

Development of a thin silica fibre pulling machine

Karl Toland

Alan Cumming, Liam Cunningham, Giles Hammond, James Hough, Russell Jones and Sheila Rowan

Institute for Gravitational Research

University of Glasgow

1st September 2015

LIGO-G1501045

LVC Meeting, Budapest

- Motivation for a thin fibre pulling machine
- Description of fibre pulling machine
- Fibre characterisation:
 - -Geometries of pulled fibres
 - -Breaking stress
 - -Young's modulus of selected fibres
- Future upgrades
- Summary

Motivation for thin fibres

- Thinner fibres to suspend small optics for:
 - -AEI 10m prototype (30 µm diameter 20 cm long)^[1]
 - -Radiation pressure experiments with light masses ^[2]
 - -8 µm 1 g mirrors (See poster by Jan Hennig: 'How to suspend a mirror as light as a one dollar note')
- Flexures in borehole gravity meters (50 µm diameter 6 mm long)

AEI suspensions with 100 g mirror mass

 $6\ mm$ 50 μm fibre

[1] arXiv:1111.7252 [physics.optics][2] arXiv:1405.2783 [gr-qc]

- Pulling machine utilises the high velocity and acceleration of the Newport IMS-400LM
- Stage has maximum travel length of 400 mm and maximum velocity of 500 mm/s
- The stock is heated with a 100 W CO2 laser
- The beam passes through a ZnSe lens system to give beam waist of approximately 100 µm at focus
- The beam is spread around the stock via the use of an axicon and two conical mirrors
- Pulling stage pulls one end of the silica stock to create fibre

Drawings courtesy of Dr Liam Cunningham and Mr Russell Jones

• The use of an axicon allows a stable delivery of the beam to the silica stock due to its fixed position

• Laser heating up the silica stock and starting to pull

- Conical mirror on motorised stage moves at 0.1 mm/s
- This ensures that the silica stock wont run out during the pull
- Pull lasts approximately 1 second

- Metal brackets attached to the fibre clamps
- This allows extraction of the fibre without physically touching the fibre
- Fibre can then be transported around lab for profiling^[3], strength testing, laser cutting etc

[3] <u>http://www.researchgate.net/publication/</u> 51085528 (Review of Scientific Instruments)₁₀

Strength testing

- Fibres were placed in a small scale strength tester
- Motor pulls down one end of a fibre until it snaps
- Extension of fibre measured using callipers in equal time intervals
- Breaking force recorded

Strength testing

- Breaking stress average of 3.83 GPa for 5 fibres
- No laser polish during fibre pulls. This could further increase the breaking stress ^[4]
- Breaking stress is calculated via:

$$Stress = \frac{force}{area}$$

where the area is the cross sectional area of the fibre at its thinnest point

- Large error occurs due to the error in the fibre width (15%)
- Fibres are on the limit of what the profiler can focus on to.
- Future camera upgrade is planned to decrease error.

Fibre 1	Fibre 2	Fibre 3	Fibre 4	Fibre 5
min	min	min	min	min
diameter	diameter	diameter	diameter	diameter
11.97µm	14.67µm	14.82µm	13.5µm	14.69µm

[4] http://eprints.gla.ac.uk/93995/

Young's modulus

- The Young's Modulus, Y, found by breaking fibre into equal sections of length L_n
- Each profiled section will have a slight variation in diameter as the fibre is not perfectly uniform
- Ln determined via profiler segments
- The extension, ΔL_n , of each segment can be calculated via:

$$\Delta L_n = \frac{L_n F}{YA}$$

where F is the force required to break the fibre and A is the cross sectional area of the fibre segments

- Summing up all ΔL_n will give the total extension of fibre
- Young's modulus is adjusted until the calculated extension is equal to the experimentally measured extension of the fibre

L_n]

Young's modulus

Young's Modulus of 5 fibres

- Fibres give an average Young's modulus of 73.62 GPa
- Within range of that of bulk silica, 73 GPa ^[5]
- Error in Young's modulus values due to error in fibre radius

- A pulling machine has been built that is capable of producing strong/ consistent fibres < 15 µm
- Young's modulus of pulled fibres agrees with literature value of fused bulk silica
- Fibres could increase in strength if laser polished
- On going and future work:

-Independent magnetic encoder to measure pulling stage position during pull

-Camera to monitor the laser power and heat distribution around stock

-Camera and lens upgrade for the fibre profiler to decrease error in fibre radius

-Various upgrades to bench equipment (mount holders, lens system etc) to improve the long term alignment of the pulling machine

