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Gravitation

Newton’s
Theory

“instantaneous
action at a
distance”

Einstein’s Theory
information cannot be

carried faster than
speed of light – there
must be gravitational

radiation
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Gravitational waves - a prediction of General Relativity (1916)

Einstein in Glasgow 1933
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Gravitational Waves

4

The Einstein field equations of GR have wave solutions
► Emitted by a rapidly changing configuration of mass
► Travel away from the source at the speed of light
► Change the effective distance between inertial points —

i.e. the spacetime metric — transverse to the direction of travel

“Plus” polarization “Cross” polarization Circular polarization

…

Looking at a fixed place in space while time moves forward,
the waves alternately s t r e t c h and shrink the space



Gravitational wave sources in
ground-based detectors

Supernovae and black hole formation

Spinning neutron stars
in X-ray binaries

Pulsars; modes and instabilities of
neutron stars

Binaries of
black holes
and neutron
stars

• GWs trace the bulk
motion of their source

• Non-imaging

• Very weakly scattered /
absorbed.

• Complementary to
properties of photons
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Operation of Interferometric Gravitational
Wave Detectors
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l For best performance want arm length ~ λ/4
» i.e. for 1kHz signals, length = 75 km

l Such lengths not really possible on earth, but optical path
can be folded

l Much longer arm lengths are possible in space

Laser Interferometer

‘Fabry-Perot Michelson’
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Main limitations to sensitivity

» Photon shot noise (improves with increasing laser power) and

» radiation pressure (becomes worse with increasing laser power)

There is an optimum light power which gives the same limitation
expected by application of the Heisenberg Uncertainty Principle – the
‘Standard Quantum limit’

» Seismic noise relatively easy to isolate against – use suspended mirrors

» Gravitational gradient noise − particularly important at frequencies below ~10 Hz

» Thermal noise – Brownian motion of test masses and suspensions)

– Global network of interferometers developed

All point to long arm lengths being desirable
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The Global Network
of (initial) Interferometric Gravitational Wave Detectors

GEO600
Germany

VIRGO
Italy

LIGO

LIGO

TAMA
Japan
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Caltech

MIT

l Mission: to develop gravitational-wave detectors, and to
operate them as astrophysical observatories

l Jointly managed by Caltech and MIT; responsible for
operating LIGO Hanford and Livingston Observatories

l Requires instrument science at the frontiers of physics
fundamental limits

11

LIGO Laboratory:
two Observatories and Caltech, MIT campuses

LIGO Livingston



LIGO-G1301277

https://www.zeemaps.com/map?group=245330

The LIGO Scientific Collaboration: a group of 900+ scientists worldwide
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Virgo: The French-Italian Project
3 km armlength at Cascina near Pisa

3km beam tube
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GEO 600 : UK/German
collaboration

Initial GEO 600 strategy:
to build a low cost detector of
comparable sensitivity to the
initial LIGO and Virgo
detectors to take part in
gravitational wave searches in
coincidence with these
systems

Disadvantage:
For geographical
reasons the GEO
armlength (600m)
cannot be extended to
the 3/4kms of
Virgo/LIGO
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Science Runs: Past, Present & Future
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LIGO Detectors 2009-10 (S6)
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LIGO-Virgo detectors 2005-2011

17

atlasofthe universe.com

The Virgo Cluster
~16.5 Mpc from earth)
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Astrophysical searches
• Six completed science runs to date involving LIGO, Virgo, GEO and (and TAMA)

(>80 publications to date)
see: https://www.lsc-group.phys.uwm.edu/ppcomm/Papers.html

• Continuous waves
• Rapidly rotating deformed neutron stars

• Known radio pulsars (using radio and X-ray observations to provide signal phase) and unknown
sources

• Targeted (supernova remnants, globular clusters, galactic centre, X-ray sources)
and all-sky searches

• Compact binary coalescences
• late stage neutron star or black hole binary inspirals, mergers and ring-downs

• Transient (‘burst’) searches
• Coincident excess power from short duration transient sources
• ‘multi-messenger astronomy’: Gamma Ray Bursts, X-ray transients, radio

transients, supernova, neutrino observations

• Stochastic background
• Cosmological i.e. from inflation
• Combined background of astrophysical sources
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No detections from those runs…
Why not?

M. Evans

l First generation detectors reached
about 100 galaxies

l Events happen once every 10,000
years per galaxy…

l Need to reach more galaxies to see
more than one signal per lifetime

(considering mergers of pairs of
neutron stars)
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Advanced Sensitivity:
10x More Range makes a qualitative difference

M. Evans

l Advanced detectors will reach about 100,000 galaxies

l Events happen once every 10,000 years per galaxy…

l Order of 10’s per year

Initial Range Advanced Range
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Advanced GW detector era – the coming
years (2015-2020)
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Advanced GW detector sensitivity
2015-2020 : a significant difference

E.g.:
• Maximum sensitive ranges:

• NS-NS: 450 Mpc
• NS-BH: 930 Mpc

• Expected detection rates:
• NS-NS: 0.4 - 400 yr-1

• NS-BH: 0.2 – 300 yr-1

22
Abadie et al., arXiv:1003.2480

initial LIGO
(design)

Advanced
LIGO (design)

LIGO
(2010)

Hardware upgrades to form aLIGO, aVirgo
(...with Geo-HF and KAGRA to form  Advanced detector network)

• While observing with initial
detectors, parallel R&D led to
better concepts

•‘  Advanced detectors’ are
~10x more sensitive, will
reach about 100,000 galaxies
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Timescales Advanced LIGO

• Design began 1999 as a LIGO
Scientific Collaboration concept paper

• (Capital contributions via hardware by
UK (2003), Germany, Australia)

• Advanced LIGO Project officially
began on April 1, 2008

Image courtesy of Beverly Berger
Cluster map by Richard Powell

Initial LIGO
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How to get there:
Addressing limits to performance

• Shot noise – ability to resolve a
fringe shift due to a GW
(counting statistics)

• Fringe Resolution at high
frequencies improves as

(laser power)1/2

• Point of diminishing returns
when buffeting of test mass
by photons increases
low-frequency noise –
use heavy test masses

• ‘Standard Quantum Limit’
• Advanced LIGO reaches this

limit with its 200W laser,
40 kg test masses

24

photodiode
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Addressing limits to performance

• Thermal noise – kT of energy
per mechanical mode

• Wish to keep the motion of
components due to thermal
energy below the level which
masks GW

• Low mechanical loss materials
• Realized in aLIGO with an all

fused-silica test mass
suspension

• Test mass internal modes,
Mirror coatings engineered for
low mechanical loss

25
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• Seismic noise – must prevent
masking of GWs, enable
practical control systems

• Motion from waves on
coasts…and people moving
around

• GW band: 10 Hz and above –
direct effect of masking

• Control Band: below 10 Hz –
forces needed to hold optics
on resonance and aligned

• aLIGO uses active servo-
controlled platforms, multiple
pendulums

• Limit on the ground:
Newtownian background –
wandering net gravity vector; a
limit in the 10-20 Hz band 26

Addressing limits to performance
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The real instrument is
far more complex…

photodiode
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Existing infrastructure : 4km Beam Tubes

l Light must travel in an excellent vacuum
» Just a few molecules traversing the optical path makes a detectable

change in path length, masking GWs
» 1.2 m diameter – avoid scattering against walls

l Cover over the tube – stops hunters’ bullets and the stray car
l Tube is straight to a fraction of a cm…not like the earth’s curved surface
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29

LIGO Vacuum Equipment –
designed for several generations of

instruments
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200W Nd:YAG laser
Designed and contributed by

Max Planck Albert Einstein Institute

30

• Stabilized in power and frequency
• Uses a monolithic master oscillator

followed by injection-locked rod amplifier
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l Both the physical test mass – a free point in
space-time – and a crucial optical element

l Mechanical requirements: bulk and coating
thermal noise, high resonant frequency

l Optical requirements: figure, scatter,
homogeneity, bulk and coating absorption

Test Masses

31

• Requires the state of the art
in substrates and polishing

• Pushes the art for coating
• Sum-nm flatness over 300mm

Test Masses:
34cm  x 20cm40 kg

40 kg

BS:
37cm  x 6cm ITM

T = 1.4%

Round-trip optical
loss: 75 ppm max

Compensation plates:
34cm  x 10cm



Seismic Isolation:
Multi-Stage Solution

• Objectives:
• Render seismic noise a negligible limitation to

GW searches
• Reduce actuation forces on test masses

• Both suspension and seismic isolation systems
contribute to attenuation

• Choose an active isolation approach, 3 stages of
6 degrees-of-freedom :
• 1) Hydraulic External Pre-Isolation
• 2) Two Active Stages of Internal

Seismic Isolation
• Low noise sensors (position, velocity,

acceleration) are combined, passed
through a servo amplifier, and delivered
to the optimal actuator as a function of
frequency to hold platform still in inertial
space

32
LIGO-G1301277
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Optics Table Interface
(Seismic Isolation System)

Damping Controls

Electrostatic
Actuation

Hierarchical Global
Controls

Test Mass Quadruple Pendulum suspension
designed jointly by the UK and LIGO lab,

l Quadruple pendulum suspensions for the main optics;
second ‘reaction’ mass to give quiet point from which
to push

l Create quasi-monolithic pendulums using
fused silica fibers to suspend 40 kg test mass
» Very low thermal noise

33

Final elements
All Fused silica

LIGO-G1301277
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A few family photos:
Livingston site (mode cleaner, recycling optics)

34
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Inspecting an Input Tess Mass
surface

35
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Input Test Mass viewed from the Beam
Tube side

36
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In parallel – Advanced Virgo

37
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Advanced LIGO Evolution

Aasi et al. 1304.0670
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Current Advanced LIGO Sensitivity:
Observing Run 1

LIGO Laboratory 39

100 - 300 Hz:
h = 1 x 10-23

DL = 4 x 10-18 m

Advanced LIGO Observing Run 1 Began in September 2015



LIGO-G1301277

Advanced Virgo Evolution

Aasi et al. 1304.0670
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We are entering a very exciting time

• The baseline Advanced gravitational wave detectors are expected to
accomplish the first direct detection of gravitational waves.

41

using “low” rate,
worst noise curve

using “high” rate,
best noise curve

Projected ranges and detection rates for binary neutron star inspirals

At design sensitivity, advanced detectors have most probable detection rates of order
tens per year
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The global Gravitational Waves roadmap

We are here

From the Gravitational Wave International Committee (GWIC roadmap – available at:
http://gwic.ligo.org/roadmap/ )

(InDIGO?)

KAGRA

aLIGO

aVirgo

LCGT

GEO-HF

ET

US3G
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Sky localization with 3 sites …

43

Typical 90% error box areas for NS-NS binaries
» median > 20 sq deg

Fairhurst, CQG 28 105021 (2011)

LIGO-G1301140
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… and with 5 sites

44

c. 2020

Fairhurst  (2011)

LIGO-G1301140
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The global Gravitational Waves roadmap

We are here

From the Gravitational Wave International Committee (GWIC roadmap – available at:
http://gwic.ligo.org/roadmap/ )

(InDIGO?)

KAGRA

aLIGO

aVirgo

LCGT

GEO-HF

ET

US3G
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Einstein Telescope

Image by Nikhef
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1st, 2nd 2+, and 3rd generation

LIGO 3G
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Einstein Telescope – conception and design

l Conceptual Design Study for a future Gravitational Wave interferometer
in Europe supported by the European Commission under the
Framework Programme 7(2008-11)

l Proposed by 8 European research institutes involved in experimental
gravitational wave research.
» European Gravitational Observatory
» Istituto Nazionale di Fisica Nucleare (Italy)
» Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.,

acting through Max- Planck-Institut für Gravitationsphysik (Germany)
» Centre National de la Recherche Scientifique (France)
» University of Birmingham (UK)
» University of Glasgow (UK)
» NIKHEF (Netherlands)
» Cardiff University (UK)
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1st, 2nd 2+, and 3rd generation

LIGO 3G

Low
temperature
operation

High laser
power
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CONFLICT OF INTERESTS

High Power for low
Shot Noise: 3MW

Need Cryogenics for
lowThermal Noise:
10K

jg
in

do
.w

or
dp

re
ss

.c
om

ht
tp

:/
/s

65
8.

ph
ot

ob
uc

ke
t.c

om

w
w

w
.m

ia
m

i.c
om



LIGO-G1301277

ET „Xylophone“ Strategy

10K,  18kW, 1550nm 300K,  3MW, 1064nm

Split detector into two interferometers optimised for

Low Frequencies and High Frequencies
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ET Xylophone sensitivity
Slide: Christian Gräf, 2013, modified

Slide 52

Combining the two
interferometers

ET-LF ET-HF
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Triangular configuration
Six interferometers in total



Longer arms  & underground site

Higher power than advanced detectors (3 MW)

Cryogenic optics for low thermal noise

Split into two (Xylophone) to make Cryogenic operation  and high

laser powers compatible

Larger, heavier optics; non-Gaussian laser beams;

Laser wavelength (Silicon:1550nm; fused Silica: 1064nm)

Frequency dependent 10 dB ‚squeezing‘

Einstein telescope

What New technologies does it need?
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R&D Example – properties of Large Silicon
Substrates

Source:
http://www.iisb.fraunhofer.de/content/dam/iisb/de/images/geschaeftsfelder/hal
bleiterfertigungsgeraete_und_methoden/gadest_2011/

450 mm 300 mm

Source: http://www.quora.com/Semiconductors/How-do-silicon-boules-not-
break-off-during-semiconductor-fabrication

Large Silicon Substrates are available
but only in Czochralski grown
Crystals.
Whether the purity reachable is
sufficient is currently under study
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The global GW roadmap

We are here

From the Gravitational Wave International Committee (GWIC roadmap – available at:
http://gwic.ligo.org/roadmap/ )

(InDIGO?)

KAGRA

aLIGO

aVirgo

LCGT

GEO-HF

ET

US3G
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In Summary

l The next generation of gravitational-wave
detectors will have the sensitivity to make
frequent detections

l First data taking with the Advanced detectors
is underway

l The world-wide community is growing, and is
working together toward the goal of
gravitational-wave astronomy

Goal: Direct Detection 100 years after
Einstein’s 1916 paper on GWs ?

57


