Status of the Advanced LIGO Project

Jameson Graef Rollins

LIGO Laboratory California Institute of Technology

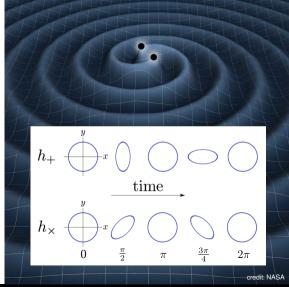
ICALEPCS 2015

Melbourne, Victoria, Australia October 19, 2015

LIGO-G1501274

Gravitational Waves

Predicted by Einstein in 1916 as a consequence of the General Theory of Relativity

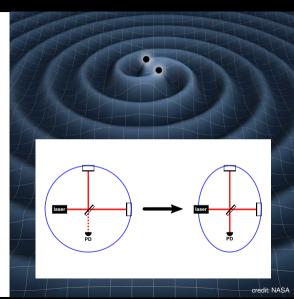

Generated from changing quadrupolar mass moments

Produce transverse strain:
$$h = \frac{\Delta L}{L}$$

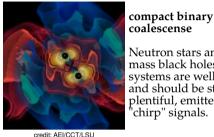
Two polarizations: h_+ and h_\times

Travel at the speed of light

Weakly interacting with matter



Gravitational Waves


Prevailing concept for direct measurment of gravitational waves:

look for deviations in light travel time due to passing gravitational waves

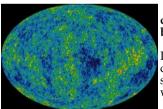
Interferometric detectors (e.g. LIGO) use light interference to measure differential length changes \rightarrow

coalescense

Neutron stars and stellarmass black holes in binary systems are well-modeled and should be strong, plentiful, emitters of "chirp" signals.

credit: NASA/JPL-Caltech/Univ. of Minn

core-collapse supernovae


Weak and not well modeled, core-collapse supernovae could provide short bursts that could be detectable from nearby galaxies.

credit: Casey Reed, Penn State

spinning neutron stars

Neutron stars with "bumps" and/or strong magnetic fields could produce long-lasting, single-frequency waves.

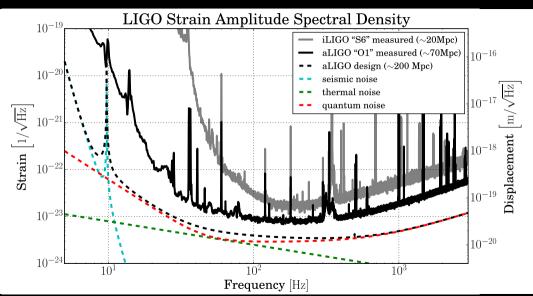
credit: NASA/WMAP

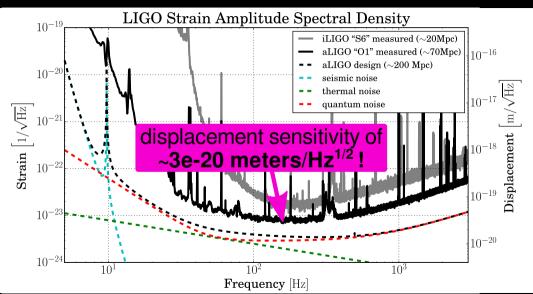
cosmic gravitational-wave background

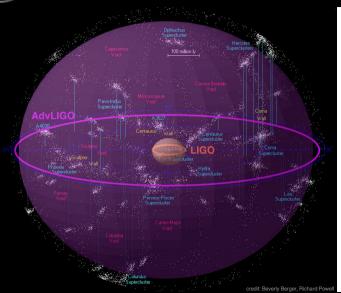
Inflation after the Big Bang could have produced a stochastic gravitationalwave background.

The LIGO Laboratory

World Wide Network of LIGO-like Detectors




The Advanced LIGO Detectors


Detector Strain Sensitivity

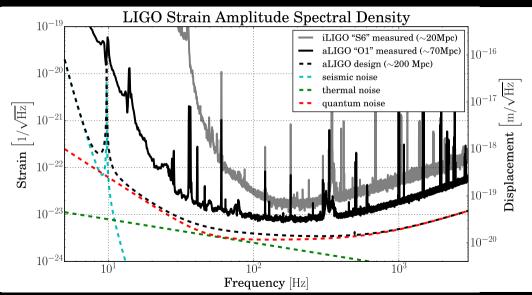
Detector Strain Sensitivity

Potential Detection Rates

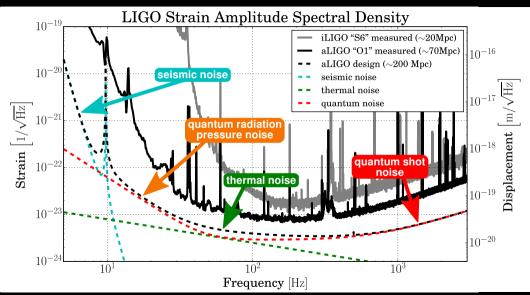
At full/design sensitivity, Advanced LIGO expects to see a neutron star binary merger rate of...

40 events per year!

Not to mention other similar sources at similarly appreciable rates:


Table 5. Detection rates for compact binary coalescence sources

IFO	Source ^a	$\dot{N}_{\rm low}~{ m yr}^{-1}$	$\dot{N}_{\rm re} \ { m yr}^{-1}$	$\dot{N}_{\rm high}~{ m yr}^{-1}$
	NS-NS	2×10^{-4}	0.02	0.2
	NS-BH	7×10^{-5}	0.004	0.1
Initial	BH-BH	2×10^{-4}	0.007	0.5
	IMRI into IMBH			<0.001 ^b
	IMBH-IMBH			$10^{-4 d}$
Advanced	NS-NS	0.4	40	400
	NS-BH	0.2	10	300
	BH-BH	0.4	20	1000
	IMRI into IMBH			10 ^b
	IMBH-IMBH			0.1 ^d

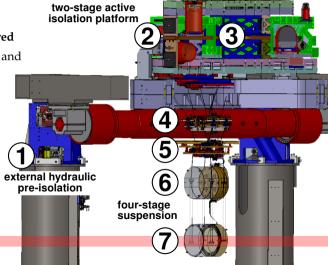

Class. Quant. Grav, 27 (2010) 173001

Status of the Advanced LIGO Project

Fundamental Noise Limits

Fundamental Noise Limits

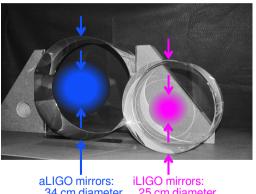
Seismic Isolation


seismic noise

Ground motion at 10 Hz: $1x10^{-9}$ m/Hz^{1/2}

>10 orders of magnitude supression required

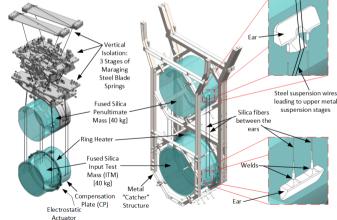
Test masses suspended from 7 stages of active and passive seismic isolation.



Optics and Suspension Systems

quantum radiation pressure noise

Increase optic mass to reduce effects of quantum radiation pressure.

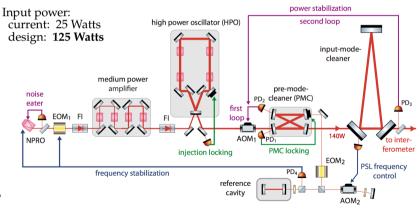


34 cm diameter 40 kg mass

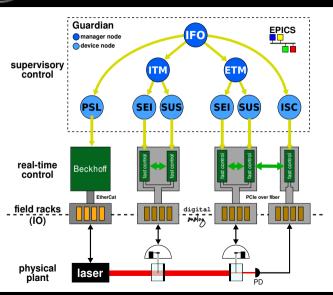
25 cm diameter 10 kg mass 12 cm beam 8 cm beam

thermal noise

Increase optic/beam spot diameter to increase area over which thermal noise is integrated.

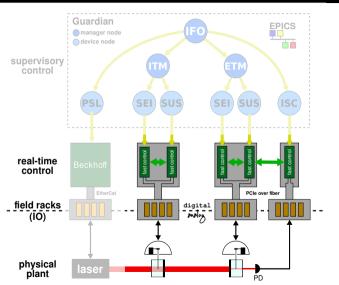


Pre-stabilized Laser

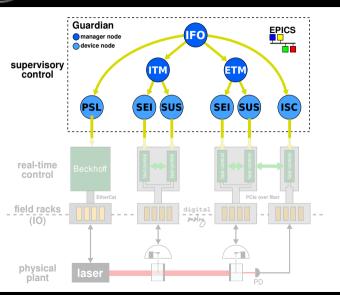


quantum shot noise

Increase laser power to reduce quantum shot noise from photon counting statistics.

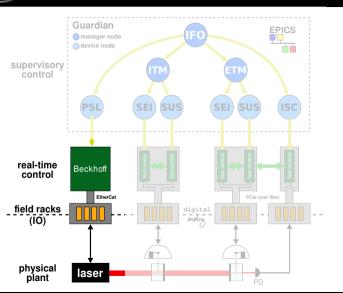

Interferometer Controls Overview

Advanced LIGO employs a hierarchical control structure for the full interferometer

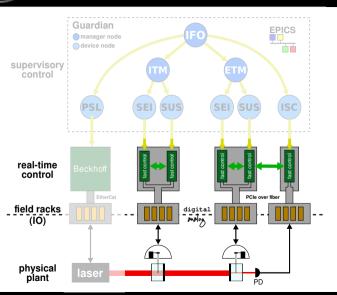

Interferometer Controls Overview

Fast feedback loops control all degrees of freedom (DOF) of the interferometer at the *microscopic* level via a custom built, modular, distributed, real-time digital control system (**RTS**).

Readbacks and settings of the RTS are exposed through EPICS for supervisory control and operator interfaces.

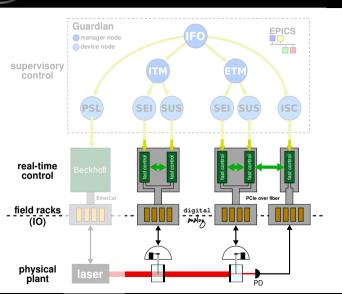


Supervisory control, i.e. automation, handled by a new hierarchical, modular, distributed, state machine platform called **Guardian**.


Interferometer Controls Overview

Additionally, a couple of auxiliary slow control systems are used:

- Beckhoff TwinCAT (EtherCAT) with custom TwinCAT EPICS IOC bridge
- Acromag (Modbus)


Fast Feedback Control

Fast feedback control is the heart of aLIGO controls

Fast

Fast Feedback Control

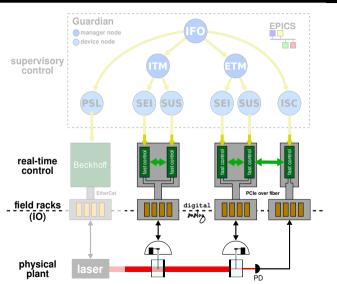
Hundreds of feedback loops in the interferometer:

suspensions

active damping of 3-24 DOF per suspension ($\times 18$)

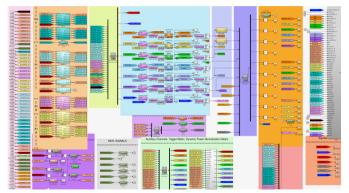
seismic isolation

active damping and isolation of 18 DOF per seismic platform $(\times 9)$


length control

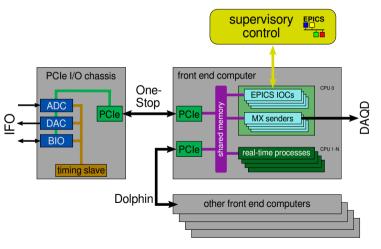
5 global length DOF, 10 global angular DOF

many other auxiliary DOF...


Fast Feedback Control

Overall sampling rate of 64 kHz.

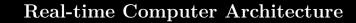
Control loops run from $2k \rightarrow 32k~Hz$

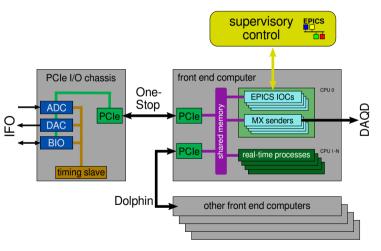

Simulink code for interferometer length DOF control

Controler signal flow and logic is drawn in MATLAB Simulink.

Real-time code generator (RCG) parses Simulink files to produce real-time code.

NOTE: This is a *custom* Simulink parser/code generator, not MATLAB.

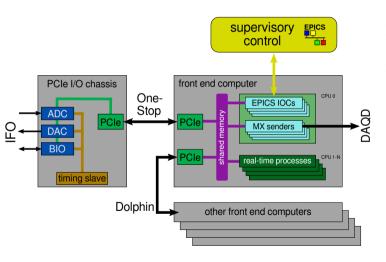

Real-time Computer Architecture



Real-time code is compiled into Linux kernel modules.

Linux kernel with custom patch loads modules and gives them each full control of a single CPU core.

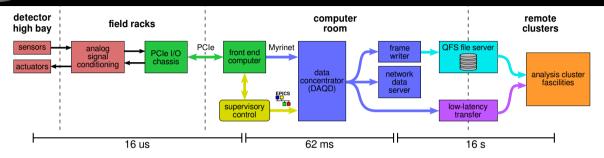
CPU-0 is reserved for Linux user-space processes.


System is highly modular

Multiple real-time modules can be run on a single host.

Real-time modules on a single host can communicate via shared memory.

Modules on different hosts communicate via Dolphin PCIe shared memory network.


Real-time Computer Architecture

Linux user-space process interfaces to the real-time modules:

- EPICS IOC processes provide supervisory control interfaces
- mx-stream processes send fast and slow data over a dedicated network to the data acquisition host

Data Acquisition Pipeline

Front end ADCs and DACs operate at 64 kHz.

16-bit ADCs 18-bit DACs DAQD recieves data from all front end controllers and assembles into $^{1}/_{16}$ -second frames.

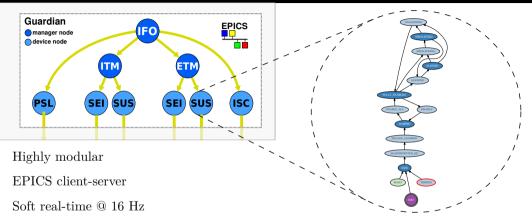

 ~ 200 k slow channels (16 Hz) ~ 7 k fast channels (>512 Hz)

Overall 10 MB/s data rate (compressed)

Low latency (reduced channel count) frames arrive at analysis clusters in ~ 16 seconds.

Full frames replicated analysis cluster:

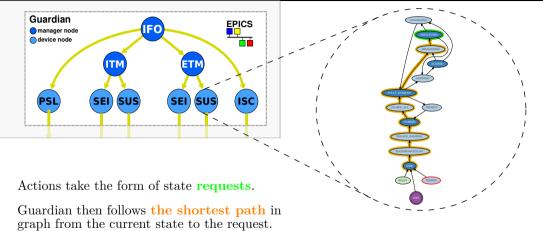
- \blacksquare on-site: ~ 5 minutes
- remote: ~ 30 minutes

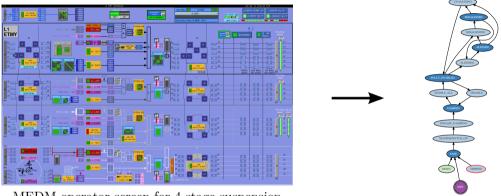


Guardian is aLIGO's new automation platform:

Guardian is a distributed hierarchy of automaton state machines

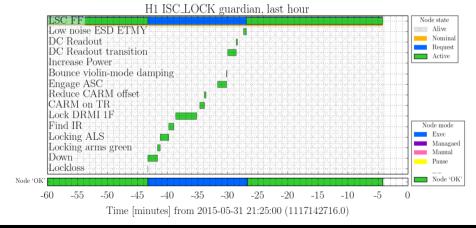
Individual nodes oversee specific sub-domains of the instrument.


A hierarchy of nodes control the full interferometer.


Python based

Designed for ease of commissioning: usercode can be reloaded on the fly

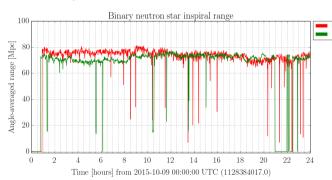
Each system is represented by a **state graph**.


MEDM operator screen for 4-stage suspension

Guardian abstracts away the details and complexity of the control and reduces it to a finite set of desired system states.

Guardian Lock Acquisition

Guardian manages the complex **lock acquisition** procedure that closes and tunes all feedback loops and brings the instrument to its highest sensitivity level.



Observatory Status

aLIGO started first Observing run on September 18, 2015.

The LIGO detectors are now the most sensitive gravitational-wave detectors ever made, by more than a factor of three.

A week of aLIGO is worth more than a *year* of iLIGO (in terms of time-volume product).

At full design sensitivity, aLIGO will probe $1000 \times$ more volume than iLIGO.

Many more detector improvements and observing runs to come...

