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We quantify the evidence for and estimate the parameters of QNM ’ringdown’ in the GW150914
event. This is done by Bayesian hypothesis testing and parameter estimation using a QNM ringdown

model s(t ≥ t0) = Ae−
t−t0
τ cos (2πf0(t− t0) + φ0) with unknown amplitude A, initial phase φ0,

frequency f0 and decay time τ , as a function of the QNM start-time t0. Using a Gaussian-isotropic
prior on {As = −A sinφ0, Ac = A cosφ0} we can approximate the Bayes factor by analytically
marginalizing over {A, φ0}, leaving an explicit template search over {f0, τ}.

A. Changelog

A number of changes compared to the previous version (v3,v3+) that went into the submitted paper (arXiv:1602.03841).

• bug: previous results suffered from a small bug in (old version of) octapps FourierTransform wrapper, which
contained an “off-by-one” type error, leading to slight de-phasing of the data time-series

• bug: previously the ’SNR-term’ in the likelihood 〈s|s〉 was computed over the full SFT frequency band
[10, 2000] Hz, instead of the relevant narrow-banded data [30, 1000] Hz actually used in the search-term 〈x|s〉

• bug/inconsistency (up to version ’v4-’): I had used a tukey(0.1) window on SFT data (spanning [10, 2000]Hz)
before inv-FFTing into time-domain, and then used data starting from 30Hz. At these low frequencies, however,
the data was still affected by the Tukey-window (clearly visible in the previous PSD estimates). I’ve now reduced
this to tukey(0.02), which is enough to avoid creating spurious time-domain noise, and even allowed me to push
the low-frequency end down to 20 Hz.

• expanded used data-range from previously [30, 1000] Hz to [20, 1900] Hz (which avoids the lower and upper
boundaries near 10Hz and 2000Hz affected by tukey(0.02)-windowing).

• apply tukey(0.1)-windowing to the T = 8 s time-series data before FFTing for whitening: this avoids red-noise
artifacts, especially visible in L1 whitened spectra in previous versions (up to ’v4-’). Contrary to the frequency
domain, none of the data near the start and end is actually used, so a wider window is used.

• PSD estimation: avoid using the central data-segment of T = 8 s containing GW150914 (or any injections) to
avoid affecting the PSD estimate

• slight inconsistency: previous results used tM = 1126259462.42285, while the paper stated tM = 1126259462.423
(rounded to ms). While small, this does change the numbers (and posteriors) slightly, especially towards the
end (+7ms), due to the exponentiall fall-off of the Bayes-factor with offsets from t0. The new results use the
merger time rounded to ms-accuracy as quoted in the paper.

• Improved: use maximum-posterior estimate of Eq. (60) (rather than H-MP approximation of Eq. (64)) for
amplitude parameters and resulting SNR. Essentially found to make no relevant difference.

• Improved: substantial speedup of code: larger sampling of “off-source” noise distributions on actual data and
on Gaussian white noise

• Improved: added injection feature of QNM signals, allowing quantified test of accuracy of parameter-estimation
and posterior coverage

• improved iso-probability contour estimation accuracy

• Finer τ resolution dτ = 0.2 ms instead of 0.5 ms, but coarser f0 resolution of df0 = 1 Hz instead of 0.5 Hz, which
is closer to actual parameter-space resolution as seen from posterior shapes.

All results shown in this version of the notes were produced using the ringdown pipeline in gitLab, version 7521757

a Reinhard.Prix@ligo.org

https://dcc.ligo.org/LIGO-T1500618
http://arxiv.org/abs/1602.03841
https://git.ligo.org/BlackHole-QNM-Ringdown/Bayesian-QNM-PE-octave
https://git.ligo.org/BlackHole-QNM-Ringdown/Bayesian-QNM-PE-octave/commit/75217571c968955926e0399007e66ee019d950f7
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B. Proposed updated statements for PRL ”Testing GR” paper

Qualitatively these results still agree with what has been shown in the first submitted PRL version. However the
numbers and posterior contours are somewhat different, and this version is much more mature/converged, more fully
tested and characterized, and a number of bugs and possible inconsistencies have been fixed since v3. We therefore
propose to update the text and results when re-submitting the paper to PRL in the following way:

We use 1800s of detector data containing GW150914 from H1 and L1, band-passed
to [20, 1900] Hz. We assume the signal arrived 7 ms earlier in L1 compared to H1,
and that the amplitude has opposite sign in both detectors. [ref detection paper?]
. . .
The 90% posterior contour overlaps the GR prediction from the IMR waveform
starting at about t0 & tM + 3 ms, or ∼ 10M after merger. The corresponding
Bayes factor at this point is log10B ∼ 14 and the MAP waveform SNR is ∼ 8. At
t0 = tM + 5 ms the MAP parameters fall within the contour predicted in GR for
the least-damped QNM, with log10B ∼ 6.5 and SNR ∼ 6.3. At t0 = tM + 6.5 ms,
or about ∼ 20M after merger, the Bayes factor is log10B ∼ 3.5 with SNR ∼ 4.8.
The signal becomes undetectable after about t0 & tM + 9 ms, where B . 1.

New posterior contours [the official plot will again be produced by Walter] for selected time-steps (new result on
the right, current plot on the left):
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I. INTRODUCTION

Signal model: damped sinusoid starting at t0, writing ∆t ≡ t− t0:

s(t; A, φ0, t0, τ, f0) =

{
A exp

(
−∆t

τ

)
cos (2π f0 ∆t+ φ0) , if ∆t ≥ 0 ,

0 if ∆t < 0 .
(1)

We re-parametrize {A, φ0} in terms of two amplitudes, namely

As = −A sinφ0 , (2)

Ac = A cosφ0 , (3)

and it is useful to distinguish “amplitude parameters” A and “evolution parameters” λ as

A ≡ (As,Ac) , λ ≡ {t0, τ, f0} . (4)

Using this “JKS” factorization [1, 2], the signal model Eq. (1) now reads as:

s(t;A, λ) = As hs(t;λ) +Ac hc(t;λ) , (5)

with basis functions

hs(t;λ) ≡ exp (−∆t/τ) sin(2π f0 ∆t) , (6)

hc(t;λ) ≡ exp (−∆t/τ) cos(2π f0 ∆t) . (7)

The likelihoods for Gaussian (colored) noise HG and for the ringdown signal model HS are

P (x|HG) = c exp

[
−1

2
〈x|x〉

]
, (8)

P (x|HS,A, λ) = c exp

[
−1

2
〈x− s (A, λ)|x− s (A, λ)〉

]
, (9)

with the multi-detector scalar product (over detectors indexed by X) defined as

〈x|y〉 ≡
∑
X

〈
xX
∣∣yX〉 =

∑
X

4<
∫ ∞

0

x̃X(f) ỹ∗X(f)

SX(f)
df , (10)

where SX(f) is the single-sided noise PSD for detector X. The (marginal) likelihood for the signal model can be
expressed as

P (x|HS) =

∫
P (x|HS,A, λ) P (A, λ|HS) dA dλ , (11)

and the corresponding Bayes factor (or marginal likelihood ratio) is

BS/G(x) ≡ P (x|HS)

P (x|HG)
=

∫
L(x;A, λ)P (A, λ|HS) dA dλ , (12)

with the likelihood-ratio function obtained from Eqs. (8) and (9) as

L(x;A, λ) ≡ P (x|HS,A, λ)

P (x|HG)
= exp

[
〈x|s〉 − 1

2
〈s|s〉

]
. (13)

We further introduce the partially-marginalized (over amplitude parameters A) Bayes factor BS/G(x;λ) as

BS/G(x;λ) ≡
∫
L(x;A, λ)P (A|λ,HS) dA , (14)
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such that

BS/G(x) =

∫ [∫
L(x;A, λ)P (A|λ,HS) dA

]
P (λ|HS) dλ

=

∫
BS/G(x;λ)P (λ|HS) dλ . (15)

The posterior on the signal parameters is

P (A, λ|x,HS) = P (x|HS,A, λ)
P (A, λ|HS)

P (x|HS)

∝ L(x;A, λ)P (A|λ,HS) P (λ|HS) , (16)

where we dropped all factors that independent of {A, λ}. The (marginal) posterior on the evolution parameters λ is
therefore

P (λ|x,HS) =

∫
P (A, λ|x,HS) dA

∝ BS/G(x;λ)P (λ|HS) . (17)

II. COMPUTING THE BAYES FACTOR BS/G

A. Expressing the SNR2: 〈s|s〉

We assume the data xX(t) from the different detectors has been time-shifted and corrected for antenna-pattern
effects, in such a way that the expected signal s(t) would be identical in all data streams, so we can assume the
templates to be independent of detector, and write

〈s|s〉 =
∑
X

2

∫ ∞
−∞

|s̃(f)|2

SX(f)
df (18)

= 2Ndet

∫
|s̃(f)|2

S(f)
df , (19)

where the multi-detector noise floor S(f) is defined as the harmonic mean

S−1(f) ≡ 1

Ndet

∑
X

S−1
X (f) . (20)

Using the factorization of Eq. (5), which in frequency domain yields

s̃(f ;A, λ) = As h̃s(f ;λ) +Ac h̃c(f ;λ) , (21)

we can further write this as

〈s|s〉 = A ·M(λ) · A , (22)

with

M(λ) ≡ 2Ndet

(
Is Isc
Isc Ic

)
, (23)

Is(λ) = 2

∫ ∞
0

|h̃s(f)|2

S(f)
df , (24)

Ic(λ) = 2

∫ ∞
0

|h̃c(f)|2

S(f)
df , (25)

Isc(λ) = 2

∫ ∞
0

<[h̃s(f) h̃c

∗
(f)]

S(f)
df . (26)
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The Fourier transforms h̃s, h̃c of the signal basis functions can be computed analytically

h̃s(f ;λ) = τ
2πf0 τ

1 + i 4π f τ − 4π2(f2 − f2
0 )τ2

e−i2πft0 , (27)

h̃c(f ;λ) = τ
1 + i 2π f τ

1 + i 4π f τ − 4π2(f2 − f2
0 )τ2

e−i2πft0 , (28)

and are shown for two parameter-space choices in Fig. 1.

f

f0 = 200 Hz; tau = 2.0 ms
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FIG. 1. Fourier power of ringdown components |h̃s| and |h̃c| for f0 = 200 Hz and two different damping times, τ = 2 ms (left)
and τ = 15 ms (right).

B. Expressing the “matched filter” 〈x|s(A, λ)〉

Note that in the scalar product involving the data xX (assume time-shifted and antenna-pattern corrected) we can
conveniently absorb the frequency-dependend noise-floors SX(f) by over-whitening the data, i.e. we define

ỹX ≡ x̃X(f)

SX(f)
, ỹ ≡

∑
X

ỹX . (29)

Here we define t to the arrival time in the ’H1’ detector. We apply a detector-specific time-delay of adding 7 ms to
L1 arrival time in the case of GW150914) and antenna-pattern corrections (a factor of −1 of L1 wrt H1) to the data
yX(t), such that we can assume the putative signal waveform in the data to be in phase and of (approximately) same
amplitude and phase. This means that we can assume a detector-independent template sX(t) = s(t), which allows us
to write the scalar product in time-domain form

〈x|s〉 =
∑
X

2

∫ ∞
−∞

ỹX(f) s̃∗X(f) df (30)

= 2

∫ ∞
−∞

ỹ(f) s̃∗(f) df (31)

= 2

∫ t0+T

t0

y(t) s(t) dt , (32)

where y(t) is the overwhitened summed-IFO timeseries, i.e. the inverse Fourier-transform of ỹ(f), and where T � τ
is some duration long enough so that s(t0 + T ) ≈ 0, e.g. T = 5τ .

Using Eq. (5) we can further write

〈x|s(A, λ)〉 = A · ~x(λ) = As xs(λ) +Ac xc(λ) , (33)
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with

xs(λ) ≡ 2

∫ t0+T

t0

y(t)hs(t;λ) dt , (34)

xc(λ) ≡ 2

∫ t0+T

t0

y(t)hc(t;λ) dt . (35)

Note that it will be convenient to write

hexp ≡ hc(t;λ)− i hs(t;λ) = e−∆t/τ e−i 2π f0 ∆t = e−∆t$ , (36)

with ∆t ≡ t− t0 and complex frequency $ defined as

$ ≡ 1

τ
+ i 2πf0 , (37)

and so we obtain the complex matched-filter as

F ≡ xc − i xs = 2

∫ T

0

y(t0 + ∆t) e−∆t$ d∆t , (38)

which is the Laplace transform of the over-whitened data y(t).

C. Marginalizing over unknown amplitudes {As,Ac}

Combining these expressions in the likelihood-ratio function of Eq. (13), we can write this as

lnL(x;A, λ) = 〈x|s〉 − 1

2
〈s|s〉 (39)

= −1

2
A ·M · A+A · ~x , (40)

i.e. a 2-dimensional Gaussian in {As,Ac} with covariance matrixM−1. This can be marginalized analytically to yield
BS/G(x;λ) in Eq. (15) for a suitable choice of prior P (A|λ,HS).

First we assume that the amplitude prior is logically independent of the evolution parameters λ, which simply
expresses ignorance about a possible dependence, not a claim about physical independence [3], i.e. P (A|λ,HS) =
P (A|HS)

Further we use a simple isotropic Gaussian amplitude prior, which expresses ignorance about the initial phase φ0,
and posits an (unknown) characteristic scale H for the amplitude A, namely

P (A|HS, H) =
1

2πH2
e−

1
2A·A/H

2

, (41)

which implies a prior on the amplitude A (marginalized over φ0):

P (A|HS, H) =
A

H2
e−

A2

2H2 . (42)

Using this Gaussian amplitude prior we find the H-dependent Bayes factor:

BS/G(x;λ,H) ≡ P (x|HS, λ,H)

P (x|HG)
(43)

=
1

2πH2

∫
e−

1
2 A·γ

−1·A+A·~x dA (44)

=

√
det γ

H2
e

1
2 ~x·γ·~x (45)

with

γ−1(λ) ≡M+H−2 I =

(
Mss +H−2 Msc

Msc Mcc +H−2 .

)
, (46)
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and determinant

det γ−1 =
(
Mss +H−2

) (
Mcc +H−2

)
−M2

sc (47)

= detM+H−2 trM+H−4 , (48)

inverse

γ(λ) =
1

det γ−1

(
Mcc +H−2 −Msc

−Msc Mss +H−2

)
, (49)

and

√
det γ

H2
=
[
H4 detM+H2 trM+ 1

]−1/2
. (50)

We note that in the limit H → 0 we have γ−1 → H−2I, so γ → 0, and
√

det γ/H2 → 1, therefore BS/G → 1.
The signal hypothesis becomes indistinguishable from the noise hypothesis if signal amplitudes are assumed to be
vanishingly small. In the opposite limit of H � 1, we find γ → M−1, and

√
det γ/H2 → 1/(H2

√
detM), which is

equivalent to the “F-statistic” for finite H, but BS/G → 0 for H → ∞, as the prior volume gets increasingly thinly
spread out, resulting in an “Occam factor” effect disfavoring the signal hypothesis.

1. Marginalizing unknown scale H

A robust way to deal with the unknown scale parameter H is to marginalize this out using a Jeffreys prior ∝ 1/H.
Given that we roughly know the scale of H to fall somewhere in H ∈ [2, 10] × 10−22, we can simply discretize the
corresponding marginalization integrals on a few points Hi, allowing us to normalize this discrete “hyper-prior” as

P (Hi|HS) = c
1

Hi
, , with c−1 =

∑
i

H−1
i . (51)

The resulting amplitude prior is now obtained by marginalizing the fixed-H prior of Eq. (41) over H, which yields

P (A|HS) =
∑
i

P (A|HS, Hi)P (Hi|HS) . (52)

We can further estimate the unknown H parameter from the data via Eq. (43), namely

P (H|x) =

∫
P (λ,H|x,HS) dλ (53)

∝
[∫

P (x|HS, λ,H) P (λ|HS) dλ

]
P (H|HS) (54)

∝ BS/G(x;H)P (H|HS) (55)

= c
1

Hi
BS/G(x;Hi) . (56)

Furthermore, we can compute the H-independent Bayes factor and posterior by marginalizing over H via

P (λ|HS, x) ∝ BS/G(x;λ) (57)

=

∫
BS/G(x;λ,H)P (H|HS) dH (58)

= c
∑
i

1

Hi
BS/G(x;λ,Hi) . (59)
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III. AMPLITUDE PARAMETER ESTIMATION

The posterior for the amplitudes A at fixed λMP can directly be obtained from Eq. (16), Eq. (52) and Eq. (41) as

P (A|x,HS) ∝ L(x;A, λ)P (A|HS) (60)

=
∑
i

L(x;A, λ)P (A|HS, Hi) P (Hi|HS) (61)

=
∑
i

1

H2
i

exp

[
−1

2
A · γ−1(Hi) · A+A · ~x

]
P (Hi|HS) . (62)

We can compute this expression and maximize over P (A|x,HS) to obtain AMP. Alternatively, we could replace the
unknown H by its maximum-posterior estimate HMP of Eq. (53), and obtain the estimate

P (A|x,HS, HMP) ∝ exp

[
−1

2
A · γ−1(HMP) · A+A · ~x

]
, (63)

which can be maximized over A analytically to yield

A′MP ≈ γ(HMP) · ~x . (64)

From these estimates we can obtain A =
√
A2

s +A2
c and φ′0 = − tan−1

(
As

Ac

)
.

We can further estimate an “SNR” in the MPE template λMP, by substituting the amplitude estimates AMP into
the SNR expression of Eq. (22), i.e.

ρ2
0 = AMP · M · AMP . (65)

IV. QNM SEARCH APPLIED TO GW150914

A. Prior choices

Isotropic 2D Gaussian amplitude prior (41) on {As,Ac} with characteristic amplitudes H = [2 : 10]× 10−22, which
corresponds to an isotropic prior in φ0 and an A-prior of (42), as shown here:

P(
A|

H
)

Amplitude A [1e-22]

H = [2:10]x1e-22

 0
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FIG. 2. Amplitude prior (red line) as a hyper-prior (weighted superposition) of several 2D-Gaussian distributions (black lines)
with different scale parameters H ∈ [2 : 10]× 10−22
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B. Data preparation

We use the data from the respective 1800s-SFT (containing the frequency range [10, 2000] Hz) from each detector
covering GW150914. The data is inverse-FFTed into the time-domain after applying a tukey(0.02) windowing (to
avoid boundary effects). The PSD is estimated on this 1800s time-series using pwelch() in octave, with a window-size
of T = 8 s, but excluding the “on source” segment centered on GW150914 (or any injections) to avoid signals affecting
the PSD estimate.

We then extract the “on source” T = 8 s segment centered on GW150914, FFT it back into frequency domain (after
tukey(0.1) windowing to avoid boundary effects), and divide it by the PSD to over-whiten the data. We extract the
frequency band of [20, 1900] Hz, tukey(0.02)-window it, then inverse-FFT it back into the time-domain, resulting in
the over-whitened timeseries yX of Eq. (29). The L1 data is time-shifted by (delaying it by +7 ms) and multiplied it
by (−1) to account for the inverse detector response.

The resulting PSD estimates and data spectra are shown in Fig. 3, and the whitened and over-whitened data spectra
are shown in Fig. 4. Note that the ’data spectra’ are showing the data from the T = 8 s “on-source” window.
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FIG. 3. Welch PSD estimate of
√
SX(f) (green ’o’) over f ∈ [20, 1900] Hz on 1800s of data (using an T = 8s window) for X =

H1 (upper plot) and X = L1 (lower plot). LALInference PSD-estimate (magenta ’x’) and normalized spectrum of T = 8 s of

data used in the search, i.e. |x̃X/
√
T | (blue line and ’+’).

Although the signal is quite wide-band in frequency domain (see Fig. 1), in Figs. 5 and 6 we show a zoom on the
most relevant frequency range of [200, 300] Hz.

C. Search results on GW150914

We search the {f0, τ} range with uniform priors in f0 ∈ [200, 300] Hz and τ ∈ [0.5, 20] ms, in steps of df0 = 1 Hz and
dτ = 0.2 ms, respectively. The following plots show snapshots of the posterior at different fixed start-times t0. The
offset from merger assumes a merger time tM = 1126259462.423 (in H1 arrival time), as taken from Ian’s wiki and
rounded to ms accuracy. We compute snapshots for different QNM start-times t0− tM (referring to H1 arrival times).

https://www.lsc-group.phys.uwm.edu/ligovirgo/cbcnote/TestingGR/O1/G184098/ringdown_presence
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D. Dependence on t0 − tM
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V. TESTING AND CHARACTERIZING PIPELINE PERFORMANCE

A. Off-source searches

We test off-source search performance on Gaussian white noise, as well as on real detector data around GW150914,
using 10, 000 random start times t0 ∈ ([−3,−0.5] s ∪ [0.5, 3] s) + tM.
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B. Testing parameter-estimation accuracy on injections

We test PE performance on injected QNM signals with perfectly-matched start-time t0, using 10, 000 random start
times t0 ∈ ([−3,−0.5] s ∪ [0.5, 3] s) + tM.

In order to avoid injecting a discontinuity at t0 (which would create problems when band-passing and FFTing
the data), we preface the ringdown with a short “ringup” with characteristic timescale τ/10 in the injections, i.e.

s(t < t0) = Ae10
t−t0
τ cos (2πf0(t− t0) + φ0) instead of s(t < t0) = 0 as for the template, as shown in Fig. 7.

-1

-0.5

0

0.5

1

0 0.005 0.01 0.015 0.02 0.025

t [s]

t0 = 0.005 s; A = 1, phi0 = 0.8, f0 = 251.0 Hz, tau = 4.0 ms

QNM
ringup+QNM

FIG. 7. Example QNM template (labelled ’QNM’) used for matching, and ringup+QNM used for injections

We consider 5 different injection scenarios:

1. all QNM parameters drawn drawn from the priors: A via Eq. (52) and shown in Fig. 2, φ0 ∈ [0, 2π], f0 ∈
[200, 300] Hz, and τ ∈ [0.5, 20] ms, and

(a) Pure signals without noise, assuming a white noise-floor of
√
SX = 8× 10−24/

√
Hz.

These “signal-only” injections focus on the accuracy of the MPE estimate versus the true injected parame-
ters, which should essentially be perfect at sufficiently large SNR (wrt the assumed noise-floor). For “lower
SNR” signals, the amplitude prior starts to affect parameter estimation and leads to deviations from the
injected signal parameters, which is expected.

(b) Signals injected in Gaussian white noise of
√
SX = 8 × 10−24/

√
Hz, assuming perfect knowledge of this

noise PSD (instead of estimating it).

The injections into known Gaussian noise exactly realize all of the assumptions, and as we’re drawing
signals essentially from the priors, so only in this case do we expect the parameter posteriors to accurately
predict their frequency of coverage [e.g. see 4].

(c) Signals injected in Gaussian white noise of
√
SX = 8 × 10−24/

√
Hz, with estimating the PSD from the

data.

Compared to the previous case this basically just tests the reliability of noise-estimation, and we’re still
expecting posteriors to predict their coverage.

(d) Signals injected into real off-source detector data.

Here we can quantify how much of an effect “real noise” instead of Gaussian noise has on the coverage of
the posteriors, i.e. whether it leads to over- or under-coverage.

2. QNM parameters with fixed “GR values” f0 = 251 Hz, τ = 4 ms, with A drawn uniformly A ∈ [3, 8] × 10−22,
and φ0 ∈ [0, 2π], using real off-source detector data.

This case only serves to illustrate how we expect the posterior coverage to perform if the signal actually was
conforming to our expectation from GR, as suggested by the “on-source” results.



19

1. Case 1(a): QNM parameter drawn from priors, signal-only with assumed white noise
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FIG. 8. MP estimation errors (top 2 rows), recovered SNR (bottom left) and Bayes-factor (bottom right) as functions of injected
SNR. Solid line denotes the median, error-bars denote ±25%-ile and dashed lines are 2.5%- and 97.5%-iles, respectively.
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2. Case 1(b): QNM parameter drawn from priors, known Gaussian white noise
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3. Case 1(c): QNM parameter drawn from priors, unknown Gaussian white noise
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4. Case 1(d): QNM parameter drawn from priors, off-source detector data
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5. Case 2: fixed “GR injections” {A ∈ [3, 8]× 10−22, f0 = 251Hz, τ = 4ms}, off-source detector data
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C. Varying noise-realization at fixed-{f0 = 251Hz, τ = 4ms, A = 2.5× 1021, φ0 = 0} injection

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

lo
g1

0<
B

S
G

>

200

220

240

260

280

300

1 2 3 4 5 6 7 8 9 10

f0
 [H

z]

90%
QNM-GR

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10

S
N

R

1126259463.548795 s + tOffs [ms]

2
4
6
8

10
12
14
16
18
20

1 2 3 4 5 6 7 8 9 10

ta
u 

[m
s]

1126259463.548795 s + tOffs [ms]

90%
QNM-GR

0

2

4

6

8

10

12

14

200 220 240 260 280 300

ta
u 

[m
s]

Freq [Hz]

QNM-GR

1.0ms
3.0ms

5.0ms
6.5ms

FIG. 10. Example 1 in Gaussian noise
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FIG. 11. Example 2 in Gaussian noise
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FIG. 12. Example 3 in Gaussian noise
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FIG. 13. Example 1 in real off-source data
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FIG. 14. Example 2 in real off-source data
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FIG. 15. Example 3 in real off-source data
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Appendix A: Deprecated old way to compute 〈s|s〉: const noise floor + time-domain integration

Given that aLIGO noise-curve is relatively “white” over a broad-band in the “bucket”, and the signal s(t) of Eq. (1)
can still be considered relatively “narrow band” (∼ ±100Hz) with respect to this noise curve, we can approximate
the signal-normalization integral as

〈s|s〉 =
∑
X

2

∫ ∞
−∞

s̃X(f) s̃∗X(f)

SX(f)
df (A1)

∼
∑
X

2

SX(f ′)

∫ ∞
0

s2(t;A, λ) dt (A2)

=
2Ndet

S(f ′)

∫ (
A2

s h
2
s (t) + 2AsAc hshc +A2

c h
2
c

)
dt (A3)

= A ·M · A , (A4)

with

M≡ 2Ndet

(
Is Isc
Isc Ic

)
(A5)

with

Is ≡
1

S(f ′)

∫ ∞
0

e−
2t
τ sin2(2πft) dt =

1

2πf

∫
e−

ϕ
Q sin2ϕdϕ (A6)

Ic ≡
∫ ∞

0

e−
2t
τ cos2(2πft) dt =

1

2πf

∫
e−

ϕ
Q cos2ϕdϕ (A7)

Isc ≡
∫ ∞

0

e−
2t
τ sin(2πft) cos(2πft) dt =

1

4πf

∫
e−

ϕ
Q sin 2ϕdϕ , (A8)

where f ′ is some (unknown) frequency within the effective frequency band around the central signal frequency f (using
mean-value theorem), and we have used the assumption of identical signal model in both detectors (after time-shifting
the data and correcting for antenna-pattern differences).

The respective integrals to compute are

(A9)

using the definitions

ϕ ≡ 2πf∆t , (A10)

Q ≡ πfτ . (A11)

Assuming only non-critically damped signals, i.e. Q & O (π), these integrals can be approximated computed analyti-
cally as

I ′s =
−1

2πf

Q2

1 + 4Q2
e−

ϕ
Q

[
sin 2ϕ+ 2Q+

sin2 ϕ

Q

]∣∣∣∣∞
0

=
2Q

2πf

Q2

1 + 4Q2
=

τ

4 +Q−2
(A12)

Q�1
≈ τ

4
, (A13)

I ′c =
−1

2πf

Q2

1 + 4Q2
e−

ϕ
Q

[
− sin 2ϕ+ 2Q+

cos2 ϕ

Q

]∣∣∣∣∞
0

=
2Q+ 1

Q

2πf

Q2

1 + 4Q2
=
τ

4

(
2 +Q−2

2 +Q−2/2

)
(A14)

Q�1
≈ τ

4
, (A15)

I ′sc =
−1

2πf

Q2

1 + 4Q2
e−

ϕ
Q

[
2 cos2 ϕ− 1 +

sin 2ϕ

2Q

]∣∣∣∣∞
0

=
1

2πf

Q2

1 + 4Q2
=

τ

8Q (1 +Q−2/4)
(A16)

Q�1
≈ 1

2Q
Is � Is ≈ 0 . (A17)
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So Is ≈ Ic ≈ Ndetτ
2S(f ′) and Isc ≈ 0, and we obtain the approximate M-matrix as

M≈ Ndet τ

2S(f ′)
I =

(
I0 0
0 I0

)
. (A18)

Note: in the QNM search we’ll approximate S(f ′) in this expression by the arithmetic mean 〈S(f)〉f±∆f around each
template frequency f . This fixed-SN high-Q limit was originally used in the v1 of this search and document, which
was originally circulated.
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