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1 Abstract

Physicists are creating a network of gravitational wave (GW) detectors on Earth that will be
capable of detecting GW signals from low-mass compact binary systems. In order to observe
more massive binaries, which coalesce at frequencies inaccessible to ground-based detectors
due to seismic noise, plans have also been made to create space-based detectors. However,
the most serious of these proposals, LISA, is not scheduled for launch until 2034 due to
its extreme cost. Therefore, recent efforts have aimed at designing lower-cost detectors that
could span a similar frequency band. This project aims to evaluate the scientific merit of one
such proposed space-based detector. The proposed detector is sensitive to GW signals in the
range of 10−3−102 Hz, overlapping with the earth-based detectors. We calculate the detectors
best-case signal-to-noise ratio as a function of a sources location and orientation, and using
the Fisher Matrix formalism, we calculate how accurately the detector could locate sources
in the sky. We find that, while the instrument can strongly detect GWs out to cosmological
distances, its noise curve is too high to accurately pinpoint its sources at distant redshifts.
However, upon synthesizing this detector’s data with data from earth-based detectors, the
detector may still be able to locate interesting GW sources.

2 Introduction and General Background

The theory of general relativity requires the existence of gravitational radiation in the form
of waves in spacetime. If general relativity is correct, these gravitational waves (GWs)
travel at the speed of light, carrying information about changing gravitational fields from
accelerating massive objects. This kind of radiation can exist across a tremendous range of
frequencies, ranging over orders of magnitude from 10−10 Hz, created by the expansion of
the early universe and the motion of supermassive binary systems, up to 103 Hz, typically
caused by supernovae and rotating neutron stars [2]. Figure 1 shows the frequencies at which
certain sources radiate and the relatives sensativities of current and planned GW detectors
[10].

2.1 Ground-Based Detectors

Currently, physicists are working to create a network of gravitational wave detectors on
Earth, which at present includes Advanced Virgo in Italy and two Advanced LIGO detectors
in the United States, with detectors in the works in Japan and India [7]. These Earth-based
detectors will be sensitive to gravitational waves at the higher end of the frequency range,
from 10−103 Hz, and will search for signals from sources such as the coalescence of compact
binary black holes or neutron stars, supernovae, and pulsars (rotating neutron stars) [9].
These detectors, however, can only observe the final moments of only the lightest binary
systems, since the frequency of a binary at its innermost stable circular orbit is [9]

fISCO = 2.2kHz

(
M�
M

)
(1)

where M is the binary’s total mass, and it would be interesting and beneficial to observe
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these systems much earlier in their evolution. Moreover, it would be useful to be able to
observe the coalescence of more massive sources. Unfortunately, there is simply too much
seismic noise to be able to observe these lower-frequency waves on Earth.

2.2 Space-Based Detectors

In order to observe GWs at lower frequencies, plans have been made to create space-based
detectors, capable of detecting signals from more massive sources, since the frequency at
which binaries merge varies inversely with their total mass. These sources include binary
star systems and coalescing binary systems containing extreme mass ratios (one supermassive
black hole and one stellar-mass body). One such proposed detector is LISA, a triangular
configuration of satellites with arms a million kilometers in length (compared to LIGOs 4 km
arms), which is designed to be sensitive over frequencies of 10−5−10−1 Hz [8]. However, due
to its tremendous cost, it has been difficult to fund the project, and with NASAs withdrawal
in 2011, LISA is not scheduled for launch by the ESA until the early 2030s [12]. Therefore,
recent efforts have aimed at designing lower-cost alternatives to LISA that could span a
similar frequency band, and thus could garner financial support for an earlier launch.

Figure 1: Frequencies emitted gravitational wave sources, and the sensitivity curves of the
different types of GW detectors that detect them. The proposed UNGO detector curve is
added in dashed red. Waves produced by sources lying above the detector curves are in
principle detectable, whereas the waves produced by sources lying below the curves are too
weak to detect.
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3 Objectives

The UNGO mission (name subject to change) is one such project. The concept is, instead of a
detector with 1 million km-long arms, to send a smaller LISA-like interferometer, with 2 laser
arms of roughly 100 km, into orbit around the Sun. The proposed detector will have a 532 nm
laser with a power of 20W, a telescope mirror diameter of 37.5 cm, and will utilize squeezed
light to reduce noise. UNGO will be sensitive to gravitational waves somewhere between
LISA’s and aLIGOs frequency bands (similar to the Decigo band in Figure 1, 10−2 − 102

Hz), and thus could give useful information about sources we could not detect from Earth
(see Figures 1 and 2). For instance, we could detect more massive binaries composed of
intermediate mass black holes, which are unlikely to be seen by LIGO. Additionally, UNGO
could detect stellar-mass binaries (which eventually will enter the LIGO band) much earlier
on in their orbital evolution, providing an early warning for both ground-based gravitational
wave detectors and electromagnetic telescopes. This project will assess the scientific merit of
such a concept, including the maximum theoretical signal-to-noise ratio with which it could
detect gravitational wave sources, and the maximum accuracy with which it could determine
information about its sources, such as mass, distance, orientation, and location.
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Figure 2: Sources of noise for UNGO, and the detector’s sensitivity curve.
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4 Methods

The sensitivity of a space-based gravitational wave detector is limited by several sources
of noise. Noise can come from the instrument itself, due to temperature fluctuations, loss
in sensitivity when the wavelength of the source approaches the length of the arms of the
detector, and laser shot noise [2]. Professor Adhikari provided code to estimate the noise
due to a wide variety of sources, and provided us with a noise curve (Figure 2).

With the noise budget computed, we then estimate the signal-to-noise ratio (SNR) with
which UNGO will detect various gravitational wave sources. To calculate the projected
signal to noise ratio, the basic equation is conveniently written as the inner product of the
specified gravitational waveform with itself:

(SNR)2 = (h|h), (2)

where the inner product (A|B) is defined by:

(A|B) = 4×<
∫ ∞
0

Ã∗ (f) B̃ (f)

Sn (f)
df (3)

where a tilde denotes the fourier transform of a quantity into the frequency domain. SNR
is the optimal value of the signal-to-noise ratio, h(f) is the GW signal, and Sn(f) is the
power-spectral density of the detector, related to the level of detector noise [5].

Because the detector has noise, it is impossible to recover the exact correct parameters of
the source. However, under certain circumstances and loud signals, it is possible to estimate
the expected errors in parameter extractions by defining the Fisher Matrix, given by [6]

Γµν =

(
∂h

∂λµ
| ∂h
∂λν

)
, (4)

where λµ is the µth parameter, and ∂h
∂λµ

is the partial derivative of the waveform h with
respect to that parameter. Invert this quantity, and the diagonals are the square of the single-
parameter errors, and the off-diagonals are the covarience errors of the different parameters.
That is, we calculate the expectation values of the errors in estimating different physical
parameters by finding the covariance matrix:

∆λµ∆λν = (Γ−1)µν × (1 +O(SNR)−1). (5)

We also compute the evolution of the frequency of the system with respect to time. This
can, among other things, allow us to see how long an object will be able to stay within the
detectors sensitivity band [9]. To a first approximation, the frequency evolves as

f(t) =
134(1.21M�/ML)

5
8

(tc − t)
3
8

. (6)

We do our analysis first considering a detector with an antenna pattern of just 2 arms,
and then we look at a 3-arm pattern, looking at several test cases, including: neutron
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star/ neutron star (1.5/1.4 M�), neutron star/black hole (1.4/10 M�), black hole/black hole
(10.7/10 M�), and intermediate mass black hole binary (107/100M�). Although our initial
analyses looked at perfectly symmetric binaries, we ultimately chose slightly asymmetric
binaries because there is a degeneracy in the Fisher Matrix associated with a symmetric
binary, since the mass ratio is at a minimum. In some cases, we also look at an asymmetric
massive black hole binary (150/50M�). For all equations, we convert to units of seconds
by setting G = c = 1. All computational work is done in Python. In order to achieve the
numeric precision required for the Fisher Matrix analysis, those calculations are done using
python’s multiple precision floating point package, mpmath.

4.1 Sky-Averaged SNR

First, we computed the sky-averaged SNR for a100/100 M� black hole binary system. For
a binary black hole system, we get[4]:

SNR2 =
3

20

2M5/3
L

3π4/3D2
L

∫ ∞
0

f 7/3

Sn (f)
df (7)

where DL is luminosity distance (D(1+z)),ML is the chirp mass (M = (m1m2)3/5

(m1+m2)1/5
) adjusted

for redshift, f is the frequency of the gravitational wave, and Sn(f) is the power spectral
density (PSD) of the detector. The factor of 3

20
accounts for averaging the detector sensitivity

and binary orientation across the sky. We integrated over frequency starting at a year before
merger (Equation 6), leading up to the frequency at the innermost stable circular orbit
(Equation 1).

We see the results in Figure 3. On average, this shows that UNGO could detect a 100/100M�
binary at a redshift of 1 (6.8 GPc) with roughly a SNR of 27. Moreover, the results show
that on average, UNGO could see these binaries with significant SNR (> 5) out to about
a redshift of 10, or 106 GPc, which is much farther than any of our current Earth-based
detectors, which should be able to detect signals out to distances on the order of 100 MPc.

4.2 Angular Dependence of the SNR

Because the proposed UNGO geometry is similar to LISA, we were able to draw from [2]
and [1] for the angular dependence.

We calculated the waveform as a function of the antenna pattern of the detector, given by [2].
The antenna pattern encodes the differences in detector sensitivity for different directions
on the sky. The signal, h, is dependent on the antenna pattern of the detector:

hI(t) = FI+(t)h+(t) + FI×(t)h×(t). (8)

The I subscript indicates that this gives the signal in a single detector.

To convert from the time-domain to the frequency domain,

t(f) = t0 − 5(8πf)−8/3M
−5/3
total

(
1 +

(
4

3

)(
743

336
+

11

4
η

)
x

)
(9)
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Figure 3: Sky-averaged SNR of a 100/100 M� binary black hole system as a function of
redshift z. This plot shows that a 100/100 M� binary could be detected with a high SNR
(> 25) out to roughly a redshift of 1, and with a significant SNR (> 5) out to roughly a
redshift of 10 (around 100 GPc).

where η is the mass ratio of the binary Mtotalµ, and x is the Post-Newtonian (PN) parameter
(πMtotalf)2/3.

FI+ and FI× are the antenna patterns of the 2-arm model,

FI+ =

√
3

2
× (

1

2
(1 + cos2(θ)) cos(2φ) cos(2ψ)− cos(θ) sin(2φ) sin(2ψ)) (10)

FI× =

√
3

2
× (

1

2
(1 + cos2(θ)) cos(2φ) sin(2ψ) + cos(θ) sin(2φ) cos(2ψ)). (11)

The angles θ, φ, and ψ are the latitude, longitude, and polarization angle of the source, in
the detector’s frame. The factor of

√
3/2 comes from the fact that the antennas are 60o

apart, not 90o. For long duration sources, such as those we are trying to detect with UNGO,
it is easier to work in a fixed, ecliptic-based coordinate system, rather than a detector-based
coordinate system. To convert to to an ecliptic-based reference frame, we convert [1]:

cos(θ) =
1

2
cos(θS)

√
3

2
sin(θS) cos

(
φ0 +

2πt

T
− φS

)
(12)

φ = α0 +
2πt

T
+ arctan

(√
3 cos(θS) + sin(θS) cos

(
φ0 + 2πt

T
− φS

)
2 sin(θS) sin

(
φ0 + 2πt

T
− φS

) )
(13)
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tan(ψ) =

[
1

2
cos(θL)−

√
3

2
sin(θL) cos

(
φ0 +

2πt

T
− φS

)
− cos(θ)(cos(θL) cos(θS)

+ sin(θL) sin(θS) cos(φL − φS))

]
/

[
1

2
sin(θL) sin(θS) sin(φL − φS)

−
√

3

2
cos

(
φ0 +

2πt

T

)
(cos(θL) sin(θS) sin(φS)− cos(θS) sin(θL) sin(φL))

−
√

3

2
sin

(
φ0 +

2πt

T

)
(cos(θS) sin(θL) cos(φL)− cos(θL) sin(θS) cos(φS))

]
. (14)

Here, T is one year (in seconds), and (θS, φS) give the angular position of the source with
respect to the solar ecliptic, and (θL, φL) correspond to the orientation of the source’s angular
momentum. φ0 is the initial phase of the binary at the beginning of our detection, and α0

corresponds to the initial orientation of the detector. For simplicity, we set both of these
initial conditions to 0. We also assume here that the angular momenta of our sources’ orbits
are parallel to their spin.

For the signal, we consider the full waveform h in the frequency domain, including the first
PN phase term. For a coalescing compact binary system [1],

h(f) =
Q

D
M5/6f−7/6 exp[i(Ψ(f)− φP − φD)] (15)

where

Q = AI

√
5

96
π−2/3. (16)

AI is the component of the prefactor that is dependent on the antenna pattern,

AI =
√
α2
+FI+(t)2 + α2

×FI×(t)2, (17)

where α+ and α× are functions of the angle between the binary’s spin and the line of sight
[6]:

α+ = 1 + cos2(θi) (18)

α× = −2 cos(θi). (19)

Here θi, the angle of inclination between the binary spin and the line of sight, is defined by

cos(θi) = sin(θS) sin(θL) cos(φL − φS) + cos(θS) cos(θL). (20)

Ψ(f) is the phase of the signal [1]

Ψ(f) = 2πftc − φc −
π

4
+

3

4
(8πMf)−5/3

(
1 +

20

9

(
743

336
+

11

4
η

)
(πMLf)

2
3

)
(21)

where tc and φc are the time and phase at coalescence, φP is the phase associated with the
detector’s motion

tan(φP ) =
−α×FI×
α+FI+

, (22)
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and φD is the Doppler phase term

φD = 2πf

(
1 AU

c

)
sin(θS) cos(φ0 + 2πt/T − φS)(whereT = 1yr). (23)

The complex phase terms cancel out when calculating the SNR, but will be useful later when
looking at the Fisher Matrix and parameter estimation errors.

Because the UNGO design has 3 satellites, we could also envision a 3-arm antenna pattern,
which would be more in line with the dual-detector model of LISA. This 3-arm pattern would
function as the equivalent of 2 detectors. Therefore, we wrote code for the antenna pattern
of a second detector, although for our initial calculations, we chose conservatively to assume
UNGO will have only one detector. For the second detector, the formulas are the same, with
the exception that the antenna pattern is instead [1]:

FII+ =

√
3

2
× (

1

2
(1 + cos2(θ)) sin(2φ) cos(2ψ) + cos(θ) cos(2φ) sin(2ψ)), and (24)

FII× =

√
3

2
× (

1

2
(1 + cos2(θ)) sin(2φ) sin(2ψ)− cos(θ) cos(2φ) cos(2ψ)). (25)

which is equivalent to the first antenna pattern, with θII = θ, ψII = ψ, and φII = φ − π
4

[2].

Note that we have chosen to include the factor of
√
3
2

inside the antenna pattern, whereas [2]
and [1] include it elsewhere.

4.3 Verifying the Accuracy of the Angular-dependent SNR

In order to verify the accuracy of our angular-dependent SNR calculations, we evaluated
the SNR2 at 1000 random sky positions, and took the average value. We repeated this for
7 different redshifts, z = 1 - z = 7, and plotted the results against our sky-averaged SNR
function (Equation 7). See Figure 4.

5 SNR Results

Given our confidence in our antenna pattern, we calculated the SNR for a 100/100 M�
binary black hole system as a function of redshift for several different sky positions. Figure
5 shows the SNR as a function of redshift for different angular positions with respect to the
solar ecliptic for a 100/100 M� binary black hole system.

We then compared the performance of the detector for a 2-arm and a 3-arm antenna pattern.
As we see in Figure 6, the 2-arm model can detect a binaries out to cosmological distances,
and the 3-arm model performs even better by roughly a factor of 2. We defined the farthest
detectable binary as being at a given position and orientation (in this case, θS = φS = θL =
φL = 0) with a SNR > 8, to be consistent with other literature. A peak occurs around
masses of 10 M�, after which point the signal moves out of the UNGO frequency band, as
more massive binaries coalesce at lower and lower frequencies. To give a better sense of
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Figure 4: SNR of a 100/100 M� binary black hole system as a function of redshift z, averaged
over random sky positions. The wider green error bars correspond to the standard deviation,
and the tiny red error bars correspond to standard error of the mean. The lower plots indicate
that the locations and orientations were evenly and randomly distributed. This consistency
thus validates both the angle-averaged and angular dependent SNR code.
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this detector’s abilities compared to other proposed missions, Figure 7 is taken directly from
[11], and describes the range to which the proposed Einstein Telescope could detect signals
if operating at design sensitivity. Although the two do not look at exactly the same system,
it is clear that the UNGO mission performs better for higher mass binaries, and UNGO is
otherwise generally on par with the speculative ground-based Einstein Telescope.

6 Fisher Matrix Analysis Results

After calculating the SNR and discerning to what extent the detector is capable of hearing
signals, we calculated the detector’s ability to extract information from those signals. We
attempted to find the Fisher Matrix for 9 parameters: relative redshift-adjusted chirp mass
ln(ML), mass ratio η, relative luminosity distance ln(DL), sky position (θS, φS), binary
orientation (θL, φL), time of coalescence tc, and phase at coalescence φc. This proved to be
difficult for a number of reasons. Foremost, for the 2-arm antenna pattern, the luminosity
Distance parameter (DL) turned out to be highly degenerate with the binary orientation
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Figure 5: SNR vs redshift for 100/100 M� head-on binary: (left to right, top to bottom)
θS = θL = 0, π/12, π/6, π/4, π/3, 5π/12, π/2; φS = φL = 0
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Figure 6: Farthest detectible symmetric binary as a function of mass. Detectibility is deter-
mined by SNR> 8, as in the Einstein Telescope literature [11]. For this example, we look at
head-on overhead binaries: θS = φS = θL = φL = 0.
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Figure 7: Figure from Sathyaprakash et al. detailing the Einstein Telescope’s reach [11].
Although the sources are slightly different, as this figure considers asymmetric binaries while
we consider symmetric binaries, it shows that UNGO has a similar ability to detect sources
of smaller masses, and a greater ability to detect sources of greater masses.

angles (θL and φL). This is because all of these parameters solely affect the amplitude
of the waveform, rather than its phase evolution. Changing the parameter space helped
a little bit. By modifying our parameter space to include ln(M) instead of ln(ML), and
getting ML from the redshift extracted from DL, we were able to break some, but not all,
of the degeneracy there. Plotting the integrands of the inner products in each Fisher Matrix
element for a 150/50 M� binary system, as well as the integrands without the PSD (Sh(f))
of the detector, sheds light on the issue. As we can see in Figure 13, for most parameters,
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the majority of the signal variation comes from the lower-frequency domain, but that is also
where the majority of the noise lies. This is why many of the integrand plots have nearly
the same form, to some constant factor, as the integrand of the SNR2 inner product (h|h)
(See Figure 14), resulting in high degeneracies.

This was further confirmed by shifting the PSD to the left 2 orders of magnitude (by in-
tegrating over Sn(100f)). When we did so, the 3-parameter inverse Fisher Matrix of the
most degenerate parameters, ln(DL), θL, and φL gave much more reasonable estimates for
the variances (on the order of 10−2 radians, as opposed to 102 radians). This allowed for
much more successful determination of these three parameters individually. See Table 1.

Standard Sn(f) Shifted Sn(100f)

Parameter δ(Parameter) δ(Parameter)

ln(DL) 214.5 0.05859
θL 338.7 0.08800
φL 71.74 0.01968

Table 1: Single-parameter errors for the most degenerate parameters, for the current UNGO
noise curve, and the noise curve shifted left by 2 orders of magnitude.

Therefore, we discovered that, given the current noise curve, localization of a GW signal
from a 100/100 M� binary at z = 2 (16 GPc) is not possible. For an intermediate-mass
black hole binary, the gravitational wave signal only reaches the most sensitive region of the
noise curve at 70s prior to merger, while the detector’s motion is on a timescale of a year,
making one rotation about the sun, and one rotation about its axis. This is not enough
time for the detector’s changing orientation to vary the signal enough to locate a source.
Although UNGO cannot locate sources nearly as far as it can detect them, it still should be
able to extract parameters under less extreme conditions. Therefore, we focused our efforts
on discerning what kind of sources could be localizable.

Although the parameter estimation errors were large for binaries at high redshifts (>1),
at more modest distances and for less massive binaries, the Fisher Matrix calculation was
substantially more stable. We then calculated the Fisher Matrix for different binaries, com-
paring a 2-arm and a 3-arm antenna pattern. In order to avoid any inherent degeneracies,
we used a semi-random set of base parameters that yield a similar SNR to the sky-averaged
SNR: θS = 0.7 rad, φS = 4.1 rad, θL = 1.3 rad, φL = 3.1 rad, tc = 12.0 s, and φc = 1.0 rad.

For certain parameters, the 3-arm detector model performs substantially better than the
2-arm model, which makes the overall Fisher Matrix more reliable as well. Tables 2 and
3 show the diagonal elements of the inverse Fisher Matrix for 2 different binary systems.
Although some parameters are much more well-constrained than others, the most interesting
parameters, including mass, distance, and sky location, seem to be fairly well-constrained
for both the 2-arm and 3-arm antennae. Other parameters, such as the binary’s orientation,
and the phase at chirp, are substantially better constrained with a 3-arm detector.

Additionally, incorporating the covariance errors in sky position acquired from the inverse
Fisher Matrix, we can calculate the solid-angle error ∆Ω = sin(θS)

√
δ2θS

√
δ2φS − δφSθS.
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DL Arms δ ln(M) δη δ ln(DL) δθS δφS δθL δφL δtc (s) δφc

50 MPc 2 3.8e-6 4.1e-5 3.3e-4 1.5e-3 1.1e-3 0.37 0.33 0.51 1.36
50 MPc 3 3.0e-6 2.9e-5 2.5e-4 1.1e-3 6.8e-4 2.8e-2 3.4e-3 0.35 0.11

10 GPc 2 8.4e-6 4.8e-3 2.3e-5 0.12 0.24 43.9 38.5 82.9 158.
10 GPc 3 6.1e-6 3.4e-3 1.6e-5 8.0e-2 0.15 1.65 2.00 51.0 6.46

Table 2: Single-parameter errors of a 1.5/1.4 M� binary, for the current UNGO noise curve,
comparing a 2-arm detector and a 3-arm detector.

DL Arms δ ln(M) δη δ ln(DL) δθS δφS δθL δφL δtc (s) δφc

50 MPc 2 7.0e-3 2.9e-5 0.57 1.5e-2 1.3e-2 0.45 0.45 4.93 1.51
50 MPc 3 3.0e-5 2.0e-5 2.4e-4 5.8e-3 7.9e-3 9.3e-3 4.8e-3 3.09 3.1e-3

10 GPc 2 2.5e-3 4.4e-3 4.8e-3 3.82 2.66 50.2 42.1 1065 178
10 GPc 3 7.5e-4 3.1e-3 1.5e-3 1.75 1.35 2.59 0.26 735 0.63

Table 3: Single-parameter errors of a 100/107 M� binary, for the current UNGO noise curve,
comparing a 2-arm detector and a 3-arm detector.

Figures 8, 10 and 11 show the error in solid angle as a function of distance for 4 different
binary systems: 1.5/1.4 M� neutron star (NS)/NS, 1.4/10.0 NS/black hole (BH), 10.0/10.0
M� BH/BH, and 100.0/100.0 M� BH/BH. Dashed lines are added to show the maximum
distances that the binary system could be localized to within a solid angle of 10−4 steradians.

With this information, we then calculated the farthest binary that the detector could locate
within a (slightly looser) threshold of 10−3 steradians (at our arbitrary location and orien-
tation) as a function of binary mass, shown in Figure 12. These distances are substantially
smaller than the detector’s range of hearing signals (recall Figure 6), but they still allow
localization out to ∼ 1 GPc. For the most part, the detector is well-equipped to localize
many aLIGO sources, and so synthesizing the data streams of the two detectors could be
very useful for cosmography.

7 Other Noteworthy Challenges

Because there is so much literature on the subject, and each article employs slightly different
conventions, it was a challenge to find an accurate, standard way to model our signal and
compute the SNR and Fisher Matrix. Moreover, because we are writing code for a com-
plicated set of equations, we have also encountered many cases where our code is working
properly but we have to be very careful about how to interpret it. Additionally, getting to
the bottom of the source of the degeneracy in the Fisher Matrix was very difficult. We had
to convince ourselves that the degeneracies in the Fisher Matrix were not a problem in our
code, but rather a fundamental problem with the detector. Other challenges included the
fact that many of the Fisher Matrix derivatives needed to be taken numerically, which often
proved to be fairly unstable. Additionally, the Fisher Matrix was typically nearly degener-
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Figure 8: ∆Ω for a 1.5/1.4 M� binary. Anything to the left of the dashed lines can be
localized within a solid angle of 10−4 steradians.

Figure 9: ∆Ω for an asymmetric 1.4/10.0 M� binary. Anything to the left of the dashed
lines can be localized within a solid angle of 10−4 steradians.
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Figure 10: ∆Ω for a 10.7/10 M� binary. Anything to the left of the dashed lines can be
localized within a solid angle of 10−4 steradians.

Figure 11: ∆Ω for a 107/100 M� binary. Anything to the left of the dashed lines can be
localized within a solid angle of 10−4 steradians.
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Figure 12: Farthest localizable nearly symmetric binary (M1 = 1.5
1.4
M2) as a function of

mass. Localizability is defined here by ∆Ω < 0.001. Binary characteristics are θS = 0.7 rad,
φS = 4.1 rad, θL = 1.3 rad, φL = 3.1 rad, tc = 12.0 s, and φc = 1.0 rad.
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ate, so inverting it in a reliable way was tricky. Perhaps the largest problem with the Fisher
Matrix analysis was the fact that machine numeric roundoff error could often dominate our
results. Recall that in Figure 13, we see that the Fisher Matrix calculations are dominated
by the (constant) noise curve far more than by the actual variations in the signal. In order to
account for this problem, we implemented arbitrary precision using a python package called
mpmath. Using 20 decimal places of precision and the more precise built-in mpmath inte-
gration techniques, we were able to more accurately calculate and invert the Fisher Matrix
for all binaries. We compared the improved python Fisher Matrix code against a Wolfram
Mathemateca implementation of the code (which also employed arbitrary precision), and the
two were consistent.

8 Conclusions

For a space-based gravitational-wave detector, UNGO has a number of advantages. Fore-
most, it is substantially less costly than other proposed missions (our current estimates put
it at under 1 billion dollars). Moreover, given its range of sensitivity, its data stream could be
synthesized with LIGO’s for better detection, and most likely better parameter estimation.
As we have seen, UNGO can detect binary systems out to cosmological distances, and it has
the ability to localize even massive sources up to ∼ 1 GPc away. Thus, it would be useful in
giving an early warning for aLIGO sources (such as binary neutron stars at luminosity dis-
tances of 50-100 MPc). However, at some masses and redshifts, particularly distant redshifts
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and higher masses, the detector struggles to estimate certain important parameters such as
the binary’s orientation and the time and phase of coalescence. Additionally, with its higher
noise curve, the UNGO mission is not as robust as other space based missions. However, in
order to fully assess UNGO’s capability to detect gravitational waves from a wider variety
of sources, more work is required.

9 Future Work

Given the functionality of our Fisher Matrix code, we could easily go on to make heat maps
of the error in the various parameters as a function of location in the sky for the various
binary systems. This will allow us to better assess how long an object can stay within the
same section of UNGOs detection field, and will allow us see how accurately we could point
other electromagnetic telescopes at the sources. However, given time constraints, and the
large amounts of time that it takes for the Fisher Matrix code to run, those maps could
not be included in this paper. Thus, they are left as future work, as is making the Fisher
Matrix code run faster, perhaps by delegating pieces of the code to multiple cores (especially
codes such as the sky-map code, which require many Fisher Matrix calculations). Future
work also is needed to analyze the improvement to this detector’s sensitivity if its data
stream is synthesized with the data from aLIGO. This will be done by simply converting
sky-location parameters from aLIGO’s earth-based coordinate system to the ecliptic-based
coordinate system that our analysis considers, calculating the Fisher Matrix for the aLIGO
noise curve using those parameters, adding that matrix to the UNGO Fisher Matrix for the
same source, and inverting. In addition, future work should consider sources other than
coalescing compact binaries, different mass-ratios, et cetera.

10 Acknowledgements

A tremendous thank you goes to Tom Callister, for your constant help and support, and for
always having a positive outlook. Thank you also to Dr. Rana Adhikari for your experience,
perspective, help and advice, and for the brilliant UNGO concept. Thank you to Dr. Curt
Cutler for your help and expertise in all things related to space-based GW detectors. Thank
you to Elvira Kinzina for our helpful discussions and your collaboration and insight, and
for introducing us to mpmath, which was immensely helpful. Thank you to Dr. Tjonnie Li
for your knowledge and experience with the difficulties of Fisher Matrices, and for helping
every SURF student who needed it. I would also like to thank all of my fellow LIGO SURFs
for helpful discussions, support, and more. And of course, thank you to the LIGO Scientific
Collaboration, the Caltech SURF program and the NSF for the funding and for making this
program possible.

page 17



LIGO-P1500190–v1

Figure 13: Checking the Partial Derivatives in the Fisher Matrix elements. Integrands of the
inner product of the listed derivatives, as well as just the numerators (everything without the
detector PSD), are plotted vs GW frequency. These derivatives are for a 150/50 M� binary,
at the arbitrary position and orientation. Together, these plots show the strong degeneracy
between certain parameters.
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Figure 14: Waveform2 for a 150/50 M� binary black hole system at arbitrary angle, over
the detector’s PSD. This is the integrand from the inner product in the SNR calculation.
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