption coeffcicient

In [1]: %matplotlib inline
import math
import numpy as np
from __future__ import division
import matplotlib.pyplot as plt
import scipy.signal as sig
import scipy.constants as const
from IPython.display import display, Image, display_jpeg
import scipy.optimize as optim

Complex refractive index

Therefore:

Permittivity and refractive index

At an optical frequency (~1e14Hz), a relative permittivity can be expressed as a complex number

Relative permeability  can be considered as the unity there. Maxwell's equation in a bulk matter can be simplified to
the form

Then  to allow non-zer .
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Now we substitute  and . We obtain

The special case if  (transparent), .

Drude model

https://en.wikipedia.org/wiki/Drude_model (https://en.wikipedia.org/wiki/Drude_model)

Equation of motion for a free electron can be described as

where  and  are the position, effective mass, and scattering relaxation time of an electron.

The response of the electron against the external electric field  can be described in the frequency domain as usual
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Polarization by a group of free electrons are described as

where  is the number density of the free electron. In frequency domain this becomes

Therefore

We obtain

Here  is the plasma frequency.

There is a relationship between the conductivity  and the relaxation time  as

or

Also the mobility is defined as

Therefore

Now, we decompose the above relative permittivity  with the real and imaginary parts  and .

P = −Nqu
N

= Nq = − EP̃ ũ Nq2
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Note that there is some empirical technique to include detailed effects to match the refractive index at DC into the first
term of . i.e.

Now we think about the absorption coeffcient . We can substitue

into the expression for .

 for silicon is the order of  while  is 

In [2]: me = 0.26*9.1e-31 # kg
q = 1.6e-19 # C
mu = np.array([100, 10000]) # unit cm^2/V/s
mu_MKSA = mu/1e4
tau = me*mu_MKSA/q
display(tau) # unit: Hz

Therefore, we can ignore the second term of the denominator.

This directly corresponds to the eq.5 in Electrooptical Effects in Silicon, R. A. Soref and B. R. Bennett, IEEE Journal of
Quantum Electronics (ISSN 0018-9197), vol. QE-23, Jan. 1987, p. 123-129. http://dx.doi.org/10.1109
/JQE.1987.1073206 (http://dx.doi.org/10.1109/JQE.1987.1073206)
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In [3]: # Free Carrier Absorption by Electron Carrier

nn = 1e13 # Carrier concentration 1/cm^3
nn_MKSA = nn*1e6 # => 1/m^3
me = 0.26*9.1e-31 # Effective mass kg
q = 1.6e-19 # Electron charge C
lamb = 1550e-9 # Wavelength m
n = 3.5 # Refractive index of Si 3.45@100K 3.47@293K for 1550nm
c = 299792458 # Speed of light m
e0 = 8.9e-12 # Vacuum Permittivity F/m = C/(V m) = J/(V^2 m) = kg m/s^2/
V^2
mu = 1300 # Electron mobility unit cm^2/V/s
mu_MKSA = mu/1e4 #
pi = np.pi
alpha_MKSA = (pow(q,3)*pow(lamb,2)*nn_MKSA)/(4*pi*pi*e0*n*pow(c,3)*pow(me,2)*
mu_MKSA)
alpha = alpha_MKSA/100;
display(alpha) # unit: Hz

In [4]: # Free Carrier Absorption by Hole Carrier

nn = 1e13 # Carrier concentration 1/cm^3
nn_MKSA = nn*1e6 # => 1/m^3
me = 0.36*9.1e-31 # Effective mass kg
q = 1.6e-19 # Electron charge C
lamb = 1550e-9 # Wavelength m
n = 3.5 # Refractive index of Si 3.45@100K 3.47@293K for 1550nm
c = 299792458 # Speed of light m
e0 = 8.9e-12 # Vacuum Permittivity F/m = C/(V m) = J/(V^2 m) = kg m/s^2/
V^2
mu = 460 # Hole mobility unit cm^2/V/s
mu_MKSA = mu/1e4 #
pi = np.pi
alpha_MKSA = (pow(q,3)*pow(lamb,2)*nn_MKSA)/(4*pi*pi*e0*n*pow(c,3)*pow(me,2)*
mu_MKSA)
alpha = alpha_MKSA/100;
display(alpha) # unit: 1/cm

Temperature dependence

4.081037776913146e-06

6.015861510922024e-06



Effective mass is not dependent on the temperature at low temperature. D. M. Riffe, "Temperature
dependence of silicon carrier effective masses with application to femtosecond reflectivity measurements," J.
Opt. Soc. Am. B 19, 1092-1100 (2002) http://dx.doi.org/10.1364/JOSAB.19.001092 (http://dx.doi.org/10.1364
/JOSAB.19.001092)
Mobility is a relatively strong function of the temperature. http://ecee.colorado.edu/~bart/book/transpor.htm
(http://ecee.colorado.edu/~bart/book/transpor.htm) In general, the mobilities of the electon and hole goes up,
because they are less scattered as the lattice vibration becomes quiet. Lightly doped silicon shows the
electron mobility of 1400 and 11000+ cm^2/(V s) at 300K and 120K, respectively. The hole mobility of 470 and
3700 cm^2/(V s). https://www.pvlighthouse.com.au/calculators/mobility%20calculator
/mobility%20calculator.aspx (https://www.pvlighthouse.com.au/calculators/mobility%20calculator
/mobility%20calculator.aspx)

The notable feature is that this dependence of the mobility on the temperature indicates that the
resistivity goes down at low temperature. However, the free carrier absorption goes down. The
resistivity is not a direct indicator of the free carrier absroption
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