Beyond Fisher Analysis of GR-Violating Gravitational Waveforms

Rhondale Tso

LIGO Lab

August 13, 2015

Testing GR through GWs (ppE framework)

GR signal in 3-detector network of I = H, L, V,

$$s_{\rm GR}^I(f) = A_{\rm GR}^I(f) e^{i \left(\psi_{\rm GR}(f) - 2\pi f \tau_I - \Phi_0^I\right)} \,, \quad f < f_{\rm merg}.$$

TaylorF2, PN-order 3.5 in phase and lowest PN-order in amplitude.

Yunes & Pretorius, PRD 122003 (2009)

$$\begin{split} A^{I}_{\rm GR}(f) &\to A^{I}_{\rm GR}(f) \left(1 + \delta A(f)\right), \quad \delta A_{\rm ppE}(f) = \sum_{i} \alpha_{i} (\nu \eta^{1/5})^{a_{i}} \\ \psi_{\rm GR}(f) &\to \psi_{\rm GR}(f) + \delta \psi(f), \qquad \delta \psi_{\rm ppE}(f) = \sum_{i} \beta_{i} (\nu \eta^{1/5})^{b_{i}} \end{split}$$

$$\nu = (\pi M f)^{1/3} \text{ and } \eta = m_1 m_2 / (m_1 + m_2)^2.$$

See [Yunes, Siemens, LRR, 16, (2013), 9] for review.

b _{ppE}	Description
-7	Dipole Gravitational Radiation, Electric Dipole Scalar Radiation, e.g., Brans-Dicke & EDGB
-3	Modified GW Disperson/Propagation, e.g., Massive Graviton & Lorentz violations
-1	Quadrupole Moment Correction, Scalar Dipole Force, e.g., dynamical Chern-Simmons

$$\begin{array}{ll} \beta_{\rm BD} & \propto & (s_1 - s_2)^2 \omega_{\rm BD}^{-1} & b = -7 \\ \beta_{\rm EDGB} & \propto & \zeta_3 (1 - 4\eta) & b = -7 \\ \beta_{\rm MG, \, LV} & \propto & D_0 \mathcal{M} \lambda_{\rm g, \, LV}^{-2} & b = -3 \end{array}$$

 $s_{\rm BH}=0.5, \quad 0.2 \leq s_{\rm NS} \leq 0.3$

GR theory, GR template: continue searching for GW signals.

GR theory, non-GR template: quantify significance that event is within GR.

Non-GR , GR template: measure degree of fundamental bias.

Non-GR , non-GR template: Measure deviations from GR characterized by signal.

Bayesian:

Cornish etal, PRD, 84, 062003 (2011) Del Pozzo etal, PRD, 83, 082002 (2011)

Frequentist:

· CRLB breaks down at low-SNR: Vallisneri, PRD 77, 042001 (2008), ...

Higher-order corrections:
 Zanolin etal, PRD, 81, 124048 (2010)
 Vitale & Zanolin, PRD, 82, 124065 (2010) & 84, 104020 (2011)

Fisher approximation to frequentist error

Fisher matrix,

$$\Gamma_{ij} = \left\langle \frac{\partial s}{\partial \vartheta^i} \middle| \frac{\partial s}{\partial \vartheta^j} \right\rangle$$

Pdf of estimator $\hat{\theta}$: $P(\hat{\theta}|d)$. Likelihood: $P(d|\vec{\theta})$. $SNR = \sqrt{\langle s|s \rangle}$. Cramér-Rao lower bound,

$$\begin{array}{rcl} \Delta \theta^{i} & \geq & \sqrt{\Gamma^{ii}} \\ \ln P(\hat{\theta}_{i}|d) & \propto & -\frac{1}{2} \Gamma_{ij} \left(\hat{\theta}_{i} - \theta_{i} \right) \left(\hat{\theta}_{j} - \theta_{j} \right) \end{array}$$

Asymptotic approach

For unbiased estimators second-orders factor into errors,

$$MSE^{i} = \sigma_{\vartheta^{i}}^{2}[1] + \sigma_{\vartheta^{i}}^{2}[2] + \cdots$$

$$\sigma_{\vartheta^{i}}[1] \propto 1/SNR$$

$$\sigma_{\vartheta^{i}}[2] \propto 1/SNR^{2}$$

Here $\sigma_{\vartheta^j}[1] = \sqrt{\Gamma^{ii}}$ and errors are $\Delta \vartheta^i = \sqrt{MSE^i}$. $SNR \propto 1/D_L$ and $SNR \propto \mathcal{M}^{5/6}$, $\mathcal{M} = M\eta^{3/5}$.

Our systems uses $\vartheta = \{\theta_{phys}, \theta_{ppE}\}$: 1 $\theta_{phys} = \{\eta, \log \mathcal{M}, t_c, \text{lat}, \text{long}\}$ 2 $\theta_{ppE} = \{\beta, b\}$

- 1 $(\alpha_{ppE}, a_{ppE}) = (0, a)$: Results are more sensitive to phase modifications. ppE parameters characterizing modifications during generation and propagation stages of waveform can be separated.
- **2** Distance D_L : Masses and distance are degenerate.
- 3 Phase ϕ_c : Only relevant when a full (IMR) waveform is used.
- Gauge (polarization) angle ψ, inclination ε: Results tend to always be independent of ψ and ε.

Signal-to-noise sky map

- **1** BBH 1:1- $(m_1, m_2) = (10, 10)M_{\odot}, D_L = 1100$ Mpc. $\overline{SNR} = 14.6$.
- **2** BBH 1:2- $(m_1, m_2) = (5, 10)M_{\odot}, D_L = 850$ Mpc. $\overline{SNR} = 14.9$.
- **3** BHNS- $(m_1, m_2) = (1.4, 10) M_{\odot}, D_L = 450 \text{ Mpc}. \overline{SNR} = 15.8.$
- 4 BNS- $(m_1, m_2) = (1.4, 1.4) M_{\odot}, D_L = 200 \text{ Mpc}. \overline{SNR} = 17.0.$

Constraints

Constraints

Existing:

λ_{g,LV} > 1.6 × 10¹⁰ km (dynamic) & 2.8 × 10¹² km (static),
 |α_{EDGB}|^{1/2} < 9.8 km & 7.1 × 10⁻¹ km,
 ω_{BD} > 4 × 10⁴.

Questions?