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Overview

In this document we discuss the forces acting on the test mass from the ESD. It includes
careful consideration of action of charges and ground surroundings. We write all the
equations one-dimensional, investigating only in longitudinal movement of the test mass.
Generalizing to 3D seems to be not necessary for this consideration of possible effects of
charging and ground surroundings on the ESD strength.

1 Force acting on the test mass

Total electrostatic force on the test mass from ESD include several components.

F = A(Vb − Vs)2 +B(Vb − Vs) + C

(
Vb + Vs

2
− Vref

)2

+D

(
Vb + Vs

2
− Vref

)
+ E (1)

where Vb is the electric potential of the bias electrode, Vs - of the signal electrode, Vref -
potential of the cage and other surroundings.

First term of this equation is the force acting on the TM due to the dipole attraction
of the dielectric test mass to ESD (interaction of dielectric test mass and electrical field
between two ESD electrodes). This force is proportional to squared field of the ESD, so
it’s proportional to the squared differential voltage.

The next force component due to electrical charge located on the test mass in the field
of the ESD. It’s proportional to the strength of the electrical field and depends on the
amount of charge and it’s distribution. Charges close to ESD will act the most.

Force component with C characterize the dipole attraction of the test mass to electrical
field from ESD to grounded surroundings. This field is proportional to the difference
between mean voltage of ESD electrodes and ground. Usually, the cage voltage Vref
should be written as zero.

Electrical charge interaction with this field (from ESD to cage) results in the forth
term. If B mostly include acting of the charges close to the ESD, D include all the
charges on the test mass due to this part of electric field is more homogeneous. One of
this terms may dominate: B if we have a huge charge near by ESD or D if it is sitting on
the other side of the test mass.
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Figure 1: Result of raw modelling of voltage (color) and electrical field (lines) distribution
if ESD voltage is: (a) Vs = −Vb = −400V ; (b) Vs = −100V, Vb = +400V . ESD electrodes
are on the left and grounded ring heater is at the bottom

The last term in equation (1) shows the interaction of charged test mass with sur-
roundings due to the image charge. This term does not depend on bias or signal voltages
but vary with electrical charge distribution and changes of geometry.

Figure 1 illustrate how the electric field change if we use Vb + Vs = 0, where we can
ignore C and D, versus Vb + Vs 6= 0. In the last case we have a lot of lines of electric field
goes through the test mass to the grounded surroundings so we have to use all the terms
of equation.

Equation (2) may be written in more common way if we use Vref = 0:

F = α(Vb − Vs)2 + β(Vb + Vs) + β2(Vb − Vs) + γ(Vb + Vs)
2 + δ (2)

α characterize the dipole attraction of the TM to ESD. It depends mostly on the
distance between them.

β characterize the charge amount and distribution at all the test mass
β2 characterize the charge amount and distribution on the test mass near the ESD

electrodes. β and β2 depends on amount of charge and it’s distribution on the test mass
so they may vary significantly.

γ characterize the dipole interaction between uncharged dielectric TM and nonuniform
electric field from ESD to grounded surroundings. γ changes with movement of grounded
surroundings (cage) vs the test mass.

Equation (2) could be transformed to:

F = α(Vb − Vs + β2/2α)2 + γ(Vb + Vs + β/2γ)2 + fo,

where fo is combination of α, β, β2, γ and δ: fo = δ − β2
2

4α
− β2

4γ

We can use voltage terms:

Vch2 = β2/2α, Vch1 = β/2α, so

F = α(Vb − Vs + Vch2)
2 + γ(Vb + Vs + Vch1)

2 + fo, (3)
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Note, that there are two different charge voltages here. Vch2 in term with α characterize
the charges near the ESD, and Vch1 in term with γ characterize the charge at the test
mass in general.

Force components associated with action of electric fields on electric charge of the
test mass could be written using βs – charge coupling to signal voltage and βb – charge
coupling to the bias voltage. We can find βs = β − β2, βb = β + β2. Equation (2) then
should be written as:

F = α(Vb − Vs)2 + βbVb + βsVs + γ(Vb + Vs)
2 + δ, (4)

Linear term of the force applied to test mass using signal voltage

Vs = Vso + Vs1sin(ωt)

is:

Fω = [2α(−Vb + Vso) + βs + 2γ(Vb + Vso)]Vs1sin(ωt), or (5)

Fω = [−2Vb(α− γ) + βs + 2Vso(α + γ)]Vs1sin(ωt), or (6)

Fω =

[
−2αVb

(
1− γ

α
− βs

2αVb

)
+ 2αVso

(
1 +

γ

α

)]
Vs1sin(ωt) (7)

Now LIGO use ESD with Vso = 0, so the linear term of force is

Fω = [2Vb(γ − α) + βs]Vs1sin(ωt) (8)

We see that in this case force acting on TM depend both on β and γ.
We think that α is a constant with good precision, and we had a lot of discussions and

care about charges on test masses, nevertheless the effect of γ needs a careful consideration
as well as charge review involving β and β2.

Charge measurements

On charge measurements in LIGO observatories we apply the set of vias voltages while
electrode voltage is sine: Vs = Vo · sin(ωt). At different bias voltage the linear term
of the test mass response is different, proportional to the linear force term (8). We use
linear fit of response dependence on the bias voltage to find the bias voltage with zero
response. This voltage named the effective charge bias voltage VEFF . We can find the
relation between VEFF and others:

Fω = [2VEFF (γ − α) + βs]Vs1sin(ωt) = 0

2VEFF (γ − α) + βs = 0

VEFF =
βs

2(α− γ)
, or (9)

VEFF =
βs
2α
· 1

1− γ/α
= (Vch1 − Vch2) ·

1

1− γ/α
(10)

We see that VEFF characterize the charges coupled to signal voltage. It does not include
βb and we measure the combination of β and β2. It might be good due to it include both
nearby charges and charges located far from ESD. But there are some part of charge near
bias electrode which is ignored.
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Using the effective charge bias voltage VEFF we can write equation for linear term of
the force acting to ESD (7):

Fω =
[
−2α

(
1− γ

α

)
(Vb − VEFF ) + 2αVso

(
1 +

γ

α

)]
Vs1sin(ωt) (11)

While we use the signal voltage without offset, this equation should be simplified:

Fω = −2α
(

1− γ

α

)
(Vb − VEFF )Vs1sin(ωt) (12)

2 Linearization

Previous studies of linearization [4, 5] use simplified version of equation (2) so that it does
not include γ and use simplified model of charge interaction. Using equation (4) we can
write:

α(V 2
b − 2VbVs + V 2

s ) + βbVb + βsVs + γ(V 2
b + 2VbVs + V 2

s ) + δ − F = 0 , so

V 2
s + Vs

[
−2Vb

α− γ
α + γ

+
βs

α + γ

]
+ V 2

b +
βbVb
α + γ

+
δ − F
α + γ

= 0

Solve this quadratic equation:

Vs = Vb
α− γ
α + γ

− βs
2(α + γ)

± 1

2

√(
βs − 2Vb(α− γ)

α + γ

)2

− 4

(
V 2
b +

βbVb
α + γ

+
δ − F
α + γ

)
Denote ξ = γ−α

γ+α
:

Vs = (Vb − VEFF )ξ ±

√
(Vb − VEFF )2 ξ2 − V 2

b +
F − βbVb − δ

α + γ

Usually we are interested in changing of force and don’t care about additional constant
force. While we don’t change the bias voltage, we can write this equation using Fo =
βbVb − δ:

Vs = (Vb − VEFF )ξ ±

√
(Vb − VEFF )2 ξ2 − V 2

b +
F − Fo
α + γ

(13)

This equation consist with Linearization equation from [5] if we use γ � α . Unfortu-
nately, results of LLO measurements [1] shows that γ

α
is about 0.3. Preliminary results

obtained in LHO are of the same order. So estimation of ξ is about 0.5.

3 Conclusion and Plans

We should worry about γ changes the actuation force. Probably we should measure γ with
charge measurements and/or measure the actuation strength of ESD with CAL team.

We are planning to continue the charge measurements using optical levers and to check
the correlation between charge and ESD actuation strength using the ESD calibration line.

It was founded in LLO measurements in Jan, 2015 that the charge force is proportional
to (Vb + Vs). It cause the using of simplified formula without β2 in [2, 3]. We think that
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result of this measurements is: ”β was greater than β2”, what means that the charge
existed on the test mass at that time was located far from the ESD. In other measurements
with different charge location and distribution we should use both β and β2.

In further investigation we should take into consideration that charges on different
sides of the test mass act in different way, according the terms 2 and 3 in equation (2)

Probably, we will find that γ changes could be a trouble. In this case one of the
possible decisions is changing the bias voltage with the signal voltage: Vb = −Vs. We can
do it while the ESD is using only for longitudinal actuation. Case of angular correction
is not a subject of our investigation, but the possible solution is probably using the bias
voltage equal to mean voltage of four quadrants Vb = −0.25(VUL + VUR + VLL + VLR.
Using this changing bias we minimize the terms 2 and 4 in equation (2). The linear term
of actuation force so does not depend on γ:

Fω = [−2αVs + β2]2∆Vs (14)

Charge measurement procedure should be optimized for this kind of operation to measure
the β2.
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Addition (Gamma measurements)

The measurements of relationship between γ and α was described in [1] and [2] using the
simplified formula for force acting on the test mass. Show that using the equation (2)
gives us the similar results. The same DC voltage was applied to bias and to electrode:
Vso = Vb = VDC . According the equation (6), linear term of force is:

Fω = [4γVDC + βs]Vs1sin(ωt) (15)

Changing of the Fω with changing of the DC voltage gives us γ. For simplest case using
of VDC = Vo and VDC = −Vo we have:

Fω
Vs1sin(ωt)

∣∣∣∣Vb=Vo,
Vso=Vo

− Fω2
Vs1sin(ωt)

∣∣∣∣Vb=−Vo,
Vso=−Vo

= 8γVDC (16)

Using Vso = −Vb, Vb = ±VDC , we can find the same equation for α:

Fω
Vs1sin(ωt)

∣∣∣∣ Vb=Vo,
Vso=−Vo

− Fω2
Vs1sin(ωt)

∣∣∣∣Vb=−Vo,
Vso=Vo

= 8αVDC (17)

So we can definitely find relation between γ and α:

γ

α
=

Fω

Vs1sin(ωt)

∣∣∣Vb=Vo,
Vso=Vo

− Fω2

Vs1sin(ωt)

∣∣∣Vb=−Vo,
Vso=−Vo

Fω

Vs1sin(ωt)

∣∣∣ Vb=Vo,
Vso=−Vo

− Fω2

Vs1sin(ωt)

∣∣∣Vb=−Vo,
Vso=Vo

(18)

If we want to make the measurement of γ with the conventional charge measurements,
we can use couple of points measured on charge measurements with Vso = 0, Vb = ±Vo.
At this measurements we have linear term of force:

Fω = [∓2Vo(α− γ) + βs]Vs1sin(ωt) (19)

For γ measurements we will apply the signal voltage Vso = Vo, Vb = 0 . So the linear term
of acting force will be:

Fω = [2Vo(α + γ) + βs]Vs1sin(ωt) (20)

The relation between γ and α can be found as:

Fω| Vb=0,
Vso=Vo

− Fω|Vb=−Vo,
Vso=0

Fω| Vb=0,
Vso=Vo

− Fω|Vb=Vo,
Vso=0

=
(2Vo(α + γ) + β)− (2Vo(α− γ) + β)

(2Vo(α + γ) + β)− (−2Vo(α− γ) + β)
=
γ

α
(21)
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