
Carrier density of doped semiconductors

Conclusion
The conclusion is simple:

With lightly doped ( ) n-type Silicon down to 120K, we can assume all of the doping sites are ionized, and
therefore .

Introduction

The calculation of the carrier density is similar to the case of instrinsic semiconductors. For doped semiconductors,
however, the donor level (or the acceptor level) is too close to the conduction band (or the valence band) to use the
approximation of the state distribution with the Boltzman distribution. Therefore, we need numerical integration (or
polylog function) for the calculation of the carrier density and the Fermi level.

In [1]: %matplotlib inline
import math
import numpy as np
from __future__ import division
import matplotlib.pyplot as plt
import scipy.signal as sig
import scipy.constants as const
from IPython.display import display, Image, display_jpeg
import scipy.optimize as optim
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In [2]: fig1 = Image('./Notebook_figures/doped_silicon_N.png', width ='50%')
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Assume an N-type semiconductor. The dopant concentration is . i.e. There are  sites.

A single site can accept only one electron whose spin can be up or down. This situation is different from the case of
the usual state which is occupied by an electron with a certain spin. Therefore the distribution of the electron for the
donor level is modified as follows (refer http://ecee.colorado.edu/~bart/book/distrib.htm#impurity
(http://ecee.colorado.edu/~bart/book/distrib.htm#impurity) section 2.4.4)

Here the Fermi level  is to be determined later.

The number of the electrons  that stay on the donor level is

Note: this factor 1/2 seems to be modified to 4 for the case of the acceptor. Refer the same link above.

Concequently, the number of excited electrons in the conduction band is

Now we consider the distribution of the electrons in the conduction band:

This can be done similarly to the case for intrinsic semiconductors.
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where  is a polylogarithm function:

The Fermi level is determined by the relationship (A) = (B), and the  for this Fermi level is the carrier concentration.

First order approximation: i.e. when 

By solving this we obtain . Then this leads us to calculate . With the same approximation, the first term approaches
to the unity and can be ignored. Therefore  at the low temperature can be expressed as:

This yield the carrier density of

When the approximation is not applicable (i.e. at the room temp), the equation (A)=(B) needs to be solved numerically.

Numerical evaluation
Actual calculation is done with the mathematica file in the same folder.
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Assumptions:

: 

: 

 --- typical donor level of P doped silicon

In [3]: fig2 = Image('./Notebook_figures/CarrierFreezeOut_CarrierDensity.png', width
='80%')
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The above plot shows the temperature dependence of the carrier concentration as a function of the temperature for
different doping concentration levels. The numbers in the plot shows the doping concentration. As the concentration is
larger, the carrier freeze out temperature goes higher. For the doping concentration less than , we can
assume that all dopants are ionized i.e.  at 120K.
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In [4]: fig3 = Image('./Notebook_figures/CarrierFreezeOut_FermiLevel.png', width ='80
%')
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For some curiosity, dependence of the Fermi level as a fuction of the doping level and temperature is plotted in the
above figure. The color of the curves are assigned in the same way as the previous carrier density plot. The vertical
axis shows how much the Fermi level drops from the average energy between the donor level and the bottom energy
of the conduction band. As the doping concentration gets lower, the bending of the linear region of the curve comes at
a lower temperature.
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The above plot shows the comparison of the Fermi level as a function of the temperature for the doping concentration
of . The low temperature approximation is valid upto 40K. At 120K we definitely need to solve the equation
including the polylog function.
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