
Carrier density of intrinsic semiconductors

Calculation result & code

: carrier density

: band gap

: effective density of electron state

: effective density of hole state

: effective mass of the electron

: effective mass of the hole

In [1]: %matplotlib inline
import math
import numpy as np
from __future__ import division
import matplotlib.pyplot as plt
import scipy.signal as sig
import scipy.constants as const
from IPython.display import display, Image, display_jpeg
import scipy.optimize as optim

# Update the matplotlib configuration parameters:
plt.rcParams.update({'font.size': 22, 'font.family': 'serif'})
plt.rc('ytick.major', size=8)
plt.rc('ytick.minor', size=4) 
plt.rc('xtick.major', size=8)
plt.rc('xtick.minor', size=4)

In [2]: # Physical constants

h = 6.626e-34 # Planck constant
m0 = 9.109e-31 # electron mass
e = 1.602e-19 # electron charge
kb = 1.381e-23 # Boltzman constant
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In [3]: # empirical function of bandgap as a function of the temperature
# http://ecee.colorado.edu/~bart/book/eband5.htm
# Justification Appl Phys Lett 58 (1991) 2924-2926 http://dx.doi.org/10.1063/
1.104723

def eg(T, eg0, a, b):
y = eg0 - a*T*T/(T+b)

    
return y

In [4]: # Silicon bandgap parameters
# http://ecee.colorado.edu/~bart/book/eband5.htm
eg0Si = 1.166 # eV
aSi = 4.73e-4 # eV/K
bSi = 636 # K

# Temperature
T = np.array([120, 300])

egSi = eg(T, eg0Si, aSi, bSi)

In [5]: # Effective masses
# http://ecee.colorado.edu/~bart/book/effmass.htm
me = 1.08*m0 # effective mass of the electron
mp = 0.81*m0 # effective mass of the hole

Nc = (2*pow(2*np.pi*me*kb*T,3/2))/pow(h,3)
Np = (2*pow(2*np.pi*mp*kb*T,3/2))/pow(h,3)

In [6]: ni = np.sqrt(Nc*Np)*np.exp(-egSi*e/(2*kb*T)) # number per m^3
ni_cm3 = ni/1e6

In [7]: print ni_cm3

# Carrier density of intrinsic Silicon [/cm^3]
# at 120K and 300K

Limitation
Here the calculation has been done with the fixed  and . There is some temperature dependence of them on the
temperature. However, it is outside of the exponential, it only has a small effect. About the temperature dependence of
the electron/hall effective mass, refer the following paper

Intrinsic concentration, effective densities of states, and effective mass in silicon, Martin A. Green, J. Appl. Phys. 67,
2944 (1990); http://dx.doi.org/10.1063/1.345414 (http://dx.doi.org/10.1063/1.345414)

Derivation

State density, Fermi distribution, Fermi energy
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State density of free electrons (number of states in a unit volme) is expressed as

where, : state energy, : electron mass, : Planck constant

Fermi distribution: Electrons follow Fermi distribution 

where, : Fermi energy, : Boltzman constant, : temperature of the system

Fermi level :  describes how much fraction of the states are occupied for the given temperature . When T is
zero,  becomes a step function and the states are occupied from the bottom.

i.e. for a given number of electron number density of , the Fermi level  becomes

It is said that metal has . This yields , while  is much lower (0.026eV@300K).
Therefore we can assume that almost all conductve electrons for metals are degenerate.

Electron/hole density of intrinsic semiconductors

In a semiconductor crystal, the electron behaves like unbound once it is excited from the valence band. So the
effective energy of electron is  where  is the bottom energy of the conduction band. The mass of the electron

 must be replaced with an effective mass of the electon . The carrier elecron state density can be written as:

The hole where the excited electon is lost behaves like a free carrier too. e-k relationship is just flipped upside down.
The top energy of the valence band  behaves as the ''bottom'' of the band for holes. Also holes behave as Fermion
(  has the Fermi distribution). The carrier hole state density can be written as:

The carrier electron and hole density  and  can be obtained by the following integrals:
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For intrinsic semiconductors, the band gap is the order of 1eV. Therefore we can use the low temperature

approximation. i.e. if ,  (Boltzman distribution). This makes the integration easier.

Similarly,  is given as

 and  are called effective density of electron (or hole) state, respectively.

Using the fact , we can figure out the carrier density of an intrinsic semiconductor  without knowing the
Fermi level.

Fermi level: By taking logarithmic of , we obtain

For the silicon case, temperature dependence is  [eV], and it is negligible
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