A low loss Faraday isolator for squeezed vacuum injection in Advanced LIGO

Ryan Goetz University of Florida

DCC: LIGO-G1600068 NSF grant PHY-1205502

Outline

Squeezing in ALIGO

Faraday isolators

LLFI design and tests

Outlook

Squeezing injection in Advanced LIGO

	Loss source	H1 experir	nent	Near term goal (6dB)	Longer term goal (10 dB)	Dreaming(15dB)
1	OPO escape efficiency		96%	98%	99%	99.8%
2	Injection path optics		80%	99.7%	99.7%	99.99%
3	viewport	99.8%]	99.8%	99.8%	99 99%
4	3 faraday passes	94%, 94%, unknown		97% each (aciGO input Faledays)	99% each	99.7 % each
7	RF pick off beamsplitter (beam for ISCT4)	98.8%		99%	99.5%	99.8%

Future squeezing efforts will require < 1% power loss per pass of FI

The Faraday Effect and Faraday Isolators

Magneto-optic effect: circular birefringence

 $\beta = V B d$

Rotation is independent of propagation direction

Forward:

"Faraday-effect". Licensed under CC BY-SA 3.0 via Wikimedia Commons – http://commons.wikimedia.org/wiki/ File:Faraday-effect.svg#mediavi ewer/ File:Faraday-effect.svg

Adding polarizers at either end, we can create an optical diode

The Faraday Effect and Faraday Isolators

Potential use as beam combiner; must inject orthogonal polarization

Terbium Gallium Garnet (TGG)

Commonly used magneto-optic element material

At room temperature for 1064 nm: V = -40 rad/Tm

22 mm TGG, 45 deg. rotation: 0.89 T average field strength required

n = 1.95 α = 0.0015 cm⁻¹

Produced by Northrop Grumman, polished by Photon LaserOptik, coated by MLD Technologies

Goal of 500 ppm reflection per face

Potassium Titanyl Phosphate (KTP)

Birefringent material:

 $n_x \approx n_y = 1.74$ $n_z = 1.83$

Wedge geometry gives spatial separation of polarizations

```
Low absorption: \alpha < 10^{-5} cm<sup>-1</sup>
```


Produced by Raicol Crystals, polished by Photon LaserOptik, coated by MLD Technologies

Goal of 500 ppm reflection per face

Low Loss Loss Budget

Isolator Element	Optical Loss (ppm)
KTP reflection (per face / total)	500 / 2000
KTP absorption (per crystal / total)	25 / 50
HWP reflection (per face / total)	300 / 600
HWP absorption	50
TGG reflection (per face / total)	500 / 1000
TGG absorption (20 mm)	3000

~ 0.7 % loss per single pass

Reflection Measurements

TGG

Quoted measured reflection from coaters: 30 ppm

Quick and dirty lab measurements: 650 ppm

KTP

Quoted measured reflection from coaters: 16 ppm

Quick and dirty lab measurements: 20-25 ppm

• R. Goetz APS April 2016

Magnet Design

Combination of axially and radially magnetized permanent magnet disks based on Input Faraday

Disks are stacked to create a composite magnet

Magnets produced by K&J Magnetics

Permanent magnet residual flux densities limited to $\sim 1.5 \mbox{ T}$

Magnet Design

Axial magnetic field measured for each assembled disk with Hall probe

Agreement with COMSOL simulations to within 5%

- Current design
- 22 mm TGG goal
- Aggressive design
- 12 mm TGG goal

Magnet Design

Current composite disk concept has lower limit on TGG length of ~ 12 mm

Revised Low Loss Loss Budget

Isolator Element	Optical Loss (ppm)
KTP reflection (per face / total)	500 / 2000 20 / 80
KTP absorption (per crystal / total)	25 / 50
HWP reflection (per face / total)	300 / 600
HWP absorption	50
TGG reflection (per face / total)	500 / 1000 650 / 1300
TGG absorption (20 mm)	3000

~ 0.5 % loss per single pass (~ 0.35 % with 12 mm TGG)

Immediate Prospects

Coatings:

Where does the TGG discrepancy come from? What allowed for such nice KTP coatings?

Magnets: Assemble magnet composite without catastrophe

What are the losses when we actually put everything together? Need full optical characterization of the LLFI prototype.

Concluding Remark

For Faraday isolator, current coating technologies at first glance appear sufficient for near and not-too-far future squeezing goals in Advanced LIGO

Questions

Quick reflection measurement

Radial disk field measurements

