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Abstract

Seismic noise is the most relevant noise source for LIGO at low frequencies, and it
represents a main limit in the possibility of gravitational wave detection. In order to
reduce this noise, different active and passive isolation systems have been developed.
However present devices are affected by some limitations that should be overcome.
One of these is the fact that seismometers used in active isolation can’t distinguish
ground motion from ground tilt at low frequencies. In order to solve this problem the
design for a tilt-free seismometer was developed in the past years and a prototype of
this seismometer is being built. In this paper the seismometer performance is described
and my work on the prototype seismometer is presented.
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1 Introduction

In this section I’m going to describe the motivations to build a tilt-free seismometer and how
this seismometer can be built.

1.1 Seismic noise and isolation

LIGO is a gravitational wave observatory; it is essentially a Michelson interferometer with
two arms of 4 km length. As a laser interferometer, LIGO’s sensitivity is limited by three
main noise sources:

• Seismic noise: noise related to vibrations of the laboratory.

• Thermal noise: noise generated by dissipation in the mirrors.

• Shot noise: noise due to fluctuation of photon number in the laser beams.

Figure 1.1: LIGO noise sources

There are many other contributions to the sensitivity but here we’re mostly interested in
seismic noise.
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1.1.1 Seismic noise

As shown in figure 1.1, seismic noise is a low frequency limit for the interferometer.
Seismic noise comes from geological activity of the Earth’s crust, atmospheric phenomena
and human activity. Above ∼1 Hz the vibration spectra for quiet sites is given by (f is the
vibration frequency):

xG = 10−8
(

1 Hz

f

)2
m√
Hz

(1.1)

This affects the mirrors of the interferometer making them vibrate as the ground moves. As
the interferometer needs to be capable to detect waves with an amplitude of h ∼ 10−21/

√
Hz

those vibrations are not acceptable. Thus, considering that the arms of the interferometer
are 4 km long, vibrations must be suppressed by at least eight orders of magnitude at 10 Hz
and six orders of magnitude at 100 Hz .

1.1.2 Passive and active isolation at LIGO

At both LIGO sites many optics need to be isolated from ground motion. This is achieved
by using systems which provide active and passive isolation.

• Passive isolation consists of the use of structures with intrinsic mechanical properties
that make the instruments less sensitive to ground vibrations. It is realized through
the use of multiple stages platforms (different stages separated by spring assembly) for
the optics and by suspending the optics themselves.

• Active isolation consists of the use of inertial sensors (e.g. seismometers) to measure
ground motion (in a feedforward scheme) and platform’s motion (in a feedback scheme)
and then generate a counter-motion to keep the interferometer components still.

1.2 The tilt coupling problem

The use of seismometers in active isolation is limited at low frequencies by tilt of the ground,
which occurs mostly in windy times.

1.2.1 The problem

Basically a seismometer is made of a case connected to the ground, containing a mass
mounted on a spring-damper, which moves with respect to the case as the ground moves.
The measurement of the relative motion (δ) of the mass to the case gives us the spectrum
of ground motion. A simple seismometer is shown in figure 1.2:

If k is the spring constant, γ the damping constant and x the ground displacement, the
equation of motion for the mass m is given by:

mδ̈ + γδ̇ + kδ = mẍ (1.2)
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Figure 1.2: A simple seismometer. [4]

Thus the transfer function of the seismometer in the Fourier domain (where the frequency
is called ω) results in:

δ̃

x̃
=

−mω2

k + iγω −mω2
(1.3)

If we now introduce a ground tilt of a small angle θ the equation of motion for m becomes:

mδ̈ + γδ̇ + kδ = mẍ+mgθ (1.4)

and we obtain:

δ̃ =
−mω2

k + iωγ −mω2

(
x̃− g

ω2
θ̃
)

(1.5)

It follows that ground tilt cannot be distinguished from ground displacement, and if we
calculate the ratio between the tilt and translation contributions to the read-out of the
sensor we find:

∂δ̃
∂θ̃

∂δ̃
∂x̃

= − g

ω2
(1.6)

Thus at low frequencies (typically below 100 mHz) the tilt contribution dominates over the
translation contribution and the seismometer signal is too contaminated by ground tilt to
be used.

1.2.2 Possible solutions

An approach to solve this problem could be to measure tilt independently and then subtract
it from the seismometer measurements. However, this approach is limited by the tilt sensor
noise and by errors coming from a subtraction of two large numbers.
Alternatively, we can think of building a seismometer that is made in the first place to
mechanically filter out the effect of ground tilt. This has the advantage that ground dis-
placement could be determined by only one measurement, not two.
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A way to filter out tilt is to use suspended platforms. This approach is based on the principle
that a mass suspended with an infinitely soft wire is unaffected by a tilt of the suspension
point. Relying on this, tilt transmitted to the sensor can be reduced by placing it on a
suspended structure (fig. 1.3), as explained by Matichard et al [7].

Figure 1.3: Placing a seismometer on a suspended structure reduces tilt transmission.

1.3 A new instrument to filter tilt

1.3.1 The tilt-free seismometer

Besides using a suspended platform to solve the tilt problem, a highly sensitive seismometer
can be employed in order to have a very accurate measurement of ground horizontal motion.
A seismometer with that high sensitivity has been designed as an inverted pendulum and a
Michelson interferometer readout. Such a seismometer can be implemented in a suspended
structure as in the CAD model in figure 1.4. The suspended platform, called “rhomboid” (in
blue), is suspended from above using two thin steel wires (yellow) attached to an aluminum
frame (red). Placed at the center of mass of the rhomboid is the inverted pendulum (green).
The Michelson interferometer is built on top of the rhomboid and inverted pendulum and it
measures the relative distance between these two. From this measurement we can extract
the spectrum of ground motion.

1.3.2 Sensitivity limits

Both rhomboid and seismometer translation sensitivity are limited by different factors.
The sensitivity limits basically come from the frequency response of an harmonic oscillator
to the motion of the suspension point. Consider the seismometer analyzed in section 1.2.1.
introducing the coordinate x′ for the position of the mass (instead of the relative coordinate
δ). If we calculate the transfer function from ground motion to mass displacement we find:

x̃′

x̃
=

ω2
0 + i γ

m
ω

ω2
0 + i γ

m
ω − ω2

(1.7)

page 5



LIGO-T1500485–v1

where ω0 is the harmonic oscillator resonant frequency. The shape of this transfer function
is given in figure 1.5 and the shape for a pendulum frequency response to ground translation
is the same.

Consider now our rhomboid. It was shown by Matichard et al. ([7]) that a structure like
the rhomboid is sensitive to ground translation in the frequency region between its tilt and
its pendulum resonant frequencies (see fig. 1.6). As a matter of fact, below the tilt reso-
nant frequency, as the ground tilts, the rhomboid also tilts and it is not possible to measure
ground horizontal motion: the seismometer just acts as a tilt sensor. Above the tilt res-
onant frequency tilt-coupling is attenuated, while below the pendulum resonant frequency
the rhomboid motion follows ground translation. Thus in the region between these two fre-

Figure 1.4: Tilt-free seismometer CAD. [5]

Figure 1.5: Frequency response of an harmonic oscillator to ground motion. [3]
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Figure 1.6: The curve of interest here is the red curve, which shows the transfer function of
a suspended platform (i.e. the rhomboid) from suspension point to inertial sensor’s output.
[7]

quencies the seismometer is a good seismometer. Above the pendulum resonant frequency,
because of the pendulum response to suspension point translation, the rhomboid can’t follow
ground motion and the seismometer has nothing to measure.
Thus, the rhomboid tilt and pendulum resonant frequencies put respectively a lower and
upper limit to the frequency range in which we can have an accurate measurement of ground
horizontal motion.

For what concerns our seismometer, from equation 1.3 we find that the seismometer transla-
tion sensitivity is low below the harmonic oscillator’s resonant frequency. Thus a calibration
needs to be done to make the seismometer frequency response flat, but this inevitably de-
creases SNR below the natural frequency.

From the above it follows that in order to increase the performarce of our tilt-free seismome-
ter we want to reach very low (∼40 mHz) rhomboid tilt and inverted pendulum resonant
frequencies.

1.3.3 Installation in LIGO

The tilt-free seismometer presented has its future location in LIGO suspended next to the
test masses. It will directly measure and control the ISI stage 2 table motion.
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2 Summer project

In this section I’m going to explain my work on a prototype for the tilt-free seismometer
presented in the previous section. This work essentially focused on three aspects: determi-
nation of the rhomboid resonant frequencies, determination of the parameters needed for
the inverted pendulum (IP) to reach a resonant frequency of ∼40 mHz, and temperature
stabilization of the seismometer.

2.1 Rhomboid resonant frequencies

To characterize the rhomboid of the prototype structure it is necessary to measure its tilt,
pendulum and yaw resonant frequencies. There will be two tilt and two pendulum resonant
frequencies, as the rhomboid can oscillate along its long or its short side. Particularly, as ex-
plained in section 1, the seismometer sensitivity to ground motion depends on the rhomboid
tilt and pendulum resonant frequencies, thus the determination of both is essential to act on
the structure to increase the seismometer sensitivity region. In this paragraph the procedure
used to measure the rhomboid resonant frequencies and the results for this measurement are
shown.

The setup used is shown in pictures 2.1. Two mirrors are placed on the opposite short sides
of the rhomboid and, correspondingly, on one side of the frame we have a fiber coupled laser,
a mirror and a quadrant photodiode (QPD), while on the other we have an instrument with
a LED and two photosensors. An aluminum sheet is placed on one of the two long sides of
the rhomboid and correspondingly another LED and photosensors are placed on the frame.
The QPD senses the rhomboid motion in the following way: the beam coming from the laser
is reflected from the first mirror (on the frame) so that it can hit the center of the other
mirror (on the rhomboid), be reflected again, and finally hit the QPD. As the rhomboid
oscillates, the laser beam spot on the QPD moves too and the resonant frequency can be
measured from the QPD output voltage.
For what concerns the photosensors we have that they receive the LED light reflected from
the mirror (or the aluminum sheet) placed on the rhomboid. As the rhomboid oscillates
the amount of light received by the photosensors changes too and the photosensors output
voltage gives us the oscillation resonant frequency.
Resonant frequencies are measured with an oscilloscope and confirmed with a spectrum an-
alyzer.

Before measuring the rhomboid resonant frequencies a QPD calibration has to be done in
order to determine the relation between the QPD output voltage and the displacement input.
In the following paragraph the procedure and results for this calibration are shown.

2.1.1 QPD calibration

The QPD used in the resonant frequencies measurement has three voltage outputs: an X
output proportional to the difference between the power on the right and left sides of the
QPD; an Y output proportional to difference between the power on the top and bottom sides
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(a) (b)

Figure 2.1: Setup for rhomboid resonant frequencies measurements

of the QPD; an S output proportional to the total power on the QPD.
The procedure used for the calibration consisted of centering the laser beam on the QPD,
then moving the QPD from left to right in a 3 mm range along the horizontal axis (using
a sliding stage and a micrometer), and, in this range, take 30 measurements of the QPD X
output using a digital multimeter. The procedure was then repeated moving the QPD along
the vertical axis and taking 30 measurements of the QPD Y output.
Since the beam is gaussian, the expected calibration curve has the shape of an error function.

• X axis calibration

Figure 2.2(a) shows the X axis QPD calibration curve and a fit is made in the lin-
ear region. Error bars were estimated from the fluctuations of the output voltage .

The fit in the linear region with the function:

f(x) = ax+ b (2.1)

returns: a = (2.34 ± 0.02) V/mm; b = (−10.942 ± 0.004) V, where a gives us the
Volts/displacement ratio.

The plot in figure 2.2(b) shows the fit of the QPD calibration curve with the error
function:

f(x) = a1 + b1 · erf(c1x+ d1) (2.2)

The QPD X output is a voltage given by:

∆V = α(Pright − Pleft) (2.3)
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(a)

(b)

Figure 2.2: X axis QPD calibration curves.

where α is a constant and Pright−Pleft is the difference between the power on the right
and left sides of the QPD. From the gaussianity of the beam it follows:

∆V = αP0 · erf

(√
2(x− x0)
wx

)
(2.4)

where P0 is the total power transmitted by the beam, x is the distance from the beam’s
center to the QPD center, x0 is an offset and wx is the beam radius. Equation 2.4 can
then be used together with fit results to obtain:

wx = 1.14 mm
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x0 = 4.81 mm

• Y axis calibration

Figures 2.3(a) and 2.3(b) show the fit in the linear region and the error function fit for
the Y axis calibration, respectively.

(a)

(b)

Figure 2.3: Y axis QPD calibration curves.

The first fit with the function:
f(x) = px+ q (2.5)

returns: p = (2.89 ± 0.03) V/mm; q = (−28.647 ± 0.003 )V, where p gives us the
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Volt/displacement ratio.

The non-linear fit is made with the function:

f(x) = a2 + b2 · erf(c2x+ d2) (2.6)

The expression for the QPD’s Y output is analogous to the one for the X axis:

∆V = αP0 · erf

(√
2(y − y0)
wy

)
(2.7)

and form fit results, in this case, we obtain:

wx = 1.08 mm;
y0 = 9.93 mm

We notice that wx and wy are both compatible with the beam spot size we observed in
laboratory.

2.1.2 Measured resonant frequencies

In order to measure the rhomboid resonant frequencies, the oscillation mode of interest was
excited and the resonant frequency measured as explained above. The photosensors were
used for the measurement of the tilt and pendulum resonant frequencies, while the QPD was
used to measure the yaw resonant frequency. Results are shown in table 2.1.

Mode Frequency 1 (mHz) Frequency 2 (mHz)
tilt 108±1 2352±28

pendulum 645±5 615 ± 5
yaw 139.5±0.5

Table 2.1: Rhomboid resonant frequencies. The second column (Frequency 1) shows the
frequencies for oscillations along the long side of the rhomboid, while the third one (Frequency
2) shows the frequencies for oscillations along the short side.

The oscillation modes of interest are the tilt and pendulum resonant frequencies shown in the
second column. Results show that a low tilt resonant frequency is reached, but in order to
reach an even lower one (∼ 40 mHz) we need to increase the distance between the rhomboid
center of mass and the suspension point.

2.2 The inverted pendulum

In this section the procedure used to determine the IP parameters that could reduce its
resonant frequency to as low as 40 mHz is shown.
To approach this problem we can start by considering a simple shape of the IP and then
apply the results obtained to the final shape of IP.
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2.2.1 A simple model of the inverted pendulum

A really simple IP is made of a flexure at the bottom, a cylindrical rod and a spherical mass
on top as in figure 2.4.
The resonant frequency for this IP is given by:

f0 =
1

2π

√
k

I
− g

I
[m1

l1
2

+m2

(
l1 +

l2
2

)
+m3(l1 + l2 + r3)] (2.8)

where k is the IP spring constant, while r1, l1, m1 and r2, l2, m2 are respectively the bottom
and top cylinder radius, length and mass. I is the IP moment of inertia about the axis
perpendicular to the pendulum and passing through the point of rotation.

Figure 2.4:

As from equation 2.8 the IP resonant frequency depends on its spring constant k. Thus, in
order to reach a very low resonant frequency, k needs to be small. k depends on the bottom
cylinder (flexure) parameters, therefore those parameters have to be determined.

In order to do this, an IP with the described shape was modeled using Comsol and its spring
constant was calculated for different reasonable parameters of the bottom cylinder. The IP
was built of stainless steel and with a total length of 41 cm, which is a good estimate for the
real IP length.
The procedure used to calculate k consists in applying a force F = 1 N to the top of the
sphere, perpendicular to the IP and then measure the IP displacement x on Comsol, as in
figure 2.5. In the absence of gravity and in steady-state (as on Comsol) the equation of
motion for the IP with the application of F is:
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− kθ + (l1 + l2 + 2r3)Fcosθ = 0 (2.9)

where θ is the angular displacement of the IP. In the small angles approximation we obtain:

k =
(l1 + l2 + 2r3)

2F

x
(2.10)

Thus x gives us k.

Figure 2.5: IP displacement on Comsol after the application of a force of 1 N to the top of
the sphere.

After the determination of k for different reasonable parameters we can use equation 2.8 to
determine the resonant frequency reached by the IP using each of them. Then we can choose
the parameters which lead to the lowest f0.
The best parameters selected for the IP with this method are: r1 = 0.7 mm; l1 = 3 cm.
With those parameters the sphere mass needed to reach a resonant frequency of 40 mHz is
expected to be m3 ' 1.2 kg.

In any case, there is a limitation in trying to obtain a very small k, which is due to buckling.
Comsol allows the study of linear buckling and returns the critical load factor (CLF), which
is the ratio of the buckling loads to the applied loads. With the selected parameters Comsol
returns CLF=1.03. This value is close to CLF=1 whereby significant buckling is expected,
therefore we cannot push the cylinder dimensions too far: the selected parameters are already
very near to the critical point.
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2.2.2 Model for the final inverted pendulum

The final IP shape is shown in a Comsol model in figure 2.6(a). The IP has three legs of
stainless steel, each with two identical flexures, and the top mass, of aluminum, has the
shape of a parallelepiped. This parallelepiped is cut from the top part of the rhomboid, as
in the final set up the relative distance between the rhomboid and the IP top mass is exactly
what the Michelson interferometer measures. The number of legs is chosen in order to make
the block stable, as it should not tilt, while their position is chosen in order to have a softer
oscillation along the long side of the IP, which is the oscillation of interest. Moreover, each
leg has a double flexure instead of just one in order to make the IP more sensitive to ground
motion.
This structure is quite complex to analyze directly, thus we can start considering a more
simple IP with the same block mass on top and just one leg as in figure 2.6(b).

The resonant frequency for this inverted pendulum is:

f0 =
1

2π

√
k

I
− g

I

[
m1(2l1 + l2) +m2

(
l1 +

l2
2

)
+m3

(
2l1 + l2 +

c3
2

)
+m4

(
2l1 + l2 + c3 +

c4
2

)]
(2.11)

(a) (b)

Figure 2.6: Inverted pendulum models on Comsol
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Parameter Length (cm)
h 40
r2 0.5
a3 2.032
b3 4.064
c3 1.27
a4 9.8
b4 14.9
c4 1.27

Figure 2.7: Inverted pendulum parameters

where we used the same notation for the cylinders as in the previous paragraph while a3,
b3, c3 and a4, b4, c4 are respectively width, depth and height for the first and the second
block (see fig. 2.7). We are also going to call h the total length of the leg (including the first
block1).

The moment of inertia, I for the oscillation along the long side of the block is:

I =
1

2
m1r

2
1 +

1

6
m1l

2
1 +m1

(
l1
2

)2

+
1

4
m2r

2
2 +

1

12
m2l

2
2 +m2

(
l1 +

l2
2

)2

+m1

(
3

2
l1 + l2

)2

+

+
1

12
m3

(
b23 + c23

)
+m3

(
2l1 + l2 +

c3
2

)2
+

1

12
m4(b

2
4 + c24) +m4

(
2l1 + l2 + c3 +

c4
2

)2 (2.12)

Some of these parameters are fixed by the dimensions of the rhomboid and they are shown
in the table in figure 2.7.

We can do some considerations to use equation 2.11 for our three-legs inverted pendulum.
We can think of the three legs of the inverted pendulum as three springs in parallel, each
with a spring constant k′. Thus the three legs are equivalent to one leg with spring constant
k = 3k′.
Another consideration we have to do in order to use equation 2.11 for our three-legs inverted
pendulum is that if we pass from three to one leg, in order to conserve the mass and moment
of inertia of the structure we have to use a thicker leg, for example of double radius.
This method is, of course, an approximate method, but it can give us a coarse estimate of

1This block will be necessary to hold the legs in the real final IP
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the resonant frequency of the final inverted pendulum. Using this estimate we can select the
IP parameters needed to reach a reasonant frequency of ∼ 40 mHz.

2.2.3 Parameters determination

Different parameters for the legs flexures were chosen based on the results from the simple
IP model in previous paragraph. The flexure length was chosen as l1 = 3.2 cm while the
selected radii were: r1 = (1; 0.7; 0.5) mm.
k = 3k′ was both determined with Comsol and experimentally doing the following:

Observation: consider a single leg with a double flexure. Let x be the displacement obtained
applying an horizontal force on the top of the leg, assuming that the top part of the leg can
only roll (as it happens in the final IP). This displacement is half of the displacement we will
obtain considering a single flexure leg of half height, while applying the same force on top of
it. This means that the spring constant k′ of a double flexure leg is k′ = 2k′′ where k′′ is the
spring constant of the single flexure leg of half height. It follows that the spring constant of
the three-legs inverted pendulum is k = 6k′′.

• k′′ from Comsol

k′′ can be obtained with Comsol building a single flexure stainless steel structure of
half the total leg height (let it be l) and applying a horizontal force on top of it as in
figure 2.8(a). k′′ is given by:

k′′ =
l2F

x
(2.13)

• k′′ determined experimentally

In order to measure k′′ experimentally for each selected rod, an inverted pendulum
made of a single flexure in stainless steel (of 3.2 cm length and selected radius), two
pin-vises and a top mass was assembled. By placing the IP in horizontal position
and measuring the mass displacement caused by gravity (see fig. 2.8(b)), k′′ can be
calculated.

Results for k′′ calculated with Comsol and experimentally are shown in table 2.2.

Diameter (mm) Measured k′′ (Nm) Comsol k′′

0.98 0.295 0.405
1.40 1.188 1.559
1.99 1.507 6.002

Table 2.2: Values of k′′ determined experimentally and using Comsol
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(a) (b)

Figure 2.8: Determination of k′′ with Comsol and experimentally

The table shows a discrepancy between measured k′′ and k′′ from Comsol. Probably this dis-
crepancy is due to the fact that in the real inverted pendulum the use of pin-vises generates
clamping of the rod, while in the Comsol model this clamping is absent. Results also suggest
that this clamping gets more significant as the rod radius increases. The discrepancy may
also be related to the fact that the material we are using has not the same exact properties
as the one used by Comsol. In any case, we decided to use the measured values for k′′, as
they are more reliable.

The inverted pendulums built with the three different rods are also used to get a coarse
estimate of the quality factor for the final three-legs inverted pendulum.
The quality factor (Q) for our inverted pendulum is mostly related to structural damping,
which, together with buckling, represents a limit in the achievement of a very low resonant
frequency: if Q is too low there aren’t oscillations, and the IP can’t be used. It follows that a
quality factor estimate is essential for the inverted pendulum parameters choice. The setup
used to measure the quality factor for the three inverted pendulums is shown in figure 2.9.
A LED light hits the IP top mass and the reflected light is detected by two photosensors.

When a small force is applied to the top mass the pendulum starts oscillating and the mass
displacements can be read on an oscilloscope connected to the photosensors. The resonant
frequency can be directly measured with the oscilloscope, while the quality factor can be
calculated. As a matter of fact, our IP impulse response can be approximated by:

h(t) = cos(2πf0t) · exp(
−πf0t
Q

) (2.14)
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Figure 2.9: Quality factor measurement setup

where f0 is the natural frequency of the IP.
The times at which the peak amplitude occurs are given by tj = j

2f0
.

From these expressions we obtain:

h(tj + 2)

h(tj)
= e

−π
Q (2.15)

Thus, Q can be deduced from a measurement of the amplitude of the oscillation peaks.

The quality factor was calculated for the three inverted pendulums and, using that value, Q
was deduced for the final IP with the following considerations.
The main dissipation mechanism in our inverted pendulums is structural damping. When
this structural damping occurs the IP spring constant gets an imaginary term:

k → k(1 + iφ) (2.16)

and the quality factor can be approximated as ([8]):

Q ≈ 1

φ

ω2
0

ω2
0 + g

l

(2.17)

where ω0 is the angular natural frequency.
Thus, we can calculate φ from the measured Q and multiply this value by 6 in order to have
φ′ for our three legs IP. Then equation 2.17 can be used to estimate the quality factor at 40
mHz.

Results for φ were φ = 0.066 using the 0.98 mm diameter rod; φ = 9.18 · 10−3 for the 1.4
mm diameter rod and φ = 0.022 for the 1.99 mm diameter rod.

These results determine the choice of the 1.4 mm diameter rod, as it is the one that leads to
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Figure 2.10: Final IP resonant frequency dependence on the top mass

the highest quality factor. Also, the 0.98 mm diameter rod is too narrow, and it is subject
to buckling for values of the mass on top of 1.2 Kg (value estimated from the simple inverted
pendulum model).

At 40 mHz the quality factor for the selected rod results in Q ≈ 0.047 which means that the
IP is overdamped. However, in this simulation we assumed to have clamping of the rods,
which leads to high structural damping, while in the final IP this clamping will be avoided
as pin vises will not be used. We can then expect this Q to be higher in the final IP.

Using equation 2.11 we can also calculate the expected required mass on top of the IP
to reach 40 mHz with the value of k′′ from figure 2.7. As shown in figure 2.10 this mass
results m4 ' 1.4 kg.

We can then conclude that the selected parameters for our IP are the ones in table 2.3.

Parameter Value (cm)
r1 0.07
l1 3.2
r2 0.5
l2 31.06

Table 2.3: Final inverted pendulum parameters
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Figure 2.11: A prototype of the inverted pendulum

2.2.4 Prototype of the IP

In order to verify experimentally the possibility of having an inverted pendulum with a
resonant frequency of 40 mHz with the selected leg parameters, such a pendulum was built
and it is shown in figure 2.11.
The block of dimensions a3, b3, c3 is not included in this prototype pendulum, and also the
top mass is smaller than the one that will be used for the final inverted pendulum, but these
differences are not too relevant in order to explore the possibility of reaching the desired 40
mHz.

The resonant frequency for the built inverted pendulum was measured using the procedure
described in the previous paragraph for different masses added to the top. Measured resonant
frequency values are plotted in figure 2.12. The data plot does not exactly match the
resonant frequency predicted by equation 2.11. However, that equation is just an estimate
of the resonant frequency and, also, to increase the mass on top of the IP we used aluminum
blocks, thus the moment of inertia and length of the IP were not kept constant as in equation
2.11.

Low resonant frequencies (∼ tens of mHz) were reached and, at those frequencies, a small
mass variation lead to an unstable state. This shows that, for the built IP, a resonant
frequency of ∼40 mHz can be achieved.
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Figure 2.12: Prototype inverted pendulum measured resonant frequency vs. added mass

2.3 Temperature stabilization of the seismometer

In order to have very accurate measurements of ground displacements it is necessary to have
the seismometer’s temperature constant. As a matter of fact, if the temperature changes
what basically happens is that the steel wires used to suspend the rhomboid change their
lengths, and this affects the resonant frequencies of the rhomboid.
A thermal enclosure was then built (by Kelley et al. [9]) in order to keep the seismometer
temperature constant. It is made of aluminum sheets covered by foam insulation and installed
on the seismometer frame. Inside the enclosure are placed two heaters (on opposite faces)
and four thermistors (in different positions). One of those thermistors is connected to a
temperature controller which is used to drive the heaters, while the others are connected
to another controller which is used only to compare temperatures in different areas of the
enclosure.

2.3.1 Thermal enclosure tests

Two tests of the thermal enclosure were made to see how it behaves when temperature
increases and decreases in an environment where room temperature is ∼ 22 ◦C.

• Increasing temperature

Using the controller (with P=250, I=0, D=0) the enclosure target temperature was set
to 35 ◦C, and measurements of the temperature were taken starting from room tem-
perature (20.1 ◦C) using the thermistor attached near to one of the heaters. Results
are shown in figure 2.13, where a double exponential fit is made with the curve:

page 22



LIGO-T1500485–v1

Figure 2.13: Thermal enclosure behavior: increasing temperature

f(t) = −a · exp
(
−t
τ1

)
− b · exp

(
−t
τ2

)
+ c (2.18)

and the fit results are:

a = 3.739 ◦C
b = 1.1424 ◦C
c = 25.28 ◦C
τ1 = 247.1 min
τ2 = 7.49 min

We see that the set temperature of 35 ◦C is not reached: the enclosure reaches just
25 ◦C. Moreover, the 25 ◦C are reached with a double exponential behavior and not
with the expected single exponential: this suggests that the thermal enclosure has
some heat leak.

• Decreasing temperature

The decreasing temperature was measured by turning off the heaters and starting
from a temperature of 24.3 ◦C. Results are shown in figure 2.14, where the double
exponential fit with the function:

f(t) = a′ · exp
(
−t
τ ′1

)
+ b′ · exp

(
−t
τ ′2

)
+ c′ (2.19)

returns:
a′=2.03 ◦C
b′=1.22 ◦C
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Figure 2.14: Thermal enclosure behavior:decreasing temperature

c′=21.04 ◦C
τ ′1=119.5 min
τ ′2=6.39 min

Again the double exponential trend of the box is shown.

As shown by Kelley ([9]), if the enclosure has a single heat capacity the temperature depen-
dence on time is a single exponential. Thus, this double exponential trend of the enclosure
seems to suggest that the enclosure has two heat capacities and a leakage.

2.3.2 Temperature stabilization

The thermal enclosure test shows that the equilibrium temperatures with the heater on
and off are respectively 25 ◦C and 20 ◦C. We’re interested in knowing how the temperature
stabilizes. In order to do this we can set the target temperature between the two equilibrium
temperatures and see how this temperature is reached. This has been done for both deceasing
and increasing temperature.

• Decreasing temperature

Using the controller (with P= 250, I=250, D=0) target temperature was set to 22
◦C, while initial temperature was 23 ◦C. Results are shown in figure 2.15.

• Increasing temperature

Initial temperature was 22 ◦C and target temperature was 23 ◦C. In this case we
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Figure 2.15: Temperature stabilization: from 23 to 22 ◦C

Figure 2.16: Temperature stabilization: from 22 to 23 C

used a continuous data acquisition so that we could have more data with respect to
the previous measurement, and results are shown in figure 2.16.

Results show that temperature stabilization is achieved for a temperature set between the
two equilibrium temperatures.
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3 Conclusions and future work

In this paper I described my work on a prototype for a tilt-free seismometer concerning its
rhomboid, inverted pendulum and thermal enclosure parts.
From the results obtained for rhomboid resonant frequencies it follows that we need to tune
the rhomboid suspensions and structure to reach a lower tilt resonant frequency, as we want
to increase the seismometer sensitivity region.
Parameters to build the inverted pendulum for the seismometer were selected. Moreover,
with a prototype of an inverted pendulum built with those parameters, we found that it
is possible to achieve low resonant frequencies. However, for this built inverted pendulum
the Q-factor was low, therefore it is necessary to build an IP where structural damping is
reduced (i.e. without the use of pin-vises). Also buckling of the flexures needs to be studied
carefully.
Results for the thermal enclosure show that the goal of having a structure which keeps the
seismometer temperature constant is achieved. However the performance of the enclosure
has to be improved since tests done on it show that heat leakage is present and due to
imperfections in the structure. Moreover, in order to quantify the heat leakage, a model of
the thermal enclosure should be developed.
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