

The Search for Gravitational Waves with Advanced LIGO

Daniel Sigg

LIGO Hanford Observatory California Institute of Technology

April 6, 2016

For the LIGO Scientific Collaboration and the Virgo Collation

LIGO-G1501573-v1

1.3 billion years ago... (give or take)

LIGO

2016: The Centenary of **Gravitational Waves**

Metric: $ds^2 = g_{mn} dx^m dx^n$

Weak field: $g_{mn} \gg h_{mn} + h_{mn}$

In vacuum: $h_{mn} = \begin{cases} \overset{a}{c} & 0 & 0 & 0 & 0 & 0 \\ \overset{c}{c} & 0 & h_{+} & h_{-} & 0 \\ \overset{c}{c} & 0 & h_{-} & -h_{+} & 0 \\ \overset{c}{c} & 0 & 0 & 0 & 0 \\ \overset{c}{e} & 0 & 0 & 0 & 0 \end{cases}$

Physically, *h* is a strain ~ $\Delta L/L$

Measure with a Michelson interferometer

G1501573-v1

LIGO Livingston Observatory

-

LIGO Hanford Observatory

Contraction of the second second

GW150914

~1/200th proton radius

Time (s)

Normalized amplitude

Binary coalescence search

Parameter	Value	90% Error	Unit
Primary black hole mass	36	+5 -4	M₀
Secondary black hole mass	29	+4 -4	M₀
Final black hole mass	62	+4 -4	M₀
Total radiated energy	3.0	+0.5 -0.5	M₀
Final black hole spin	0.67	+0.05 -0.07	
Luminosity distance	410	+160 -180	Мрс
Source redshift z	0.09	+0.03 -0.04	

General Relativity Tests

GW150914 is the first observation of a binary black hole merger... ... and thus is the best test of GR in the strong field, nonlinear regime

Astrophysical Implications

Merger rate of stellar mass BBHs implied by the detection: 2–400/Gpc³ yr Most robust evidence for existence of 'heavy' stellar mass black holes: > 20 M_{\odot} Most likely formed in a low-metallicity environment: <¹/₂ Z_{\odot} and possibly even <¹/₄ Z_{\odot} BBH formation in dense clusters is consistent with GW150914: Clusters have typical metallicities less than Z_{\odot} to form 'heavy' stellar mass BHs

Most mergers occur outside the clusters following dynamical BBH ejection

LIGO Hanford

LIGO Livingston

Operational Under Construction Planned

Gravitational Wave Observatories

GEO600

VIRGO

LIGO India

KAGRA

Binary Neutron Star Merger Localization: Hanford-Livingston-Virgo

G

INDIA

Binary Neutron Star Merger Localization: Hanford-Livingston-Virgo-India

Astrophysical Targets for Ground-based Detectors

Binary Systems • Well-modeled

Coalescing

•Neutron stars, low mass black holes, and NS/BS systems

'Bursts'

• Unmodeled

•galactic asymmetric core collapse supernovae

- cosmic strings
- ???

Credit: AEI, CCT, LSU

NASA/WMAP Science Team

Stochastic GWs

Noise

•Incoherent background from primordial GWs or an ensemble of unphased sources

• primordial GWs unlikely to detect, but can bound in the 10-10000 Hz range

Continuous Sources

• Essentially Monotone

 Spinning neutron stars

 probe crustal deformations, equation of state, 'quarki-ness'

Milliseconds

Milliseconds

Minutes to Hours

The Gravitational-wave Spectrum

Advanced LIGO and the Dawn of Gravitationalwaves Physics and Astronomy

- LIGO has made the first measurement of gravitational wave amplitude and phase
- A merging binary black hole system has been observed for the first time
- LIGO will resume the search for gravitational waves in the Fall of 2016; Virgo will join in
- The next few years will be very interesting ones for the field of gravitational-wave science!

Caltech

Thanks to:

Con

LICE

ligo.caltech.edu

LASER INTERFEROMETER GRAVITATIONAL-WAVE OBSERVATORY

Support: National Science Foundation