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Overview

e Gravitational waves
* LIGO detectors
* Interferometer calibration
— Photon calibrator system
» Differential arm length (DARM) signal / GW signal
— DARM control loop model
— Tracking temporal variations
* Future work
— Calibration upgrades
— DARM actuation with photon calibrators
* Summary
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Gravitational Waves

e 1915: A. Einstein - general
relativity (GR);

* 1916: A. Einstein —
gravitational waves (GW);

* GR -> existence of
gravitational waves (GW),
from assymetrically
accelerating masses;

* Observable GW: inspiral
and coalescence of binary
systems such as e.g.
neutron stars, black holes or
supernova collapses.

. . > - » . - . > -
. . e % .
- -
. 3 —_—
» »
>~ = . \ »
» FR y »
- .
" o - - -

Neutron star merger animation
Credit: NASA/Goddard Space Flight Center
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Representative for Early O1
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Required calibration accuracy

 For Detecting of the GW signal from a binary black-hole with a
signal to noise ratio of 8 the required 1o errors must be under 3.5%
in magnitude [1];

* For Measuring the parameters of the GW source - 0.35%;

 The calibration goal for operations in 2015 was set to 9% in
amplitude and 5° in phase [2].

* Photon Calibrator is used as a calibration tool in the Advanced
LIGO.

1. Lindblom, Lee “Optimal calibration accuracy for gravitational-wave detectors” Physical
Review D 80.4 (2009): 042005

2. LIGO-T1300950, Calibration Group, “Calibration uncertainty budget requirements for early
aLIGO” (2013)
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Photon calibrator optical follower servo

Photon calibrator system uses an optical follower servo (OFS) that ensures a linear
response to the requested actuation:

 The OFS servo controls amount acousto-optic modulator (AOM) drive level;
* Unity gain frequency of the OFS is 100 kHz and the phase margin is 58 degrees;

e The OFS control loop has a 50 dB gain at low frequencies.
Legend: requested waveform (yellow), output waveform (green), AOM drive level.
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Beam localization: centering of the beams

Calibration errors could be introduced due to not well centered Pcal beams

Xpotlw) = — =
) Mecw*

[1]: 2P, cos 0 (I M —)

Image credit: ETM deformation
simulations [2]

Goetz, E., et al. Classical and Quantum Gravity 26.24 (2009): 245011.
2. Daveloza, H. Pablo, et al. Journal of Physics: Conference Series. Vol. 363. No. 1. IOP Publishing, 2012.
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DARM actuation function details

DARM actuation is done through the actuating the stages of
the quadruple pendulum.
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DARM model

Actuation and sensing function models are created in Matlab. This
model takes into account:

* Interferometer cavities’ frequency response;

e Light travel time in a 4km long arm;

e Electronics transfer functions (actuation and sensing);

* Anti-aliasing, anti-imaging electronics transfer functions;
» Signal up/downsampling filters;

» Digital time delays (signal processing computer cycles);
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Future research

* Calibration upgrades
— Applying varying coupled-cavity pole frequency correction
— apply full length response function
— Optimizing calibration line frequencies
« DARM actuation using photon calibrators
— much simpler actuator, no reaction mass
— may be less noisy actuator
— possible driver for 3" generation GW detectors
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DARM actuation using photon radiation pressure

* Currently the ETM is actuated with the electrostatic drive (ESD).
* We propose actuating the ETM using photon radiation pressure.
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Actuation using photon radiation pressure: simplicity of
Photon Calibrator

* The residual gas (in the vacuum) in this gap -> noise

 The ESD driver actuation strength has a slow drift due to charge accumulation on
the ETM, this requires flipping the sign of the ESD drive voltage.
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Summary

e Gravitational waves are generated by for example the inspiral and
coalescence of binary systems consisting of neutron stars or black
holes;

e There has been an indirect confirmation for existence of GWs and
LIGO is hoping to directly observe them,;

* A DARM feedback-control loop model with time-varying
parameters was shown;

* The interferometer data confirm that the AL, reconstructed by
using corrected DARM model improves calibration uncertainties;

e Future work: study topics for improving calibration of the LIGO
interferometers were discussed;

e Future work: using photon radiation pressure for controlling an
interferometer will be considered for the future scientific runs of
LIGO interferometers.
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Future work. Applying varying coupled-cavity pole correction

e Qur studies show that applying time-varying coupled cavity pole
response function improves uncertainties of our calibration;

* Applying Ko Kise @Nd K¢ s essentially applying a gain factor to a
particular output signal;

* Inthe low-latency pipeline a frequency dependent function is
applied with the use of a finite-impulse response (FIR) filter;

* At the pointitis not so clear how a new set of coefficients for FIR
filter should be calculated for a new interferometer response due
to different CC pole frequency;

* How to smoothly replace old FIR coefficients with the new ones.

LIGO-G1501451 32



= E
1 -
.L__
.-" Lo -~
-
= g L™ =

" S
- - = g =

: Em - ;_\.-'".‘

- B o .
T o = "
' P o

Mag(ratio)

mean =0.98185

std Dev = 1.3048 %
mean =0.99223

std Dev = 1.339 %

0.9 :
30 01 02 03 04 05 06 07 08 09 O. 0.95 1 1.05
Time(date) Magpnitude [Ratio]

H1:332 Hz GDS/Pcal

Phase(ratio) (deg)

5l : : ; : : : I
30 01 02 03 04 05 06 07 08 09 0
Time(date) Time (date)




H1:332 Hz GDS/Pcal

9
30 01 02 03 04 05 06 07 08 09
Date[Sep 30-Oct 09]

H1:332 Hz GDS/Pcal

9
30 01 02 03 04 05 06
Date[Sep 30-Oct 09]

07 08 09

0.95 1 1.05
Magnitude [Ratio]

By
std Dev = 0.70687 deg

0
Phase [deg]
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aLIGO DARM ~ H1 DARM (August 2, 2015)

10 H1:CAL-PCALY_RX_PD_OUT_DQ (Displacement)
GWINC: 23 W, 129 Mpc
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H1: GDS/Pcal at Calibration Line Frequency

e Uncorrected
o Corrected (Ktst and Kc)
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