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ABSTRACT

GRAVITATIONAL WAVE ASTROPHYSICS:
INSTRUMENTATION, DETECTOR CHARACTERIZATION,

AND A SEARCH FOR GRAVITATIONAL
SIGNALS FROM GAMMA-RAY BURSTS

SEPTEMBER 2015

DANIEL HOAK

B.A., BOSTON UNIVERSITY

M.S., UNIVERSITY OF MASSACHUSETTS, AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Laura Cadonati

In the coming years, the second generation of interferometric gravitational wave detectors are widely ex-

pected to observe the gravitational radiation emitted by compact, energetic events in the nearby universe. The

field of gravitational wave astrophysics has grown into a large international endeavor with a global network of

kilometer-scale observatories. The work presented in this thesis spans the field, from optical metrology, to in-

strument commissioning, to detector characterization and data analysis. The principal results are a method for

the precise characterization of optical cavities, the commissioning of the advanced LIGO Output Mode Cleaner

at the Hanford observatory, and a search for gravitational waves associated with gamma-ray bursts.
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CHAPTER 1

INTRODUCTION

A space whose every cubit
Seems to cry out

There is currently a worldwide effort to observe gravitational waves from compact, energetic events in the

nearby universe. These detections will mark the beginning of the field of gravitational wave astrophysics, and

directly probe regions of strong-field gravity for the first time. The first generation of interferometric detectors

collected data between 2005 and 2010, after which the main detector components were de-commissioned to make

way for second-generation instruments. These advanced detectors are now preparing for their first data-taking

operations.

The full promise of the advanced detectors will only be realized if certain persistent challenges are met.

First, commissioning the detectors themselves is an ongoing research and development project, and reaching

the final sensitivity goals will require significant effort in the coming years. Second, the rate of transient noise

events in the detectors is a limiting factor for searches for short-duration unmodeled signals. Reducing the rate of

these transients would substantially improve the sensitivity to short-duration signals. Finally, information from

electromagnetic observations can be used to design searches with improved sensitivity to gravitational waves.

These so-called externally triggered searches are some of the most promising avenues for gravitational wave

detection.

The original research presented in this thesis touches on all of these topics. Briefly, the highlights are the

following:

• I have worked with colleagues from the LIGO Hanford observatory to develop a method for the precise

characterization of optical cavities. We have demonstrated this method using two of the optical cavities of

the H1 instrument. The results have been published in Optics Express [125].

• Alongside a large number of talented scientists, I have worked to prepare the H1 instrument for the first

aLIGO observing run. During the spring of 2012 I assisted with the installation of the Arm-Length Stabi-
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lization system (ALS) which is used in the lock acquisition process. A paper describing the performance of

ALS was published in Classical and Quantum Gravity [126]. Between May 2014 and July 2015 I worked

at the LIGO Hanford observatory to commission the detector, with a focus on the operation of the Output

Mode Cleaner (OMC). A paper describing the OMC is in preparation.

• Throughout my graduate studies I have worked on techniques to identify and mitigate the various noise

couplings that generate an excess of loud transient signals in the detectors. In particular I have devel-

oped a detector characterization pipeline that correlates loud transient signals with pairs of instrumental

parameters.

• Using data from the previous observing runs of the LIGO, Virgo, and GEO 600 detectors, I collaborated

with data analysis colleagues to complete a search for gravitational waves associated with gamma-ray

bursts (GRBs). The results of the search have been published in Physical Review D [11]. A novel com-

ponent of this search was a study of the analysis pipeline’s ability to localize a detected signal on the sky,

within the uncertainties provided by gamma-ray satellite experiments.

This thesis is organized in the following way. In Chapter 2, I review the formalism of gravitational waves,

derive the waveform emitted by a simple binary system, discuss the emission energy for transient gravitational

wave sources, and present the current evidence and expected rates for a variety of sources. Chapter 3 describes the

basic design of modern interferometric detectors, derives the optical response of the initial detectors, calculates

the limit from a fundamental noise source, and briefly presents the results of the initial detector era. Chapter 4

introduces the formalism of optical cavities and Pound-Drever-Hall locking, and presents the methods and results

of a technique for precise measurements of optical cavity properties. In Chapter 5 I describe the commissioning of

the advanced detector at the LIGO Hanford observatory, with a focus on the Output Mode Cleaner. In Chapter 6

I discuss the data quality of the initial LIGO instruments, and present results from an analysis pipeline designed

to identify the instrumental noise couplings that generate the background of transient signals. In Chapter 7 I

describe the methods and results of a search for gravitational waves associated with GRBs at high frequencies

(> 500 Hz) using data from GEO 600 and other detectors. Finally, in Chapter 8 I summarize the results of this

thesis and discuss implications for the future of the field.

This thesis has been given LIGO document number P1500136. LIGO was constructed by the California In-

stitute of Technology and Massachusetts Institute of Technology with funding from the National Science Foun-

dation and operates under cooperative agreement PHY-0757058. The work presented here was supported by the

NSF under Grant No. 0955773. Any opinions, findings, conclusions or recommendations expressed in this thesis

are, of course, my own, and do not reflect the views of the National Science Foundation.
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CHAPTER 2

GRAVITATIONAL WAVES

The heavens themselves, the planets, and this center
Observe degree, priority, and place

Gravitational waves are one of the earliest predictions of the theory of general relativity. Despite numerous

precision tests of GR in the past century [146], gravitational waves have never been directly detected. Their

indirect detection, in the binary system PSR B1913+16 [143], has motivated a large international effort to directly

detect gravitational waves and inaugurate the promising field of gravitational-wave astrophysics.

In this chapter, I derive gravitational waves as solutions to Einstein’s equations in free space, utilizing the

standard weak-field approximation. Considering the source term for general relativity, I show that gravitational

waves are generated by accelerating, asymmetric mass distributions, and illustrate this with the example of a

binary system. I discuss the energy released by plausible gravitational wave sources and the strain induced at the

Earth from astrophysical sources. Finally I give a summary of likely rates for gravitational wave sources and the

sensitivity required for their detection.

The derivations in this chapter follow the text by Carroll [42], while the discussion of the energy carried by

gravitational waves follows a note by Sutton [129].

2.1 General Relativity

For a given point in a four-dimensional coordinate system xµ, we define the infinitesimal length element ds

as a function of the metric tensor, gµν , at the point x:

ds2 = gµν(x)dxµdxν . (2.1)

The force of gravity is manifested through the shape of the metric, under the assumption that freely-falling test

particles will follow the shortest path through spacetime. These paths are referred to as geodesics of the metric,
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and it can be shown that a unique geodesic exists for any particular point in spacetime in the presence of a

particular metric. The metric for flat spacetime is referred to as the Minkowski metric, and is given by

ηµν =



−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


. (2.2)

For small perturbations to flat spacetime, we typically write the metric tensor gµν as the Minkowski metric plus

a small metric perturbation denoted by hµν :

gµν = ηµν + hµν , |hµν | � 1 . (2.3)

This form allows us to expand the equations of gravity in terms of the metric perturbation h, and ignore higher-

order terms. This is referred to as the weak-field approximation and is valid as long as the observer is far from a

gravitational source.

Einstein’s equation for general relativity relates the Einstein tensor Gµν to the stress-energy tensor Tµν in

the following way:

Gµν + Λgµν =
8πG

c4
Tµν , (2.4)

where G is Newton’s constant, c is the speed of light, and Λ is the cosmological constant, a term with positive

energy density that models the observational evidence for the accelerating expansion of the universe. Since Λ is

important only on very large distance scales we will neglect it for the remainder of this thesis.

The Einstein tensor Gµν is a function of the Ricci tensor Rµν and the curvature scalar R = gµνRµν ,

Gµν = Rµν −
1

2
gµνR . (2.5)

The Ricci tensor is a contracted form of the Riemann curvature tensor, which describes the parallel transport of a

4-vector around a closed path. To explicitly write the Ricci tensor in a given coordinate system we introduce the

Christoffel symbols Γabc:

Rµν = Rσµσν = ∂σΓσνµ − ∂νΓσσµ + ΓσσαΓανµ − ΓσναΓασµ . (2.6)
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The Christoffel symbols are known as affine connections, and arise from the definition of the derivative on tangent

spaces to smooth manifolds. They are defined using the local spacetime metric gµν :

Γσµν =
1

2
gσλ (∂νgνλ + ∂νgµλ − ∂λgµν) . (2.7)

The Christoffel symbols have one derivative of the metric, and the Ricci tensor and curvature scalar have two.

Hence, the Einstein tensor is a second-order operator of the metric gµν , and the Einstein equations are nonlinear

second-order equations relating the spacetime metric to the stress-energy tensor.

To see how metric perturbations of spacetime can act as freely propagating waves, we turn to the weak-field

approximation. If we ignore higher-order terms in h, the inverse of the metric is given by:

gµν = ηµν − hµν . (2.8)

If we ignore higher-order terms again in the construction of the Christoffel symbols, we have:

Γσµν =
1

2
ησλ (∂νhνλ + ∂νhµλ − ∂λhµν) . (2.9)

Turning to the Ricci tensor, we note that the Γ2 terms will give rise to second-order terms in the derivative of h,

i.e. (∂µhνλ)
2. We can assume these terms will be vanishingly small, and so we only include terms which are

first-order in the derivatives of Γ. We are left with:

Rµν = ∂σΓσνµ − ∂νΓσσµ

=
1

2

(
∂σ∂νh

σ
µ + ∂σ∂µh

σ
ν − ∂µ∂νhσσ − ∂σ∂σhµν

)
. (2.10)

The trace of the metric perturbation is hσσ = h, and the term ∂σ∂
σhµν is the D’Alembertian, the Lorentz-invariant

extension of the Laplace operator to four-dimensional spacetime, denoted by 2hµν . To find the curvature scalar

R we contract the Ricci tensor:

R = ηµνRµν =
1

2

(
∂σ∂νh

σν + ∂σ∂µh
σµ − ∂µ∂µh−2hµµ

)
= ∂µ∂νh

µν −2h . (2.11)

Putting it all together, the Einstein tensor in the weak-field approximation is:

Gµν =
1

2

(
−2hµν + ∂σ∂νh

σ
µ + ∂σ∂µh

σ
ν − ηµν∂µ∂νhµν + ηµν2h− ∂µ∂νh

)
. (2.12)
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Now, in our expression for gµν , we have left the door open to coordinate transforms. In particular, there

may be more than one coordinate system in which the metric may be written as the Minkowski metric plus a

small metric perturbation. So far, the metric perturbation is invariant under infinitesimal transformations to the

coordinates:

xµ → x̃µ = xµ + εµ . (2.13)

This amounts to a gauge invariance of the system, and we are free to fix the gauge in a convenient manner. The

typical choice is the harmonic gauge, defined by the requirement 2xµ = 0. It can be shown that this is equivalent

to the requirement gµνΓρµν = 0, and in the weak-field approximation this leads to the following relationship:

∂σh
σ
ν =

1

2
∂νh . (2.14)

To the harmonic gauge condition, it is convenient to add the definition of the trace-reversed perturbation h̃µν :

h̃µν = hµν −
1

2
ηµνh . (2.15)

The harmonic gauge condition can now be written as

∂σh̃
σ
ν = 0 . (2.16)

If we use this expression in our weak-field expression for the Einstein tensor, we have

Gµν = −1

2
2h̃µν . (2.17)

Or, bringing back the energy-momentum tensor,

2h̃µν = −16πG

c4
Tµν . (2.18)

In vacuum, the result 2h̃µν = 0 implies the existence of wavelike solutions for the metric perturbation.

Plane-wave solutions will have the form:

h̃µν = Aµνe
ikαx

α

, (2.19)

where kα is the 4-dimensional wave vector and Aµν is the amplitude of the wave. Inserting this solution into

the vacuum result for Einstein’s equation, we see that the wave vector kµ must satisfy the relation kµkµ = 0.

6



Furthermore, by asserting the harmonic gauge condition kµAµν = 0, we can eliminate two final gauge freedoms

by asserting that Aµµ = 0 and A0µ = 0. The first equation (kµkµ = 0) states that the wave vector must be a null

vector, which is general relativity’s way of saying that the plane wave solutions must travel at the speed of light.

The second equation states that the amplitude of the waves is transverse to the direction of motion, and the third

states that the wave amplitude is traceless; this choice of gauge is referred to as the transverse-traceless gauge.

(The fourth equation, A0µ = 0, amounts to a choice of frame, which sounds like a violation of special relativity,

but amounts to an assertion that the wave be orthogonal to an observer with a timelike velocity u, Aµνuν = 0.

See [42] for a rigorous derivation.)

If we choose the direction of propagation of the wave to be in the z-direction,

kα = (ω, 0, 0, ω/c) , (2.20)

then the requirement k3A
3ν = 0 implies that A3ν is equal to zero. If Aµν is to be traceless, we are left with only

two free parameters, which we label in the following way:

Aµν =



0 0 0 0

0 A+ A× 0

0 A× −A+ 0

0 0 0 0


. (2.21)

There are two independent polarizations, referred to as the plus polarization and the cross polarization. The

plane waves themselves can be written as the real part of our solution to Einstein’s equation in vacuum. For a

wave traveling parallel to the z-axis the solutions take the following form:

h+(t, z) = A+ cos(w(t− z/c) + φ0)

h×(t, z) = A× cos(w(t− z/c) + φ0) . (2.22)

To see how a gravitational wave might interact with a set of freely-falling test masses, we can write down an

expression for the spacetime metric in the presence of a wave with components h+ and h×:

gµν = ηµν + hµν =



−1 0 0 0

0 1 + h+ h× 0

0 h× 1− h+ 0

0 0 0 1


. (2.23)
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Figure 2.1. The effect of the two polarizations of gravitational waves on a ring of test masses. The direction of
propagation of the wave is perpendicular to the page.

The time-varying spacetime interval separating any pair of masses is given by Eq. 2.1:

ds2 = −dt2 + (1 + h+)dx2 + (1− h+)dy2 + dz2 + 2h×dxdy . (2.24)

The motion induced by a passing gravitational wave is illustrated in Fig. 2.1. From this result we see why the

effect of gravitational waves on matter is often referred to as a strain, since the change in the spacetime interval

between two points is proportional to their initial separation (dx, dy, etc).

2.2 Generation of Gravitational Waves

Now, let us consider how a metric perturbation hµν might be generated from the source term, Tµν . We

first note that since energy and momentum are conserved, ∂νTµν = 0, i.e. the stress-energy tensor must be

divergenceless. (It is interesting to note that the same must be true for the other side of Einstein’s equation, i.e.

∂νGµν = 0. An examination of Eq. 2.12 shows that the terms neatly cancel under this operation!)

To solve Eq. 2.18 we employ the Green’s function for the D’Alembertian. The Green’s function is the solution

of the differential equation for a delta function source, 2G(xσ − x′σ) = δ(4)(xσ − x′σ). The general solution

for an arbitrary source Tµν(x′σ) is given by the integral:

hµν(xσ) = −16πG

c4

∫
G(xσ − x′σ)Tµν(x′σ) d4x′ . (2.25)

The form of the Green’s function for the D’Alembertian is:

G = −δ(|x− x′|/c− (t− t′))
4π|x− x′| θ(t− t′) , (2.26)
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where the function θ(t − t′) = 1 for t > t′ and zero elsewhere, since we are concerted with the radiation field

traveling outward from the source.

Using this expression we solve for hµν :

hµν(xσ) =
4G

c4

∫
δ(|x− x′|/c− (t− t′))

|x− x′| θ(t− t′)Tµν(x′σ)dt′d3x′ . (2.27)

Using the delta function we can solve the integral over time, giving us t′ = t− |x− x′|/c. This leaves:

hµν(t, x) =
4G

c4

∫
Tµν(t− |x−x′|

c , x′)
|x− x′| d3x′ . (2.28)

We expand the denominator in the usual way, |x− x′| = d− x′ · n̂ +O
(
r2

d

)
, under the assumption that we are

calculating the metric perturbation in the far-field regime, r � d, where r is the radius of the source and d is the

distance to the source. Keeping only the leading term and dropping the prime:

hµν(t, d) =
4G

c4

∫
Tµν(t− d/c, x)

d
d3x . (2.29)

Calculating the stress-energy tensor for an arbitrary system is quite complicated. Often, the derivation is

performed using the multipole expansion of Tµν . In this approach, it can be shown that (i) the monopole and

dipole terms are zero, and (ii) that the quadrupole terms of the momentum can be written as time derivatives of

the mass monopole term. Here, we will take a more mathematical approach (again, following [42]), and use the

divergenceless of Tµν to get the same result.

First, we Fourier transform the previous equation:

h̃µν(ω, d) =

∫
eiωt hµν(t, d) dt =

4G

dc4

∫
eiωt Tµν(t− d/c, x) d3x dt . (2.30)

Changing variables from t to the retarded time tr = t − d/c and Fourier transforming the right hand side, we

have:

h̃µν(ω, d) =
4G

dc4

∫
eiω(tr−d/c) Tµν(tr, x) d3x dtr

=
4G

dc4

∫
e−iωd/c T̃µν(ω, x) d3x . (2.31)

Now we invoke the divergenceless of Tµν . This is expressed as ∂µTµν = 0, and note that in Fourier space,

derivatives over the time coordinate can be expressed as ∂0T̃0ν = iωT̃0ν . In this way we can relate the time
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components to the spatial components, by iωT̃0ν = −∂kT̃kν . (Latin indices indicate spatial dimensions of the

tensor.) From this we see that we only need calculate the spatial components of T̃µν . The same logic must apply

to h̃µν , where iωh̃0ν = −∂kh̃kν . We employ this trick while integrating T̃µν by parts:

∫
T̃ij(ω, x) d3x =

∫
∂k
(
xiT̃kj(ω, x)

)
d3x−

∫
xi

(
∂kT̃kj(ω, x)

)
d3x . (2.32)

In the first term the integral over ∂k(xkT̃kν) is zero since we assume that Tµν goes to zero at infinity, and we can

relate the second term to the time component:

∫
d3x T̃ij(ω, x) = iω

∫
d3xxiT̃0j(ω, x) . (2.33)

Exploiting the symmetry of T̃ij , we apply this formula twice, picking up a factor of 1/2 in the process:

h̃ij(ω, d) =
4G

dc4
e−iωd/c

∫
T̃ij(ω, x) d3x

=
4G

dc4
e−iωd/c iω

∫
xiT̃0j(ω, x) d3x

=
4G

dc4
e−iωd/c iω

∫
1

2

(
xiT̃0j(ω, x) + xj T̃0i(ω, x)

)
d3x

=
2G

dc4
e−iωd/c iω

∫ [
∂l
(
xixj T̃0l(ω, x)

)
− xixj

(
∂lT̃0l(ω, x)

)]
d3x

= − 2G

dc4
e−iωd/c iω

∫
xixj

(
∂lT̃0l(ω, x)

)
d3x

= − 2G

dc4
e−iωd/c ω2

∫
xixj T̃00(ω, x) d3x . (2.34)

The term
∫
xixj T̃00(ω, x) d3x is the quadrupole moment of the mass-energy distribution of the source, written

asMij . Fourier transforming back to the time domain, we note that the factor of −ω2 can be accounted for by

taking ∂2
t of the time domain function. In the end, we have an expression for the metric perturbation as a function

of the retarded time:

hij(tr) =
2G

dc4
M̈ij(tr) , M̈ij(tr) =

d2

dt2

∫
xixjT00(tr, x)d3x . (2.35)

Gravitational radiation is thus generated by the second time derivative of the quadrupole moment of the

source energy density. (Remember that we have assumed a nonrelativitistic source, where the energy density

is larger than the momentum density. This will be a valid assumption for all but the most exotic astrophysical

objects.) To phrase this in a more tangible way, gravitational waves are generated by accelerating, asymmetric

mass distributions.
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What kinds of sources might generate a detectable strain signal hµν? Note that in Eq. 2.35, M̈ij has units of

energy. A quick manipulation of the constants can give us a sense of the strain generated by potential sources on

the Earth:

hµν(t) ' 10−47

(
M̈µν

1 Joule

)(
1 km

d

)
, (2.36)

...from sources within the galaxy:

hµν(t) ' 10−22

(
M̈µν

10−6M�c2

)(
1 kpc

d

)
, (2.37)

...and for astrophysical sources:

hµν(t) ' 10−23

(
M̈µν

0.01M�c2

)(
10 Mpc

d

)
, (2.38)

Strain amplitude of O(10−23) is within the realm of measurement for modern gravitational wave observato-

ries; this will be motivated in the following chapter. Signals from terrestrial sources, with energy scales which

we might control in a laboratory, are evidently far below the reach of detectors. Sources from the galaxy and

beyond would appear to be good candidates, although the energy scales involved are, for lack of a better word,

astronomical.

We should note here that M̈ij is the kinetic energy contained in the quadrupolar mass moment of the source

energy distribution, it is not the energy carried away by gravitational radiation. That expression will be derived

two sections forward.

2.3 Gravitational Waves from Binary Systems

As an example, consider a binary system of two identical stars with mass m in a circular orbit with radius r

and orbital angular frequency ω. For simplicity, we consider motion in the x-y plane, and the observer located

some distance d along the z axis. We assume the orbit is stable, so ω and r are constants. Recall from Newtonian

mechanics that the orbital frequency is given by ω =
√
Gm/4r3.

To compute the energy density T00(t, x), we model the stars as point masses, with the first located at x =

r cos(ωt), y = r sin(ωt), and similarly for the second, with a phase shift of π relative to the first. Integrating

over xixj d3x returns factors of cos2 ωt and sin2 ωt, which through the familiar trigonometric identities result in

terms with frequency 2ω.
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Thus, for an observer viewing the system face-on, the metric perturbation will be:

h+(t) = − 8G

dc4
mr2ω2 cos(2ωt) ,

h×(t) = − 8G

dc4
mr2ω2 sin(2ωt) . (2.39)

When viewed along the axis of rotation, gravitational waves from a rotational system are said to be circularly

polarized, since the two polarizations have a constant relative phase shift and equal amplitudes. As the ob-

server moves off-axis, the waves will become increasingly elliptically polarized, as the amplitude of the cross-

polarization decreases with respect to the plus-polarization. When viewed along the plane of the orbit, binary

systems emit linearly polarized gravitational waves. The dependence on the inclination ι of the system relative

to the observer is given by:

h+(t)→ 1

2
(1 + cos2 ι)h+(t) ,

h×(t)→ cos ι h×(t) , (2.40)

where ι = 0 corresponds to an observer located along the axis of rotation and h+,× are given by Eq. 2.39.

All binary systems will emit energy in the form of gravitational radiation, and from Eq. 2.39 we see that the

frequency of this radiation will be twice the binary’s orbital frequency. This is a general feature of gravitational

radiation from rotating sources.

Energy loss to gravitational waves will cause the orbit to slowly decay. Our best observational evidence for

gravitational waves comes from just such a system: the pulsar PSR B1913+16, also known as the Hulse-Taylor

pulsar. This is a binary neutron star (BNS) system located 6400 pc from Earth, with masses 1.441M� (for the

pulsar) and 1.387M� (for the companion), in a highly elliptical (e = 0.617) orbit with period of about 7.75

hours [143]. Since very shortly after its discovery in 1974, the system has been observed to have a decaying orbit

exactly in agreement with the predicted energy loss due to emission of gravitational radiation (see Fig. 2.2). The

power emitted by the system in gravitational radiation is 7.35× 1024 watts, or 1.9% of the power radiated by the

Sun.

Over the next three hundred million years, the Hulse-Taylor pulsar will lose energy via gravitational radi-

ation, and the orbit will circularize and steadily contract. In the final moments before merger, the system will

emit a significant fraction of a solar mass of energy in gravitational waves. The orbital period will quickly decay

from T = 1 second to 0.01 seconds in the span of a few hours. As the orbital separation decreases, the expres-

sion for the orbital frequency which we derived from Newton’s law of gravitation will no longer be valid. To

calculate the orbital mechanics as the neutron stars acquire velocities that approach the relativistic limit, various
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Fig. 2.— Orbital decay caused by the loss of energy by gravitational radiation. The parabola

depicts the expected shift of periastron time relative to an unchanging orbit, according to

general relativity. Data points represent our measurements, with error bars mostly too small

to see.

Figure 2.2. Cumulative excess phase in the orbit of PSR B1913+16, compared to the prediction for damping from
gravitational radiation. Negative values represent a progressively earlier periastron, indicative of a decreasing
orbital period. The rate of orbital period decay is −2.423(1)× 10−12 seconds/second. Figure from [143].

approximations to the full general relativistic calculation can be made. These approximation techniques include

terms of the multipole expansion of the stress-energy tensor higher than the quadrupole term, and also apply rel-

ativistic corrections of order (v/c)2 to the quadrupolar terms we have calculated above. These post-Newtonian

corrections account for various relativistic effects such as frame-dragging.

Even then, the validity of the post-Newtonian approximation is limited to orbits where the size of the binary

companions is small compared to the orbital radius. For neutron stars, with radius O(10km), the approximation

breaks down when the orbital frequency is above 1kHz and the non-point-like nature of the neutron stars must be

considered. In particular, the neutron stars are expected to experience tidal deformations in the final orbits of the

system before merger [71]. The magnitude of the tidal deformations and their effect on the bulk motion of the

matter in the system is dependent on the neutron star equation of state, which has not been constrained by obser-

vation [84]. Modeling the dynamics of the nuclear matter in BNS mergers using fully relativistic hydrodynamic

simulations which account for magnetic field interactions is an active and challenging area of research. See for

example Ref. [110].
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Binary black holes systems (BBH), on the other hand, can be accurately modeled as point-like particles

using numerical solutions to Einstein’s equations [45]. Many dozens of BBH waveforms have been generated by

groups using supercomputers to model systems with a variety of masses and spins.

For all binary systems, the inspiral stage of the binary evolution will end when the orbit becomes a plunge

into the gravitational well. The start of the plunge is typically approximated by the smallest radius of a stable

orbit in the Schwarzschild metric. This is referred to as the innermost stable circular orbit (ISCO). The orbital

frequency at this point is given by:

fISCO =
1

6π
√

6

c3

GM
, (2.41)

where M is the total mass of the system. For a system with two neutron stars, M = 2.8M�, and fISCO '

1570Hz. The frequency of the gravitational wave emission at the point of the plunge will be 2fISCO, but the

evolution of the system from f = fISCO
2 to f = fISCO is so rapid that fISCO is generally taken to be the upper

limit on gravitational wave emission from the inspiral of a binary system with mass M .

2.4 EGW and Strain Amplitude

Some complications arise if we wish to calculate the energy flux from gravitational radiation starting from

Eq. 2.18. One issue is our assumption of the weak-field limit in the derivation of a linearized Gµν , namely

that the gravitational wave is propagating through flat space with no energy density. An added challenge is the

relationship between the energy-momentum tensor and hµν : classically, the energy flux from a propagating wave

is quadratic in the perturbed field, but we have derived the weak-field approximation using only the first order

terms of h. The reader who is troubled by these philosophical and technical inconsistencies is invited to consult

the literature. For now, we will quote the standard solution for the energy flux and move forward from there.

If we expand the Ricci tensor to second order (quadratic in h) and equate to the stress-energy tensor (written

here in lowercase to acknowledge our ambivalence with the calculation1), we have:

t00 =
c5

32πG
〈∂0hij(t) ∂0hij(t)〉 , (2.42)

where the angle brackets indicate the average over many cycles. Noting that ∂0 = ∂t/c, and taking the time

derivative over the nonzero elements in Eq. 2.23, the energy flux from a passing gravitational wave is:

FGW =
c3

16πG

〈
ḣ2

+(t) + ḣ2
×(t)

〉
. (2.43)

1In defense of this approach the results are in perfect agreement with the Hulse-Taylor pulsar.

14



We wish to relate the energy emitted by the source in gravitational radiation to the strain measured by the

observer. To continue, we need to assume some form for h+,×(t). A natural choice would be the results from our

example of the binary system; however, as will be motivated in Chapter 7, we will instead use sine-Gaussians,

a family of generic waveforms that lends itself to models for transient signals. While sine-Gaussians do not

directly model an astrophysical source, they are a good approximation for a number of rotating systems and are

widely used in gravitational wave data analysis.

Sine-Gaussian waveforms are given by sine and cosine functions of fixed frequency, modulated by a Gaussian

envelope function:

 h+(t)

h×(t)

 =
hrss

(2πσ2
t )1/4

 (1+cos2 ι)
2

cos ι


 sin 2πf0(t− t0)

cos 2πf0(t− t0)

 e−(t−t0)2/4σ2
t , (2.44)

where t0 is the central time of the waveform, f0 is the central frequency, σt is the duration, and we define the

quality factor Q = 2πf0σt such that the bandwidth of the waveform is given by σf = f0/2Q. The inclination of

the source is again given by ι, with ι = 0 indicating an optimally-oriented, face-on rotating system with respect

to the observer.

Eq. 2.44 is defined such that the root sum of the squares is normalized, i.e.:

√∫ ∞
−∞
|h+(t)|2 + |h×(t)|2 dt = hrss , (2.45)

and we call the amplitude hrss the root sum square strain amplitude. hrss is a useful quantity for the calculation

of signal strength in gravitational wave data analysis, as we shall see in Chapter 7. Note that hrss has units of

amplitude spectral density, Hz−1/2. These units are explained in Appendix A.

Now we are in a position to integrate Eq. 2.43 and calculate the energy carried by a gravitational wave. To

compute the time average of the derivative of the strain signals, we approximate the sine-Gaussian waveforms

as narrowband signals in frequency; this gives us an overall factor of (2πf0)2. (Riles [111] has shown that this

approximation is accurate forQ & 6.) We assume that the system is optimally oriented (again, a choice motivated

in Chapter 7), and integrating over the whole sky gives a factor of 2πr2 (2π instead of 4π because we have fixed

the inclination angle). We have:

EGW =

∫
FGW dΩ dt =

c3

16πG
(2πf0)2 2πr2 h2

rss

[∫
d cos ι

(1 + cos2 ι)2

4
+ cos2 ι

]
ι=0

=
2

5

π2c3

G
f2

0 r
2h2
rss . (2.46)
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The prefactor of 2/5 is due to the rotational, face-on nature of the system; if we had assumed isotropic emission

from the source the prefactor would be unity. (For the same hrss measured by an observer, isotropic emission

leads to larger EGW .) A quick calculation of the constants shows we are in agreement with the estimates from

two sections prior: for a source 20 Mpc away, emitting gravitational waves at 200Hz, a strain of 10−22 indicates

EGW = 0.003M�c2. Note that we have made no statement about the duration of the signal. Our approximation

of Q & 6 is equivalent to an assumption that the signal is at least several cycles long, and hrss is the average

strain amplitude over this time. For Q = 10 and f0 = 200 Hz, σt = 8 msec.

If we integrate FGW over the whole sky and use our expression for hij(t) from the transverse-traceless gauge,

Eq. 2.35, we get the following approximation for PGW :

PGW =
c3

16πG
4πr2

(
2G

rc4

)2 〈 ...
M2

〉
=
G

c5
(εMR2ω3)2 , (2.47)

where we have expressed the quadrupolar mass momentM = εMR2, with ε ≤ 1 the measure of the nonunifor-

mity of the mass distribution, and we have assumed the motion of the quadrupolar moment to be periodic with

angular frequency ω. If we say that ω = v/R, then we can simplify the expression:

PGW =
G

c5

(
M

R
v3

)2

. (2.48)

Hence the best gravitational wave sources will be massive, compact, and rapidly moving.

In section 36.4 of Misner, Thorne, and Wheeler [94], an argument is made for calculating the maximum

possible emission of gravitational waves from a compact source. Taking Eq. 2.48 to the extreme, we say that

the upper limit on the velocity is the speed of light, and the lower limit for R is the Schwarzschild radius for the

total mass of the system, RS = 2GM/c2. After some dimensional gymnastics, this gives PGW ' c5/4G =

5 × 104M�c2s−1. Of course we have used relativistic parameters in a nonrelativistic model – this result is

perhaps only useful for its comic effect!

Using more reasonable numbers, a system of two neutron stars (M = 2.8M�) with an orbital radius

R = 50 km (= 6RS) and a frequency ω =
√

1.4M�G/4R3 = 2π × 100 Hz (for v ∼ 0.1c) emit PGW =

0.002M�c2s−1. This gives some sense of the energy released into gravitational waves in the final moments of

the merger of two neutron stars; it is tremendous. The gravitational wave energy flux at the Earth from such a

system in the Virgo cluster, 20 Mpc away, is ∼1 mW/m3 – about the same as the electromagnetic energy flux

from a full moon.
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2.5 Astrophysical Sources of Gravitational Waves

To conclude this chapter, we give a brief review of astrophysical sources for that could release sufficient

EGW to be detectable.

As implied by our example, binary systems are reliable sources of gravitational waves. Binaries composed

of main-sequence stars have masses too small and separations too large to generate hµν of significant amplitude,

although there are several known white dwarf binaries that could be detected by a space-based gravitational wave

experiment. (In fact the expected signal for a space-based experiment is so reliable that these systems are referred

to as ‘verification binaries’.)

Compact binaries, where one or both objects are neutron stars or black holes, are efficient radiators of grav-

itational waves. The mergers of compact binaries are known as compact binary coalescences (CBCs). As of

this writing there are ten known binary neutron star (BNS) systems in the galaxy, including the Hulse-Taylor

pulsar. None of these systems release sufficient energy to be detectable, but the population is used to constrain

the rate of BNS mergers in the galaxy, using assumptions of pulsar luminosity distributions and the typical life-

time of the system before merger. Similarly, while there are no known neutron star-black hole (NSBH) binaries

or binary black hole (BBH) systems, their populations can be estimated from the galactic star forming rate and

observations of high-mass X-ray binaries. BNS systems are expected to merge about once every 10,000 years in

a Milky-Way-like galaxy, and NSBH and BBH rates are about two orders of magnitude lower [12]. Due to the

extrapolation from a small population and the poor constraints on theoretical parameters, these rate estimates are

subject to large uncertainties, typically two orders of magnitude in either direction.

CBCs are transient signals which emit largeEGW for only a few seconds. We can imagine other astrophysical

systems that might generate rapidly varying quadrupolar moments for a short amount of time. Among the best

candidates are supernovae, which are known to have significant asymmetry and liberate a significant fraction of

a solar mass of gravitational binding energy. Type Ia supernovae, generated by the thermonuclear collapse of a

white dwarf in a binary system, are not energetic enough to be detectable. But core-collapse supernovae (CCSN)

of Type II or Ib,c can result in the formation of a neutron star or black hole. The mechanism for core-collapse

supernovae is not constrained by observation or theory and the gravitational wave emission from these systems

is highly speculative. If lower estimates of EGW from supernovae are correct (10−6M�c2), only galactic CCSN

will be detectable [28].

Isolated neutron stars can have large angular momenta, with spin frequencies approaching 1 kHz. Any defor-

mations from spherical symmetry will generate gravitational waves, although the deformation would have to be

quite large for the signal to be detectable. Neutron stars that have some oblateness which is not aligned with the

spin axis will precess and emit gravitational waves. This oblateness can be generated by strong magnetic fields

(again, not aligned with the spin axis) or anisotropies in the star’s interior. Gravitational signals from nonax-
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isymmetric neutron stars will be long-duration and fixed frequency, up to Doppler shifts due to relative motion

between the source and the observer. These signals are known as continuous wave (CW) signals in gravitational

wave data analysis. Direct measurements of neutron star physics via gravitational waves, either from observa-

tions of pulsars or from BNS mergers, are considered to be the best chance to constrain the equation of state for

dense nuclear matter [48, 109].

Neutron stars with large magnetic fields are known as magnetars [92]. Magnetars can occasionally experience

dramatic realignments of the magnetic field lines which can be associated with significant shifts in the star’s mass

distribution due to crustal cracking and starquakes. The magnetic field realignment generates streams of high-

energy particles and photons, which are detected at Earth as bursts of gamma-rays; magnetars that generate

bursts of this kind are called soft gamma repeaters or SGRs. The gravitational wave emission associated with

SGR events, sometimes called flares, is not well constrained by theory, but there are known SGRs within several

kiloparsecs of Earth.

Finally, a diffuse population of random, unresolved sources can lead to a stochastic background of gravita-

tional wave energy [26]. This is typically expressed as ΩGW , or the ratio of the gravitational wave energy density

to the critical density required to close the universe. A stochastic gravitational background could arise from the

galactic population of binary systems (at low frequency, ∼µHz), the cosmological population of BNS or BBH

mergers (at high frequency, ∼100 Hz), the cosmological population of supermassive black hole binaries (at very

low frequency, ∼nano Hz), the gravitational analogue to the cosmic microwave background (which has a flat

frequency content in basic models of inflation), or from more exotic sources such as cosmic strings or axions.

Gravitational waves that were excited in the very early universe can leave their imprint on the polarization of the

CMB; this indirect measurement via experiments like BICEP2 probes gravitational radiation with frequencies

around an inverse Hubble time (H−1
0 ), or 10−18 Hz.
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CHAPTER 3

GRAVITATIONAL WAVE DETECTORS

Not from the stars do I my judgment pluck

Gravitational wave detectors are transducers for gravitational wave strain: they convert a metric perturbation

from a passing gravitational wave into a voltage signal appropriate for digital analysis. The first practical gravita-

tional wave detectors were bar detectors, pioneered by Joseph Weber [142]. Bar detectors are composed of large

masses of metal, typically aluminum and typically cylindrical in shape. The surface of the bar is instrumented

with low-noise piezoelectric transducers; a passing gravitational wave excites the solid body modes of the mass

and generates oscillations that are measured by the piezo crystals. As a result bar detectors are very narrow-band

instruments (a few Hz or less), only sensitive to gravitational waves very near the frequency of the bar’s body

modes (usually, around several hundred Hz, depending on the size of the bar). Weber’s methods revolutionized

the until-then theoretical field of gravitational wave astronomy and motivated a generation of experiments. While

Weber’s work is regarded as pioneering, his later results – which included claims of detecting gravitational waves

associated with SN1987A – are now presented as a cautionary tale in experimental physics.

Modern gravitational wave detectors measure strain as the relative displacement between two test masses.

Early work on a simplified design was carried out in the 1970s by R. Forward and others [62]. The lasting model

for modern experiments (along with a careful analysis of what continue to be the dominant limits to sensitivity)

was developed by Rainer Weiss [144] with important contributions from R. Drever. In the most basic sense,

these detectors are kilometer-scale versions of the Michelson-Morely experiment to measure the speed of light

in different inertial reference frames, although a variety of optical enhancements are used to boost the signal.

Terrestrial gravitational wave detectors are more broadband than bar detectors, with sensitivity across the full

acoustic frequency range, between 10 Hz and a few kiloHertz.

There are currently a handful of kilometer-scale implementations of the experiment that Weiss envisioned.

The LIGO observatories, in Livingston, LA, and Hanford, WA, have four-kilometer-long arms [20]; Virgo, in

Cascina, Italy, is three kilometers [21]; and GEO 600, in Hannover, Germany, is 600 meters long [69]. A Japanese
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Figure 3.1. Optical layout of a simple Michelson interferometer. The detection photodiode is placed at the
antisymmetric port of the interferometer.

collaboration is currently building the KAGRA detector in an underground facility in the Kamioka mine in

Japan with 3 km arms [83]. Finally, a third LIGO site is planned for India, built in cooperation with the Indian

government. Within the gravitational wave community, the detectors are known by their shorthand names: the

LIGO instruments are H1 and L1, Virgo is V1, GEO is G1. A third LIGO instrument, H2, was formerly installed

at the Hanford site, and had 2 km arms. H2 ceased operations in 2010. All of the detectors are housed within

elaborate vacuum systems that limit acoustic interference and phase noise caused by refraction from density

fluctuations air. These vacuum systems are some of the largest in the world.

In this chapter, I describe the formalism of gravitational wave signal extraction for a simple Michelson inter-

ferometer, and derive the response function for the first generation of detectors. This response function is used

to calculate the limit to detector sensitivity for shot noise, a fundamental noise source. I discuss the antenna

response of the detectors, and conclude with a brief discussion of astrophysical results from the initial detector

era.

I note in passing that the search for gravitational waves associated with gamma-ray bursts presented in Chap-

ter 7 uses data from the initial detectors. The derivations in this chapter are intended to provide the reader with a

sense for how the detectors used in that search achieved their strain sensitivity.
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3.1 Optical Gain of the Initial LIGO Detectors

Let us consider a Michelson interferometer on the surface of the Earth with two arms of length L oriented

along the x and y axes (see Fig. 3.1). The gravitational wave is incident from above. For simplicity, this wave

will have h× = 0. Using Eq. 2.24, we can calculate the change in path length for the electromagnetic wave of a

laser propagating down the x-arm. For all electromagnetic waves the spacetime interval between events is always

light-like, ds2 = 0 (recall Eq. 2.1). Using this, we can write the following integral:

Lx =

∫
cdt =

∫ L

0

√
1 + h+(t)dx . (3.1)

Since |h+(t)| � 1, we approximate the term in the square root, and have the following:

Lx ' L+
1

2
Lh+(t) . (3.2)

For the y-arm, the expression is the same, but the term with the metric perturbation is negative.

Consider now the laser field that propagates up and down the arms and arrives at the antisymmetric port or

AS port, the side of the beamsplitter opposite that of the input laser. The input beam is described by an electric

field EBS incident on the beamsplitter, and the field at the AS port is given by:

EAS = EBS(tbse
ikLxrx(−rbs)eikLx + rbse

ikLyrytbse
ikLy ) , (3.3)

where the reflectivity and transmissivity of the beamsplitter is given by rbs and tbs, the amplitude reflectivities

of the end mirrors are rx and ry , and the length of the arms is Lx and Ly . Note that we have followed the

convention that the reflection off the back surface of the beamsplitter acquires an overall minus sign; this is

required for energy conservation.

We will assume that the end mirrors are perfectly reflecting (rx = ry = 1) and the beamsplitter is perfectly

50-50 and lossless, so rbs = tbs = 1/
√

2. Using our expression for the arm length in terms of gravitational wave

strain (Eq. 3.2):

EAS = −EBS
2

e2ikL(eikLh+(t) − e−ikLh+(t)) = −iEBSe2ikL sin[kLh+(t)] , (3.4)

The power measured by a photodetector at the antisymmetric port is:

PAS = |E∗ASEAS | = PBS sin2[kLh+(t)] , (3.5)
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where PBS = |EBS |2 is the power in Watts incident on the beamsplitter. Note that due to our phase convention,

a strain of zero leads to destructive interference at the antisymmetric port between the fields from the two arms,

and none of the input power is transmitted to the AS port. This is commonly referred to as the dark fringe;

the terminology fringe dates to the original Michelson-Morely experiment. To take advantage of the benefits of

nullity [114], gravitational wave interferometers are usually operated with the antisymmetric port on the dark

fringe, and nearly all of the incident power is reflected back from the beamsplitter towards in the input beam.

Operating on the dark fringe provides technical benefits, since our sensitivity to fluctuations in the input field

(EBS) or the laser frequency (k) will be zero when the strain is zero.

Unfortunately, there is a trade-off. Operating on the dark fringe limits our sensitivity to the strain. This can

be seen by differentiating the expression above:

δPAS
δh

= 2PBS kL sin(kLh) cos(kLh) . (3.6)

This expression is often referred to as the optical gain of the interferometer because it relates Watts of power

at the anti-symmetric port to the strain signal experienced by the arms. It provides some basic guidance for

interferometer design: we want to maximize the arm length L, maximize the power incident on the beamsplitter

P0, and minimize the laser wavelength λ = 2π
k . Since the strain h is expected to be very small, the cosine term

is very close to unity and can be neglected. But, note that due to the sine term, the optical gain scales linearly

with h. For h ' 0 we will have no signal!

Extracting a measurable signal while maintaining the noise-cancellation benefits of the dark fringe is one

of the primary complications of interferometer design. The typical solution is to employ a local oscillator field

(ELO) at the antisymmetric port in addition to the field that carries the signal from the arms. The power at the

AS port is then given by PAS = |ELO + EAS |2, where EAS is from Eq. 3.4. Cross-terms between the LO field

and the AS field will result in a signal in PAS that is linear in δh even when the phase shift between the arms

is zero. In the first generation of interferometric detectors this local oscillator was a radio frequency modulation

of the carrier light. Such a detection scheme is referred to as heterodyne detection, because the local oscillator

field has a different frequency than the carrier field that contains the signal. Second-generation interferometers

use homodyne detection, in which the local oscillator field is drawn from the same carrier field that propagates

down the arms. This field is generated using a static differential arm offset, which permits a small amount of

carrier light to exist at the AS port. Details on the homodyne readout scheme for advanced LIGO are presented

in Chapter 5.

Modern gravitational wave interferometers are significantly more complicated than our simple Michelson

example. In particular, the arms of the interferometer are formed by Fabry-Perot optical cavities which amplify
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the phase shift acquired by the electric field due to gravitational wave strain. Another Fabry-Perot cavity is

formed using an additional mirror placed at the symmetric port of the Michelson; this recycling mirror amplifies

the power incident on the beamsplitter. The advanced LIGO detectors have yet another cavity at the output

of the interferometer called signal recycling cavity, which broadens the frequency response of the detector to

gravitational waves. The physics of Fabry-Perot cavities will be derived in the following chapter and a description

of the advanced LIGO detectors will be given in Chapter 5. For now we will provide the response function for

the initial LIGO detectors. Our intention is to illustrate the physics of the first generation gravitational wave

detectors, which collected data for the analysis presented in Chapter 7.

The response of a power-recycled Fabry-Perot Michelson interferometer (PRFPMI) is given by:

PAS(f) = PBS sin2[gφ(f) kLh] , (3.7)

where the phase shift from the arms is amplified by a frequency-dependent phase gain gφ(f). The phase gain is

expressed using F , the finesse of the arm cavities, and the cavity pole frequency fpole, above which the cavity

response to length fluctuations is reduced:

gφ(f) =
2F
π

(
1 + i

f

fpole

)−1

. (3.8)

Cavity finesse is a measure of the light storage time in the cavity, and the cavity pole frequency defines the cavity

linewidth. These quantities will be explained in greater detail in the following chapter. We should note here that

the cavity pole is a function of the cavity finesse (see Eq. 4.9), and increasing the cavity finesse improves the

detector sensitivity at low frequencies but reduces the frequency range where the detector is most sensitive. This

frequency range is referred to as the detector bandwidth1.

To derive the full optical gain for a power-recycled interferometer, we differentiate Eq. 3.7, drop the cosine

term, and use the undifferentiated expression to relate the sine term to PAS and PBS :

δPAS = 2PBS sin[gφ(f) kLh] cos[gφ(f) kLh] gφ(f) kL δh

= 2PBS

√
PAS
PBS

gφ(f) kL δh

=
4FkL
π

√
PASPBS

(
1 + i

f

fpole

)−1

δh . (3.9)

1Increasing the finesse does not sacrifice sensitivity at high frequency, and in the ideal case there is no reason not to increase the finesse as
much as possible. In reality there are significant control difficulties for high-finesse cavities, and the sensitivity at low frequencies is limited
by a variety of noise sources. See Appendix C of [121] for a discussion.
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Parameter iLIGO Design
Arm length, L 3994.5 m
Input power, PIN 20 W
Laser wavelength, λ 1064 nm
Carrier recycling gain, g2

cr 50
Arm cavity finesse, F 220
Arm cavity pole, fc 85 Hz

Table 3.1. Sensing parameters of the initial LIGO detectors.

Finally, we can relate the power on the beamsplitter, PBS , to the input power to the interferometer using the

gain of the power recycling cavity: PBS = g2
crPIN . Using these expressions, we calculate the optical gain to be:

δPAS
δh

= 8gcr
FL
λ

√
PINPAS

(
1 + i

f

fpole

)−1

. (3.10)

This expression defines the signal at the antisymmetric port due to a small strain perturbation in the arms.

It is appropriate here to point out an important assumption that we have made, namely that the light travel time

down the arm is small compared to any time evolution of the metric perturbation h(t). An equivalent statement is

that the arm length is small compared to the wavelength of the gravitational radiation. For gravitational waves of

high frequency (small wavelength), the detector response will be degraded, and for signals in h(t) with periods

equal to the light travel time in the arms the response will be zero. For the 4 km LIGO arm cavities this null

point is approximately 37.5 kHz, and well above the practical limit to sensitivity due to the cavity pole of the

Fabry-Perot arms.

Parameters for the initial LIGO detectors are given in Table 3.1. In homodyne readout, PAS will depend on a

differential arm offset that is large compared to the amplitude of gravitational wave signals but small compared to

the wavelength of the laser. The size of this offset determines the static value for PAS and the response to small

metric perturbations. In practice this offset is adjusted on a daily timescale to respond to changes in detector

operations, and small changes to the overall detector response are dynamically calculated and accounted for.

Prior to the S6 science run in 2009-10, the LIGO detectors used heterodyne readout for sensing the antisym-

metric port power. In this case PAS is given by the power in radio-frequency sidebands that are impressed onto

the laser before the input to the interferometer. This leads to a more complicated expression for Eq. 3.7 that

includes terms for the power in the RF sidebands and their transmissivity through the power-recycled Michelson.

Since a focus of this thesis is the instrumentation used for homodyne detection, we have neglected any discussion

of heterodyne readout.
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3.2 Limits to Detection

How small a strain δh can we hope to measure with a terrestrial interferometer? Since the Michelson interfer-

ometer converts a change in path length into a change in intensity at the antisymmetric port, the question changes

from “How small a strain can we measure?” to “How small a change in laser intensity can we detect?” Mod-

ern photodetectors can easily measure changes in intensity in the parts per million; even Michelson and Morely

were able to measure relative phase shifts of about λ/20, with visible light. The limiting factors for measuring

relative length changes between the arms are noise sources in the detector itself. These noise sources can be

indistinguishable from time-varying metric perturbations and determine the limit of the detector sensitivity.

The noises that can impact a detector are legion and include forces that act on the mirrors (seismic motions

from the ground, residual gas in the vacuum system), thermoelastic noise that moves the mirrors at microscopic

scales (thermally excited modes in the mirror suspensions, thermal noise in the mirror coatings), noise in the

laser field itself (small variations in intensity or wavelength), and noise from the analog and digital electronics

that sense and control the position and orientation of the mirrors.

In this section we outline the sensitivity limits due to the quantum nature of light. The signal that is measured

by a photodiode at the antisymmetric port is subject to the Poisson nature of photon counting statistics on the

photodiode itself. The statistical variation in the number of photons arriving at the photodiode limits the size of

true intensity fluctuations which are detectable. This is referred to as shot noise. For most of the LIGO detection

band, shot noise is the limiting noise source. The remainder of this section discusses shot noise.

The mean rate of arrival of photons at the antisymmetric port photodiode is given by N = PAS/~ω, where

ω is the laser frequency. From Poisson statistics, the power measured at the AS port will have standard deviation

given by:

σ = ~ω
√
N = ~ω

√
PAS
~ω

=
√

~ωPAS . (3.11)

Let us now shift to the frequency domain. For Gaussian noise with variance σ2, the value of the two-sided power

spectral density (PSD) is a constant, given byGn = σ2, in units of Hz−1. Noise of this kind is called white noise.

Since the output of a Michelson interferometer is proportional to the amplitude of the strain of the gravitational

wave, we typically visualize the frequency-domain noise in terms of the amplitude spectral density, or ASD, in

units of Hz−1/2. The one-sided ASD for shot noise is given by:

Sn =
√

2Gn =
√

2σ =
√

2~ωPAS . (3.12)

This expression gives us the variation in PAS due to photon counting statistics. (Since we often deal in terms

of induced photocurrent rather than incident power on a photodiode, the expression Sn =
√

2qI , where q is the
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Figure 3.2. Shot noise limit from Eq. 3.13 for the initial LIGO detectors, and a representative sensitivity curve
for the H1 detector during the S6 science run.

fundamental electric charge and I the photocurrent, is also useful.) For some notes on amplitude spectral density,

see Appendix A.

Using our expression for the shot-noise variation in PAS , we can calculate the equivalent strain signal this

will generate in our interferometer, using our expression for the initial LIGO optical gain (Eq. 3.10):

δhshot =
Sn

δPAS/δh
=

1√
ε

1

4gcrFL

√
π~cλ
PIN

(
1 + i

f

fpole

)
. (3.13)

The prefactor of ε−1/2 is an overall power efficiency which accounts for losses between the input to the intefer-

ometer and the antisymmetric port. These include losses in auxiliary optics such as mode-matching telescopes

and Faraday isolators, and also small percentages of the light which are picked off from the main beam and used

for sensing and control. For the H1 detector in the S6 science run, ε = 0.42.

In Fig. 3.2 we compare the sensitivity limit predicted by Eq. 3.13 and the sensitivity realized during the

last LIGO-Virgo science run. The projection for the shot noise uses the parameters from Table 3.1. At low

frequencies, the detector is limited by noise sources such as seismic vibrations and thermal noise in the mirror

coatings. Above roughly 300 Hz the sensitivity is limited only by shot noise. In this region, an increase in the

detector’s input power PIN would directly translate into a sensitivity improvement of
√
PIN . Increasing the

input power is, however, technically challenging for many reasons [54, 117].
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Note that the shot noise limit to sensitivity does not depend on PAS . While the variance in the rate of arrival

of photons at the detector increases like
√
PAS , so does the optical gain of the interferometer, and the two effects

cancel.

Due to the quantum nature of light, shot noise is a fundamental lower limit on interferometer sensitivity. In

a fully quantum-mechanical treatment [43, 44], shot noise is realized as the introduction of vacuum fluctuations

that enter the interferometer through the antisymmetric port. A trick that has been shown to be effective in

reducing shot noise is to constrain the amplitude or phase uncertainty of the vacuum fluctuations by injecting

another laser field into the antisymmetric port of the interferometer. This laser, phase-locked to the input laser,

squeezes the uncertainty of the vacuum into one of the two degrees of freedom of the laser (amplitude, or phase).

This technique has been implemented on the GEO 600 detector in Germany and the LIGO H1 detector [14, 3]

with good results, and will likely be included in the design of future experiments.

3.3 Detector Antenna Patterns

In general, gravitational wave detectors are more omni-directional than a typical electromagnetic dipole an-

tenna. Their sensitivity as a function of sky location depends on the polarization of the gravitational wave. For a

interferometer with two orthogonal arms, the detector antenna functions are given by:

F+(θ, φ) =
1

2
(1 + cos2 θ) cos 2φ ,

F×(θ, φ) = cos θ sin 2φ , (3.14)

where F+(θ, φ) is the detector’s sensitivity to +-polarized waves originating from the sky location defined by

(θ, φ), and likewise for F×. Here, the arms of the detector lie along the positive x and y axes, φ is the azimuthal

angle (0 ≤ φ ≤ 2π) which is zero along the x axis, and θ is the polar angle (0 ≤ θ ≤ π). These equations are

plotted in Fig. 3.3 and Fig. 3.4. The interferometer is maximally sensitive in the ±z direction, and there is no

sensitivity in the plane of the detector to ×-polarized gravitational waves, due to the cos θ term in h×. There are

four null points in the x-y plane where the detector has no sensitivity to gravitational waves of any polarization.

The time-series data from a gravitational wave detector due to a source at a sky location sky location (θ, φ)

emitting gravitational waves given by (h+(t), h×(t)) can be written as:

d(t, θ, φ) = h+(t)F+(θ, φ) + h×(t)F×(θ, φ) + n(t) , (3.15)

where n(t) is a noise term intrinsic to the detector. This expression will be important when we describe methods

of coherent data analysis in Chapter 7.

27



Figure 3.3. F+ antenna pattern. The z-axis is vertical.

Figure 3.4. F× antenna pattern.
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Figure 3.5. Limits on the rate of compact binary coalescences set by the most recent LIGO-Virgo science runs.
The light grey regions are the limits set by the S5 science run, and the dark grey regions are the limits set by
the combined results of the S5 and S6 science runs. The blue regions are the range of predicted rates based on
population studies, as detailed in [12]. Figure from [18].

3.4 Results from the Initial Detector Era and Current Astrophysical Limits

In the previous decade, the first generation of interferometric detectors completed multiyear observing runs.

A variety of astrophysical searches were performed using this data, and no detection candidates were identified.

In this section we provide a brief survey of the most general results.

The most promising signals for terrestrial detectors are compact-binary coalescences (CBCs). Searches for

CBCs perform a matched-filter analysis of the data using the known waveform of the binary inspiral, for a

wide parameter space of binary masses, spins, and orientations. Results from all-sky searches for BNS, NSBH,

and BBH signals were most recently published in Ref. [18], and the upper limits are illustrated in Fig. 3.5.

The sensitivity of the searches to date is still an order of magnitude above the predicted rates for CBCs from

population synthesis models.

A variety of different methods have been used to search for continuous-wave signals from isolated pulsars.

Analyses of this kind search for monochromatic signals in the detectors which evolve following the expected

sidereal Doppler shift from the Earth’s rotation relative to a single point on the sky, as well as the frequency

derivative from the spin-down of the signal. Continuous-wave (CW) searches can be directed, using ephemeris

from radio observations to analyze known pulsars, or undirected, searching for previously undiscovered neutron

stars. Undirected CW searches test an extremely large parameter space and are typically run on volunteered

distributed computing resources. Results from the latest undirected CW search using LIGO data are shown in
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Figure 3.6. Upper limits on hrss from continuous wave sources. The blue points are limits derived from the first
year of data from the S5 science run, and red points are derived from the full two-year dataset. Figure from [2].

Fig. 3.6, from [2]. To generate this plot some assumption has been made about the ellipticity of the source.

A related plot in the same paper sets lower limits on the distance to CW sources with some assumptions on

ellipticity, and the spin down is assumed to be entirely due to gravitational radiation. The best limits are around

3 kpc for sources with frequency around 150 Hz.

Searches for unmodeled, short duration gravitational wave signals, or bursts, present the best chance for

entirely unexpected discoveries. Limits from searches of this kind are shown in Fig. 3.7, from [15]. Here, we

plot upper limits on the rate of a hypothetical population of sources emittingM�c2 in short-duration gravitational

wave bursts. The limits extend below 10−6 Mpc−3 year−1, indicating that there is no population of extremely

loud events in the nearby universe. A related figure from the same paper plots the limits on the energy released

to gravitational waves by short-duration, narrowband sources, within a distance of 10 kpc (essentially covering

the Milky Way galaxy). The limits extend below 10−6M�c2, indicating that there is no galactic source of quiet

transient signals. Note that the limits on the rate of hypothetical sources that are isotropically distributed in the

universe will improve by a factor of 103 in the advanced detector era. Advanced LIGO could detect sources that

occur once per cubic gigaparsec per year, emitting M�c2 around 200 Hz.

Finally, the initial detectors placed upper limits on the energy density of gravitational waves, ΩGW . This

is shown in Fig. 3.8, as a function of frequency and in terms of the fraction of the critical energy density to

close the universe. The initial detectors improved upon the upper limit on ΩGW that is derived from Big Bang

Nucleosynthesis (BBN), an the advanced detectors could probe exotic models for inflation and cosmic strings.

See [5, 9] for the latest results.
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Figure 3.7. Upper limits on the rate of generic gravitational wave sources emitting M�c2 of energy isotropically
in short-duration, narrowband gravitational wave bursts. The limits degrade as the frequency of the hypothesized
source increases due to the decreasing sensitivity of the detectors and from the factor of f2

0 in Eq. 2.46. Figure
from [15].

Figure 3.8. Limits on stochastic gravitational wave energy as a fraction of ρcritical, the energy density required
to close the universe: ΩGW = 1

ρcritical

dρGW
d ln f . Figure from [9].
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There are a variety of proposed techniques to detect gravitational waves besides the terrestrial Michelson

interferometers. LISA, a proposed space-based gravitational wave antenna with freely-falling test masses sepa-

rated by one million kilometers [34], would be sensitive to gravitational waves in the millihertz frequency range.

There are known galactic binary systems that radiate gravitational waves in this band with sufficient amplitude to

be detectable by LISA. Other source of low-frequency gravitational waves are supermassive black-hole binaries

at the center of galaxies, and gravitational waves emitted from the inflationary period immediately following

the Big Bang. Even lower-frequency gravitational waves could be detected using the signals from millisecond

pulsars, treating the Earth and the pulsar as opposite ends of a long interferometer arm in space [53]. An array

of stable millisecond pulsars would be sensitive to a low-frequency stochastic background of gravitational waves

due to supermassive black hole binaries.

3.5 Can Interferometers Detect Metric Perturbations?

Gravitational wave scientists are often confronted with the question: “In a Michelson interferometer, shouldn’t

the laser wavelength be stretched along with the length of the arm, and the gravitational wave signal will cancel?”

The answer is, of course, no. Interferometers do not use the wavelength of the laser as a ruler to measure

the arm length. Rather, the phase evolution of the laser field as it propagates down the arm is used as a clock to

measure the time-of-flight between the beamsplitter and the end test masses. The Fabry-Perot arm cavities are

used to amplify this phase shift through many bounces between the input test mass and end test mass. The laser

field in the arm cavities samples the time-of-flight down the arm many times, and the reflected field from the arm

cavities carries the information of the built-up phase shift. The relative phase shift between the arms is measured

by the interference pattern at the antisymmetric port.

As mentioned previously, if the period of the gravitational wave matches the time-of-flight down the arm, the

end test mass will be in the same position relative to the beamsplitter when the laser field began the tip down the

arm, and the phase shift will be zero. (Also the phase buildup of a Fabry-Perot cavity is reduced at frequencies

above the cavity pole; this is why the LIGO interferometers are less sensitive at high frequency.) But, in the low

frequency limit, where the response of the arm cavities is flat and the time variation of the gravitational wave is

slow compared to the time of light in the arms, the interferometer will act as a transducer for strain.
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CHAPTER 4

OPTICAL RESONATORS

Thy glass will show thee how thy beauties wear,
Thy dial how thy precious minutes waste;
The vacant leaves thy mind’s imprint will bear,
And of this book, this learning mayst thou taste.

An optical resonator, also called an optical cavity or a Fabry-Perot cavity, is an arrangement of partially-

transmissive mirrors that permit standing electromagnetic waves to form between them. This condition is known

as resonance. For an incident electromagnetic wave with wavelength λ, an optical cavity of length L will be

resonant when L = Nλ/2, where N is some integer. When this condition is met, the small amount of light that

leaks through the first mirror of the cavity will build into a standing wave between the mirrors. The power in

the standing wave will grow until the losses of the cavity – due to transmission through the mirrors, absorption,

or scattering – are equal to the input power through the first mirror. This is a magical effect: place one mirror

in front of a laser and the light is reflected, but place two mirrors the correct distance apart and they become

transmissive!

Optical cavities are one of the fundamental technologies used in modern gravitational wave interferometers,

and a detailed understanding of their response is crucial for understanding the operation of the detectors. In this

section I will describe simple optical cavities and their formalism, and derive the Pound-Drever-Hall locking

technique for controlling optical cavities on resonance. In the second half of the chapter these foundations are

used to outline a method for the precise characterization of optical cavity length and linewidth. This method has

been used to measure the properties for two of the optical cavities of the advanced LIGO H1 instrument to high

precision.

4.1 Optical Cavities

In this section we will derive the basic formalism for an optical cavity of two mirrors. The description is

easily generalized to cavities with a larger number of optical components.
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Figure 4.1. Fields around an optical cavity. Figure by J. Adamopoulos.

Consider a pair of mirrors, each constructed of a transparent dielectric substrate with negligible thickness,

with a concave surface of spherical radius ρ. The mirrors are separated by a length L; this is called the one-way

cavity length. The curved surface has an optical coating that is partially reflective with a power reflectivity given

by R = r2, where r is the field reflectivity. The transmissivity is given by T = 1 − R = t2. In a complete

treatment of optical cavities, the laser field is written as an electromagnetic field with a Gaussian profile, which

is focused by the concave surface of the mirrors. While Gaussian beam propagation methods are crucial for a

proper understanding of the interactions between lasers and mirrors, we will neglect this for now, and model the

beams as plane waves. For an introduction to Gaussian beams, the reader is encouraged to study Kogelnik and

Li [81].

Our incident electric field is given by:

Ein(x, t) = E0e
iωx/c−iωt , (4.1)

where ω = ck is the laser angular frequency and λ = 2π/k is the laser wavelength. For the remainder of this

section we will neglect the time-dependence of the laser field. We label the first mirror the beam encounters

the input mirror, and the second as the end mirror; these mirrors have amplitude reflectivities ri and re, and

corresponding transmissivities. For simplicity we assume the mirrors are lossless, i.e. r2
i + t2i = 1.

We define the circulating electric field as the field that is incident on the end mirror:

Ecirc = E0tie
iωL/c + Ecircriree

2iωL/c . (4.2)

Rearranging, we have:

Ecirc = E0
tie

iωL/c

1− riree2iωL/c
. (4.3)

The reflected field from the cavity is given by the prompt reflection plus the backward-going transmission of

Ecirc:
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Erefl = −riE0 + tiree
iωL/cEcirc = E0

[
−ri +

t2i ree
2iωL/c

1− riree2iωL/c

]
= E0

(ree
2iωL/c − ri)

1− riree2iωL/c
, (4.4)

where we have used the convention from the previous chapter, in which reflections off the back surface of mirrors

acquire a phase shift of π (again, this is necessary for energy conservation). The transmitted field is given by:

Etrans = teEcirc = E0
tetie

iωL/c

1− riree2iωL/c
. (4.5)

Finally, note that the circulating field in the cavity can be expressed in terms of the cavity field gain gc:

gc =
Ecirc
E0

=
tie

iωL/c

1− riree2iωL/c
. (4.6)

The square of the cavity field gain, g2
c , determines the power buildup inside the cavity. On resonance (ωL/c = 1)

this can be large, especially for cavities with mirror reflectivities very close to unity. These transmission and

reflection formulae are the basic rules for modeling the behavior of electromagnetic fields around optical cavities.

The reflectivity and transmissivity of optical cavities are functions of the mirror reflectivities and transmissiv-

ities, the laser frequency, and the cavity length. If the reflectivities of the input and end mirrors are the same, the

cavity is said to be critically coupled, and on resonance all of the incident laser power will be transmitted, except

for losses within the cavity. The two cavities which are mentioned in greatest detail in this thesis, the advanced

LIGO input mode cleaner (IMC) and output mode cleaner (OMC), are both critically coupled cavities. Optical

cavities with ri < re are called overcoupled, while cavities with ri > re are undercoupled. We will forgo a

discussion of the subtleties between these types of cavities, but note that the LIGO arm cavities are overcoupled.

In this configuration the reflected light from the cavity is dominated by the field resonating in the cavity. This

field has a phase shift of π relative to the promptly reflected field (see Fig. 4.2), so the sign of the reflected field

changes when the cavity is on resonance. This sign flip will be revisited in our discussion of coupled cavities in

Chapter 5.

A cavity is said to be resonant when the length L is equal an integer number of half-wavelengths of the laser.

This condition can be achieved by either actuating on the mirror positions to control the cavity length, or by

controlling the laser frequency. When a cavity/laser pair is held at the resonant condition, the cavity (or laser) is

said to be locked.

The phase shift acquired by the laser as it traverses the length of the cavity is given by φ = ωL/c = 4πfL/c,

where f is the laser frequency. At resonance, φ must equal an integer multiple of 2π. If φ is not equal to

N × 2π the cavity is said to be detuned from resonance. In Fig. 4.2 we plot the power reflected and transmitted
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Figure 4.2. Power and phase of the transmitted and reflected beams from an optical cavity. The cavity finesse is
14, and the detuning phase φf = 4πfL/c = 2πf/fFSR.

by a critically-coupled cavity, as a function of the detuning phase. Also we show the phase of the reflected and

transmitted field. Note the sign flip of the reflected field on resonance (red trace).

The spacing between successive resonances is called the free spectral range of the cavity, or FSR:

fFSR =
c

2L
. (4.7)

The circulating power in the cavity as a function of laser frequency (or cavity length) has the form of a Lorentzian

function of L and ω. The cavity linewidth is the full width at half maximum (FWHM) of the Lorentzian that

describes the cavity. In terms of frequency this is known as the cavity pole. The cavity finesse, denoted by F , is

a dimensionless measure of the narrowness of the cavity linewidth. Finesse is defined as the FSR divided by the

FWHM and has the functional form:

F =
FSR

FWHM
=

π

2 arcsin( 1−rire
2
√
rire

)
' π
√
rire

1− rire
. (4.8)

In terms of the finesse, the cavity pole is given by:

fpole =
FSR
2F =

c

4FL , (4.9)

and the cavity storage time is given by:
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τs =
1

2πfpole
=

2FL
πc

. (4.10)

The FSR and pole frequency determine the dynamics of the optical cavity. For a cavity very near resonance,

the transmission of power fluctuations on the input beam will be suppressed above the pole frequency. The same

is true for frequency fluctuations. The cavity response time is finite, and only fluctuations that happen slowly

compared to the cavity storage time will be perfectly transmitted. For this reason, and because optical cavities

store light, optical cavities are sometimes called “capacitors for light”. This is something of a misnomer: a

capacitor in series will suppress DC signals, while an optical cavity will suppress AC signals above the cavity

pole.

Light reflected from a detuned cavity will acquire a phase shift proportional to the amount of detuning. If we

imagine the detuning is due to fluctuations in the cavity length L at frequency f , the phase gain is given by:

gφ(f) =
2F
π

(
1 + i

f

fpole

)−1

. (4.11)

Note that for f � fpole the phase gain is given by gφ ' c
Lτs, or one-half the number of cavity round trips.

Recall how LIGO uses Fabry-Perot cavities in the arms to build up the phase shift due to a passing gravitational

wave; it is exactly due to this effect, in which the phase shift acquired by the laser in a cavity that is slightly off

resonance builds up through multiple passes of the cavity.

In order to maintain a cavity in a resonant state, we use servo control, with an error signal derived from some

measure of how detuned the cavity is from resonance. This error signal is filtered to generate an appropriate

control signal, which is applied through appropriate actuators to the laser frequency (or the cavity length, or

both) to maintain the resonant condition.

One method for generating an error signal is to employ lock-in detection. In this technique an oscillatory

signal of known frequency is applied to the length of the cavity, typically by actuating on one of the mirrors. This

dither signal generates a fixed-frequency modulation of the transmitted light. Low-frequency modulations of the

transmitted light, generated by slight offsets of the cavity from the resonant condition, beat against the dither

signal and generate sidebands. Demodulating the transmitted light around the dither frequency recovers these

low-frequency sidebands and provides an error signal that is sensitive to the derivative of the cavity resonance

curve. The LIGO output mode cleaner is locked using dither sensing for both the length and alignment degrees

of freedom.

There are several drawbacks to the dither technique for cavity locking. The bandwidth of the error signal

is typically limited to around 10 Hz or less (due to sensing noise when measuring the dither signal amplitude

on the transmitted light) and robust control out to 100 Hz is very challenging. Dithering requires actuation on
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Figure 4.3. Different optical cavity topologies encountered in this thesis. A two-mirror cavity (a), such as the
LIGO arm cavities; a three-mirror triangular cavity (b), such as the Input Mode Cleaner; and (c), a four-mirror
‘bowtie’ cavity, similar to the Output Mode Cleaner.

the mirrors at high frequency, and larger mirrors require large actuation forces. In general dither sensing is

very useful for small optical cavities with fixed mirrors and fast actuators but is impractical for large suspended

cavities such as the LIGO arms.

We note from Fig. 4.2 that the phase of the light reflected and transmitted by the cavity is a sensitive measure

of how detuned the cavity is from resonance. If we could sense this phase, locking an optical cavity would be

easy. For optical-frequency electromagnetic fields, where the phase oscillates at 1014 Hz, measuring the phase

directly is infeasible. But, by using a local oscillator field, we can construct a signal that is sensitive to the phase.

This is described in the next section.

4.2 Pound-Drever-Hall Locking

The Pound-Drever-Hall (PDH) technique [55] utilizes a phase-modulated reference field to generate an error

signal proportional to the phase of the reflected light. The phase modulation is performed at high frequency,

much higher than the cavity pole frequency. For cavities that fit inside a typical lab this implies radio-frequency

modulation. Modulation at these high frequencies can be generated using an electro-optical modulator (EOM), a

crystal with a birefringence that varies as a function of applied electric field. By varying the electric field across

the EOM crystal with a frequency fRF , the incident electric field acquires an oscillating phase shift. This is

written as:

Einc = E0e
iω0teiΓ sin(ωRF t) , (4.12)

where Γ is the modulation depth, the amplitude of the phase modulation. We can use the Jacobi-Anger identity

to expand the phase modulation in terms of Bessel functions:

eiΓ sin(ωRF t) =

∞∑
n=−∞

Jn(Γ)einωRF t . (4.13)
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Keeping only the first-order terms we rewrite the incident electric field as:

Einc = E0

[
J0(Γ)eiω0t + J1(Γ)ei(ω0+ωRF )t − J1(Γ)ei(ω0−ωRF )t

]
. (4.14)

The first term is the carrier field, with frequency ω0, and the second and third terms are the radio-frequency

sidebands with frequency ω0±ωRF . The amplitude of the sidebands is usually a small fraction of the input field

amplitude.

Upon reflection or transmission of the cavity, the amplitude of the field at each frequency will depend on the

reflection and transmission formulae that we derived in the previous section. For convenience, we can express

these formulae as:

Erefl = r(ω)E0e
iωt , r(ω) =

(re − ri)e2iωL/c

1− riree2iωL/c

Etrans = t(ω)E0e
iωt , t(ω) =

tetie
iωL/c

1− riree2iωL/c
, (4.15)

where r(ω) and t(ω) are referred to as the reflection and transmission coefficients. The reflected field with the

sidebands is given by:

Erefl = E0

[
r(ω0)J0(Γ)eiω0t + r(ω0 + ωRF )J1(Γ)ei(ω0+ωRF )t − r(ω0 − ωRF )J1(Γ)ei(ω0−ωRF )t

]
. (4.16)

For brevity we shall refer to r(ω0 ± ωRF ) as r(±ωRF ), but the relative nature of the sideband frequency to the

carrier is always understood.

The power measured by a photodiode in reflection of the cavity is given by Prefl = E∗reflErefl. Since the

Bessel functions are real for real inputs this will be given by:

Prefl = |E0|2
[
r∗(ω0)r(ω0)J2

0 (Γ) + r∗(ωRF )r(ωRF )J2
1 (Γ) + r∗(−ωRF )r(−ωRF )J2

1 (Γ)+

+ r∗(ω0)r(ωRF )J0(Γ)J1(Γ)eiωRF t − r∗(ω0)r(−ωRF )J0(Γ)J1(Γ)e−iωRF t

+ r(ω0)r∗(ωRF )J0(Γ)J1(Γ)e−iωRF t − r(ω0)r∗(−ωRF )J0(Γ)J1(Γ)eiωRF t +O(2ωRF ) + ...
]
. (4.17)

The first line of this expression is a DC term with no frequency content. The second and third lines are oscillatory

signals with frequency ±ωRF – these are the beat notes between the RF sidebands and the carrier. Beat notes

at larger multiples of ωRF will be suppressed like J1(Γ) and are neglected. The amplitude of the beat notes

is determined by the reflection coefficients r(ω0) and r(±ωRF ), and we can measure their amplitude using a

photodiode with RF sensitivity.
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Keeping only terms with frequency ωRF and rearranging, we have:

Prefl(ωRF ) = P0 J0(Γ)J1(Γ)
[

(r∗(ω0)r(ωRF )− r(ω0)r∗(−ωRF )) eiωRF t

+ (r(ω0)r∗(ωRF )− r∗(ω0)r(−ωRF )) e−iωRF t
]
. (4.18)

Note the symmetry between the terms. If we use the shorthand expressions

A = r∗(ω0)r(ωRF )

B = r∗(ω0)r(−ωRF ) (4.19)

and expand the exponentials, we can collect cosine and sine terms with frequency ωRF and have:

Prefl(ωRF ) = P0 J0(Γ)J1(Γ)
[

[(A+A∗)− (B +B∗)] cosωRF t

+ i[(A−A∗) + (B −B∗)] sinωRF t
]
. (4.20)

Recall that for a complex number z = a+ ib, we can write z+ z∗ = 2a = 2Re[z], and z− z∗ = 2ib = 2iIm[z].

Using this, we have:

Prefl(ωRF ) = 2P0 J0(Γ)J1(Γ)
(

Re[A−B] cosωRF t− Im[A+B] sinωRF t
)
. (4.21)

We make one final manipulation: since Re[z] = Re[z∗] and Im[z] = −Im[z∗] we use the conjugate ofA to make

the sign of the two expressions the same. Restoring the original expressions for A∗ and B, we have:

Prefl(ωRF ) = 2P0 J0(Γ)J1(Γ)
[

Re[r(ω0)r∗(ωRF )− r∗(ω0)r(−ωRF )] cosωRF t

+ Im[r(ω0)r∗(ωRF )− r∗(ω0)r(−ωRF )] sinωRF t
]
. (4.22)

The term that oscillates with sinωRF t is called the in-phase, or I-phase component, because it is in phase with

the original modulation from the EOM. The term that goes like cosωRF t is called the quadrature phase or Q-

phase component. Demodulation of Prefl at ωRF will recover the coefficients of these two oscillatory signals.

A comparison of the I-phase and Q-phase signals is in Fig. 4.4, and a zoom of the region around the resonance

is given in Fig. 4.5. The I-phase term has a nearly linear response around the cavity resonance in the region where

40



Figure 4.4. Demodulated signals for PDH in reflection. The sideband frequency is 15% of the cavity FSR. The
cavity finesse is 156, and the detuning phase φf = 2πf/fFSR.

Figure 4.5. Zoom of the linear region of the PDH error signal.
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the cavity buildup is greater than about 70% of the total. By normalizing the I-phase signal by the circulating

power the linear region can be expanded [57]. The I-phase signal is referred to as the PDH error signal, and

within the linear region it provides a precise measure of the cavity detuning from resonance. The cavity can

be locked by feeding back the PDH error signal to an actuator that changes either the cavity length or the laser

frequency. PDH locking has become a standard technique in metrology and optical engineering. Among many

other applications it is used to provide exquisitely precise frequency references for spectroscopy.

4.3 Precision Measurements of Cavity Length and Linewidth

The LIGO interferometers use the PDH technique to control most of the optical cavities in the detector.

The input beam to the interferometer is passed through a input mode cleaner (IMC), a short, high-finesse optical

cavity that rejects higher order modes of the laser field and provides an initial stage of frequency stabilization. The

RF sidebands used for the PDH error signals are generated before the IMC. These sidebands must be precisely

resonant in the IMC along with the carrier so the error signals they generate are not polluted by length noise in the

IMC. In this section, we present a method for precision measurements of an optical cavity’s length and linewidth.

Measurements of this kind are important step for characterizing the subsystems of a gravitational wave detector,

for assessing the mirror reflectivity and absorption, and for checking the width of the linear region of PDH error

signal. In particular the method was used to accurately measure the IMC length for H1, and verify

There are a variety of techniques for measuring the cavity pole frequency and the mirror reflectivity and

absorption [76, 96]. The method presented here is unique in that it can be performed easily in-situ using the

transmitted light from a optical cavity and with the typical RF modulation techniques that are used in modern

optical experiments. As part of validating the method, we performed a careful analysis of errors, and demon-

strated the technique with measurements of two of the optical cavities in the H1 instrument. We found that our

measurement of the cavity pole frequency was limited by uncertainties in our tuned RF electronics, and a simpler

experimental design could potentially measure the cavity pole with precision better than 1000ppm. Our cavity

length measurement was precise enough to distinguish different fringes of the input mode cleaner (i.e. different

multiples of λ/2).

To outline the technique, consider the transmission coefficient given in Eq. 4.15. In the previous section, we

derived the PDH error signal using in-phase component of the reflected light, for an RF sideband that was not

resonant in the cavity. Here, we use the I-phase and Q-phase signals of the transmitted light, for an RF sideband

that is resonant in the cavity, i.e. that is a multiple of the cavity FSR. The expression for the power of the RF beat

notes in transmission is given by:
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Ptrans(ωRF ) = 2Pin J0(Γ)J1(Γ)
[

Re[t(ω0)t∗(ωRF )− t∗(ω0)t(−ωRF )] cosωRF t

+ Im[t(ω0)t∗(ωRF )− t∗(ω0)t(−ωRF )] sinωRF t
]
. (4.23)

Recall that the transmission coefficient is given by Eq. 4.15. If we demodulate Ptrans at ωRF , we will get in-

phase and quad-phase signals in exactly the same way as in the PDH technique. In terms of t(ω), these in-phase

and quad-phase signals are given by:

In phase : Re
[
t(ω0)t∗(ωRF )− t∗(ω0)t(−ωRF )

]
Quad phase : Im

[
t(ω0)t∗(ωRF )− t∗(ω0)t(−ωRF )

]
. (4.24)

Consider three possible cases:

• The carrier is resonant (ω0 = N ∗ ωFSR). In this case t(ω0) is purely real and t∗(ωRF ) = t(−ωRF ).

The terms cancel, and both the I- and Q-phase signals are zero.

• The carrier is slightly off-resonance (ω0 = N ∗ ωFSR + δω) , but the RF sidebands are resonant

(ωRF = N ∗ ωFSR). Here, t(±ωRF ) = t(ω0). Again the terms cancel and the demodulated signals

vanish.

• The carrier is slightly off-resonance and the RF sidebands are slightly off-resonance. In this case

there is a phase mismatch between the upper and lower sidebands and the I and Q signals in transmission

will be nonzero.

For the third case, the signals we expect to observe are shown in Fig. 4.6. In this figure, we model the response

of a 16.5 meter cavity with finesse 156. The carrier laser wavelength is 1064 × 10−9 meters and the cavity is

offset from resonance by 10 picometers. The FSR for the cavity is fFSR ' 9.1 MHz and the RF sidebands are

scanned between 8.95 MHz and 9.25 MHz. (Note that the demodulation of Ptrans must be done at fRF , which

is changing with the scan.)

We note two things from Fig. 4.6. First, when φf = 0 (fRF = fFSR, corresponding to the second case

above), the I and Q signals are zero. This is how we will measure the cavity FSR and, hence, the cavity length.

Second, the Q-phase signal has secondary zero crossings. We will call the frequencies for these points by f±.

These secondary zero crossings carry information about the cavity linewidth. To see this, we need to rewrite the

expression for the PDH signals in transmission.
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Figure 4.6. I- and Q-phase signals on transmission, as a function of the RF sideband detuning phase φf =
2πfRF /fFSR, with the carrier frequency held slightly off-resonance. The cavity finesse is 156. Note the zero
crossings in the Q-phase signal.

Starting with Eq. 4.23, let us call R is the round-trip reflectivity of the cavity, R = rire. If we use the

following approximations,

R = reri, t(φ) =
gtr(1−R)

1−Reiφ , J0(Γ) ≈ 1, J1(Γ) ≈ Γ/2, eiφc ≈ 1 + iφc , (4.25)

then we get the following for the transmitted power:

Ptrans = φcg
2
trΓPinRe

iφf
1− eiφf

(eiφf −R)2
, (4.26)

where φc = 2πδf/fFSR is the carrier detuning phase from resonance. We can expand this expression to find

explicit terms for the I and Q-phase signals. By multiplying top and bottom by the complex conjugate of the

denominator, (e−iφf −R)2, we get:

Ptrans = φc g
2
trΓPinRe

iφf (1− eiφf )
(e−iφf −R)2

(1− 2R cosφf +R2)2

= φc g
2
trΓPin

−2R

(1− 2R cosφf +R2)2
sin

φf
2

×
[
sin

φf
2

(
1 + 2R− (1 + 2 cosφf )R2

)
+ i cos

φf
2

(
1− 2R− (1− 2 cosφf )R2

)]
. (4.27)
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Figure 4.7. Double demodulation: a diagram of the carrier, RF sidebands and audio sidebands for the cavity
length and linewidth measurement. Figure by A. Staley, from [125].

The Q-phase signal is the imaginary part. We can solve for the zero crossings of the Q-phase signal by setting

the coefficient equal to zero,

1− 2R− (1− 2 cosφf )R2 = 0 . (4.28)

The two solutions have the form f± = fpole/
√
R. Since fpole = fFSR/2F , then f± = fFSR

2
1−R
2R . We precisely

measured fFSR using the central zero crossing, and we can easily invert f± to calculate R and from there, fpole.

Thus we have a complete analytical expression for measuring the cavity pole frequency using zero crossings of

the Q-phase signal in transmission.

In practice, measurements of zero crossings are subject to various systematic uncertainties. In particular,

measurements using demodulated signals are sensitive to relative phase shifts between the detected RF power

and the local oscillator. Also there can be residual amplitude modulation (RAM) in the laser at the same frequency

as the RF sidebands. These and other noise sources such as electronics offsets and timing uncertainties can bias

measurements of the FSR and f±.

To attain the best possible precision, we add another modulation frequency at a fraction of the cavity pole

frequency. This audio modulation is denoted by fa. It can be applied either at the laser frequency or in the cavity

length. In our measurement, we dithered the laser frequency. The demodulated RF signals are demodulated

again at fa, which eliminates our sensitivity to DC electronics offsets and suppresses the effect of RAM. This

double-modulation technique was first demonstrated by a Japanese group [33, 25, 24].

The sideband picture for the full experiment is illustrated in Fig. 4.7. The complete analytical expression for

the set of four demodulation products (RF {I,Q} × AF {I,Q}) is given in Ref. [125], although the results are

directly calculable from the transmission coefficient.

Our procedure for the measurement is the following: lock the optical cavity to the carrier frequency ω0 and

introduce an RF sideband, with frequency close to the cavity FSR. Introduce an audio sideband by dithering the
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Figure 4.8. Experimental setup for the double-modulation measurement. Figure by K. Izumi, from [125].

laser, with a frequency much less than the cavity pole. Sweep the RF sidebands (fRF ) across a range slightly

larger than the cavity linewidth. Demodulate the transmitted signal at the RF frequency, and then again at the

AF frequency. The zero crossings of the various demodulation products will carry information about the cavity

length and pole frequency.

In Fig. 4.8 we sketch the setup of the double-modulation measurement. We used this technique to characterize

two of the optical cavities in the adavcned LIGO detector, the 16 meter input mode cleaner and one of the 4 km

arm cavities. Due to the length of the arm cavity measuring and demodulating the transmitted signals was not

practical, so the measurement of the cavity FSR was made in reflection with fRF = 24.5 MHz, or approximately

666 × fFSR. While this prevented a measurement of the cavity pole (estimated to be 40 Hz), the large RF

frequency provided an extremely precise measurement of cavity length.

For the measurement of the IMC cavity pole, the results were complicated by the resonant circuits used

to generate and detect the RF sidebands. These resonant circuits can be modeled by Lorentzian functions of

frequency, with central frequency fEOM and width fEOM/Q, for a quality factor Q defined by the circuit. The

resonant elements lead to a frequency-dependent amplitude response and phase shift across the span of the RF

demodulation. We estimated that the resonant circuit for the EOM was the dominant source of phase change,

although there are also resonant circuits in the detection photodiode and the demodulation circuit. The presence

of a frequency-dependent phase rotation significantly complicates the analytical solution for f±, since any errors

in the phase estimation will rotate the I-phase signal (maximal at f±) into the Q-phase signal (zero at f±) and

bias the result.
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Figure 4.9. Experimental results for the scan of the 16 m input mode cleaner; the x-axis shows the frequency
of the RF modulation. The audio modulation frequency for this dataset was 1 kHz. The best-fit parameters are
given in Table 4.2. The feature around 9.095 MHz is most likely due to a mechanical resonance in the EOM.
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Figure 4.10. Zoom of the zero-crossing at the FSR frequency, for the IMC measurement at 9.1 MHz and 1 kHz.
The best-fit FSR value has been subtracted from the x-coordinate for clarity. Note the precise null value for all
four I,Q signals at the FSR.
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Parameter Best-Fit Value Stat. Uncertainty
fFSR 9 100 234 Hz 2 Hz
T (=1-R) 6068 ppm 3 ppm
fEOM 9 113 000 Hz 120 Hz
QEOM 61.1 0.2
θ0 54.0◦ 0.2◦

φ0 10.23◦ 0.08◦

Table 4.1. Best fit parameters and 67% confidence level statistical uncertainties for the Input Mode cleaner data.
The results presented here are for an audio modulation frequency of 1 kHz and an RF modulation of 9.1 MHz.

To account for this frequency-dependent response we performed a nonlinear least-squares fit to the full set of

four demodulated I,Q-signal pairs, allowing for all demodulation phases to be simultaneously constrained. Our

fit had seven free parameters: an overall amplitude coefficient (A), the free spectral range of the cavity (fFSR),

the round-trip reflectivity of the mirrors (R), the parameters of the RF resonant circuit (fEOM and Q), and two

static demodulation phase shifts (θ0 and φ0) for RF phase and audio phase respectively.

Data were collected using two RF modulation frequencies (9.1 MHZ and 45.5 MHz) and three audio mod-

ulations (1 kHz, 303 Hz, and 103 Hz). Overall, the seven fit parameters were found to be consistent across the

six data sets. Differences in the RF phase estimation were used to estimate our systematic errors. For the mea-

surement of the cavity pole, we found that a linear frequency dependence in the RF demodulation phase was

our dominant source of systematic error. Unfortunately the experimental setup was constrained by the available

electronics, which were designed for gravitational wave detection and not for a measurement of this kind. By us-

ing electronics with flat frequency response, the systematic errors could likely be reduced to below the statistical

errors.

The results for one of the six datasets collected for the IMC are shown in Table 4.1. The data and fit are

compared in Fig. 4.9, and a zoom of the region around the FSR is shown in Fig. 4.10. Final results for the

three physical parameters we sought to measure – IMC cavity length and cavity pole, and Y-arm cavity length

– are given in Table 4.2. This table includes estimates of our systematic uncertainties. As part of Ref. [125] we

derived analytic expressions for the dominant systematic effects that limit the precision of the technique. For our

measurements of the IMC and the Y-arm, the potential bias from these effects was estimated using the parameters

and noise characterization of our analysis. The use of double-modulation reduces most of the systematic effects,

although the precision of the IMC cavity pole measurement was limited by the uncertainty in the resonant RF

circuit parameters as described above.

For the Y-arm measurement, the precision was remarkable: a 4 km distance was measured to a precision of 70

parts per billion, taking the statistical and systematic error in quadrature. For this cavity we expect the ultimate
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Parameter Measured Value Stat. Uncertainty Sys. Uncertainty
Y-arm Length 3994.4692 m 0.2 mm 0.2 mm
IMC Length 16.471701 m 3µm 1µm
IMC fpole 8806 Hz 10 Hz 52 Hz

Table 4.2. Parameters of the H1 aLIGO Input Mode Cleaner and Y-arm optical cavities, measured using the
double-modulation technique.

precision could be as low as 1 ppb; in our case the precision was limited by a manufacturing error of the green

coatings that reduced the cavity finesse.

For the aLIGO IMC, the design power transmissivity of the input and end mirrors is 6000 ± 200 ppm.

From our combined measurements, the best-fit value for the round-trip reflectivity is 6068 ± 3 ppm, neglecting

systematic uncertainties. The characterization of the IMC using this technique was an important confirmation

that the mirrors were not absorbing or scattering more light than intended. This is an important safety check

before a high-power beam can be delivered to the interferometer.
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CHAPTER 5

ADVANCED LIGO

We’ll make an instrument of this;
Omit nothing may give us aid.

The first generation LIGO instruments completed a series of observing runs in 2010. Following this data-

taking, nearly all of the components were disassembled and removed to make way for the second-generation

instruments. These are referred to as the advanced LIGO interferometers (“aLIGO” for short), and are designed

to achieve a strain sensitivity ten times better than the initial detectors. Essentially the only components that were

not modified as part of the upgrade were the components of the vacuum system, the facilities, and the humans

involved in the project, along with their experience and knowledge from the initial detector era. A complete

description of the aLIGO instruments is given in [7].

In this section I provide some details of the design, installation, and commissioning of the advanced LIGO

interferometers, including a brief description of the lock acquisition process. A large focus is given to the Output

Mode Cleaner (OMC) for the H1 instrument, which was installed in the spring and summer of 2014 and first

used for sensing the gravitational strain channel in February 2015. I present the details of a measurement of

the OMC cavity length noise and an estimation of its contribution to the H1 noise floor. Finally I discuss some

results of using the OMC as an optical spectrum analyzer, in particular a measurement of the contrast defect of

the H1 instrument.

5.1 The Advanced LIGO Interferometers

The aLIGO detectors employ several technological improvements compared to the first-generation detectors.

The layout of the main optical elements is shown in Fig. 5.1. The major changes from initial LIGO are as follows:

• Active seismic isolation is applied in-vacuum, between the ground and the suspension point for the optics.

Except for the external isolator systems used in initial LIGO, all previous seismic isolation was passive.
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Figure 5.1. Schematic of the advanced LIGO interferometers. Figure from [7]. The Fabry-Perot arm cavities
are formed between the end test mass (ETM) and inner test mass (ITM) mirrors. Power-recycling and signal-
recycling cavities are formed between the ITMs and the power recycling mirror (PRM) and the signal recycling
mirror (SRM), respectively. Additional large mirrors are used to align and shape the beam. All of the detector
components in this figure after the phase modulation (φm) are housed in large vacuum chambers and are isolated
from ground motion by multi-stage suspensions.

The new in-vacuum seismic tables have three stages of isolation (two for the small vacuum chambers)

with each level supported by blade springs that provide 1/f2 isolation above the resonant frequencies,

which are typically 1 Hz. Inertial seismometers and capacitive position sensors measure the position and

acceleration of each stage. These signals are used as error signals to damp the resonant frequencies of the

blade springs and provide additional isolation using magnetic actuators. The seismic isolation platforms

for the large vacuum chambers are the size of a small car, in both volume and mass.

• Multi-stage suspended optics add several more orders of magnitude of isolation at frequencies above

1 Hz. For the test masses whose relative position is measured to detect the gravitational wave strain, the

final stage of suspension is monolithic, i.e. the suspension wires and the fused-silica mirrors form a single

welded body. This greatly decreases the mechanical loss within the final stage of the suspensions and

limits the interaction of thermally-driven fluctuations with the longitudinal degree of freedom.

• Higher-finesse arm cavities and a 200 W laser reduce the sensing noise limit due to shot noise. In addition,

larger test masses of 40 kg and 34 cm diameter reduce the motion imparted to the mirrors from variations

in the number of photons; this radiation pressure noise is a limiting noise source at low frequencies. The
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Figure 5.2. Coupled optical cavity topologies used in the advanced LIGO detectors. Power recycling (a) forms
a coupled cavity between the Power Recycling Mirror (PRM) and the Fabry-Perot arm cavities. Intensity and
frequency fluctuations from the input beam are suppressed by the coupled cavity pole, with ωcc ' 1 Hz. Signal
recycling (b) forms a resonant cavity between the Signal Recycling Mirror (SRM) and the arms. Acoustic-
frequency fluctuations generated by gravitational wave interactions with the arms (the ‘signal’) are resonant in
this cavity, and the response of the interferometer is broadened.

larger-diameter mirrors also enable larger beam sizes on the optics. By sampling a larger area of the mirror

surface, the displacement noise due to Brownian motion of the mirror coatings is made smaller.

• Signal recycling, also known as signal extraction, is a technique applied to Michelson interferometers

with Fabry-Perot arm cavities to broaden the response of the detector [95, 91]. An additional mirror at

the antisymmetric port, the signal recycling mirror, forms a coupled cavity with the arms and changes the

effective finesse experienced by the acoustic sidebands generated by gravitational waves. This increases

the optical gain of the interferometer at high frequencies. See Fig. 5.2.

5.2 Cavities & Control

The primary optics of the advanced LIGO detectors form four optical cavities: the power recycling cavity, the

signal recycling cavity, the X-arm, and the Y-arm. Because the circulating power in the arm cavities is strongly

coupled by the addition of the recycling cavities, the length degrees of freedom for the arms, given by Lx and

Ly , are often expressed in a different basis that considers length changes that are common or different between

the arms:

L+ =
Lx + Ly

2
, L− =

Lx − Ly
2

. (5.1)
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Figure 5.3. Photo of the author in the ETMY vacuum chamber, working on alignment of the green laser. I am
kneeling, Keita Kawabe is standing.

Here, L+ is called the common arm degree of freedom or CARM, and L− is the differential arm degree of

freedom, or DARM. Similarly, the lengths of the power recycling, signal recycling, and small Michelson degrees

of freedom are referred to as PRCL, SRCL, and MICH.

In the resonant, low-noise state of the detectors, CARM, PRCL, SRCL, and MICH are sensed and controlled

using PDH signals. These PDH signals are generated with RF sidebands at 9.1 MHz and 45.5 MHz. By design,

the 9.1 MHz sideband is resonant in the PRC and the 45.5 MHz sideband is resonant in the SRC. There is a

significant amount of cross-coupling in the length degrees of freedom, and the overall control scheme for the

interferometer is quite complex. An analytical description of the control scheme for the initial LIGO detectors

is given by Fritschel et al. [65], and preliminary studies of the advanced LIGO design were performed at the

Caltech 40 m lab by Rob Ward [139] and others.

For advanced LIGO, the task of bringing four optical cavities into simultaneous resonance is a daunting

technical challenge. The process by which the detectors transition from an uncontrolled, nonresonant state to a

fully resonant, low-noise state appropriate for data collection is called lock acquisition. In initial LIGO, a so-

called stochastic locking process was used in which the mirrors swung freely until by chance they were aligned in

a resonant condition, at which time fast actuation was applied to stop their motion and control the cavity degrees

of freedom.

Stochastic locking was deemed unsuitable for advanced LIGO for several reasons. Among these were the

larger test masses and higher finesse of the arms, and the additional complexity introduced by the signal recy-

cling cavity. Advanced LIGO utilizes a three-step acquisition process in which the arms are locked independently

of the corner station optics (power recycling cavity, signal recycling cavity, and short-armed Michelson) using
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Figure 5: Lock sequence of the full interferometer. The top panel shows the intracavity
power for each arm cavity as well as for the power recycling cavity. The input power is
currently 0.75 W. The center panel shows the power in reflection, whereas the bottom panel
shows the 1f signal in reflection of the interferometer. During period I each arm cavity is
locked using the green laser in the end station and then switched over to the corner station
signals for common and di↵erential mode. During phase II the arm cavities are scanned
to find the resonance for the infrared light. At point III both the arm cavities are moved
o↵ resonance by 500 Hz, and the recycling cavities are aligned from the initial misaligned
state. At point IV the dual recycled Michelson interferometer is locked using 1f signals and
immediately switched over to the 3f signals. A build-up of 2 W can be seen in the power
recycling cavity. At point V the power in the arm cavities is approximately 4 W and the
common and di↵erential controls are switched from the green transmitted signals in the
corner to the arm cavity transmitted infrared power and the anti-symmetric port Pound-
Drever-Hall signal, respectively. The arm cavities are then brought closer to resonance and
the power build-up increases. Once we reach VI, we have a significant reflection locking
signal, which is now used to control the common mode. Finally, in phase VII, the dual
recycled Michelson interferometer is switched to the 1f signals. The power in each arm
cavity reaches approximately 3 kW, whereas the recycling gain reaches a value around 30.
The reflected power decreases to about 3% indicating that most of the laser power is lost
in the detector. During future commissioning work, the power into the interferometer will
be increased significantly, aiming for the final intra-cavity power to be roughly 200 times
higher.

12

Figure 5.4. Locking sequence of the advanced LIGO detectors. Figure from [126]. The top figure shows the
power buildup of the 1064 nm light in the arms. In states I and II, the arms are locked using the 532 nm lasers.
In states III and IV, the arms are moved off-resonance and the cavities of the DRMI are locked. In states V and
VI the arms are brought back to resonance, this time with much larger power buildup due to the power recycling
cavity. In state VII the detector is fully resonant.

532 nm green lasers that are injected from the endstations. This Arm-Length Stabilization system, or ALS, pro-

vides independent control over the arm cavities during the lock acquisition procedure. The performance of the

ALS system and the procedure for bringing the interferometers to resonance is described in [126, 124, 87].

A timeline of lock acquisition with the ALS system is illustrated in Fig. 5.4. The following is a brief outline

of the steps in the locking procedure:

1. The 4 km arm cavities are aligned and locked. The PDH signal for sensing the length of the cavity is

generated using green lasers (532 nm wavelength) that are injected from the end stations. The green lasers

are phase-locked to the main 1064 nm laser, which ensures that the arm lengths are maintained at a precise

distance from the resonance condition for the 1064 nm laser. The PDH signal from each arm is used to

lock the green laser frequency to the arm length, and the green light transmitted by the arms is beat against

a frequency-doubled pickoff from the main laser. This beat note signal is used as an error signal to control

the arm lengths at a precise offset from the resonance point of the main laser.

2. Once the arms are controlled relative to the main laser, they are brought off-resonance by several kHz

to prevent interference with the corner station cavities. (During this process the green laser frequency

remains locked to the arm length, and the 532 nm light is fully resonant in the arm cavities.) At this
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stage the optics in the corner station are aligned and the cavities that form the Dual-Recycled Michelson

Interferometer (DRMI) are locked. Note that if the arms are resonant for the 1064 nm main laser, the laser

field experiences a sign flip upon reflection from the arm cavity. This sign flip would spoil control of

the DRMI cavities and is the reason the arms are held off-resonance during DRMI acquisition. Following

DRMI acquisition, the sensing of the corner station cavities is transitioned from the traditional PDH signals

to a set of sideband harmonic frequencies which are insensitive to the state of the arm cavities. This ‘3F’

technique was first demonstrated by a Japanese group [29].

3. With the DRMI controlled by the 3F signals, the offset between the arm cavity length and the main laser

resonance point is reduced. As the power buildup in the arms increases, control of the arm cavities is

switched from the green PDH signal to various combinations of the transmitted light through the arms,

which is properly filtered and normalized to provide a linear error signal. This procedure is called the

CARM offset reduction. Once the 1064 nm light is fully resonant in the arms, control of the arm length is

handed off to a PDH signal derived from the 9.1 MHz sideband. At this point, the lock acquisition process

is complete.

With the arm cavities in their fully resonant state the detector can act as a transducer for gravitational waves.

Due to the use of signal recycling, the sensitivity of the detector as a function of frequency to a gravitational signal

differs from the expression we derived in Chapter 3. The signal recycling mirror forms a coupled optical cavity

with the Fabry-Perot arms. This increases the frequency of the cavity pole in the interferometer response function

(Eq. 3.10) and slightly reduces the response at low frequencies. The net effect is to improve the shot-noise limited

sensitivity of the detector. The details of shot noise limited sensing for signal-recycled interferometers have been

worked out by Buonanno and Chen [41], and a good introduction to the topic is given in Chapter 3 of [139].

In Fig. 5.5 we plot a recent noise curve from the H1 advanced LIGO interferometer. Included in the plot are a

curve representing the aLIGO design sensitivity (for 125W input power, and higher SRM reflectivity) and the best

performance of the H1 detector from the initial LIGO era. The sensitivity improvement from signal recycling is

clearly visible. Both detectors have about the same power incident on the beamsplitter. The increased arm cavity

finesse in the aLIGO instruments has improved the sensitivity around 100 Hz, and the response of the aLIGO

instrument at high frequencies has improved due to signal recycling.

5.3 The Output Mode Cleaner

Gravitational wave signals will generate fluctuations in the differential arm length degree of freedom, L−. In

advanced LIGO, this length is measured using homodyne detection, often referred to as DC readout. Homodyne

detection provides an improvement in the shot-noise-limited sensitivity and decouples the gravitational wave

55



Figure 5.5. Recent performance of the H1 advanced LIGO detector, compared to previous best sensitivity. At
low frequencies, the improved seismic isolation and suspensions have reduced the control noise that couples to
the gravitational wave channel. At 100 Hz the sensitivity improvement is due to the increased arm cavity finesse.
At high frequencies the signal recycling cavity has broadened the response of the detector.

detection channel from many technical noise sources in the interferometer, such as oscillator noise from the RF

sidebands. In homodyne detection, a small static differential arm offset (called the ‘DARM offset’) is applied to

the arms to deliver a constant amount of carrier light at the antisymmetric port. A gravitational signal will gener-

ate small intensity fluctuations on top of this static carrier field. The intensity of the carrier light is detected with

low-noise direct current photodiodes (DCPDs). Since any power fluctuation on the DCPDs will be interpreted as

a signal, any laser fields sensitive to other interferometric degrees of freedom must be removed prior to detection.

The Output Mode Cleaner (OMC) is used to filter the light at the antisymmetric port and reject optical fields that

do not directly couple to the gravitational wave signal.

A plot of the carrier power detected at the AS port as a function of the DARM offset is shown in Fig. 5.6. For

offsets of tens of picometers, the change in power at the AS port is well-modeled by a quadratic. From Chapter 3,

recall Eq. 3.5:

PAS = |E∗ASEAS | = PBS sin2[kLh] ' PBS (kx)2 . (5.2)

Here we have written Lh = x as the static DARM offset of O(10−12) meters. A gravitational wave strain will

induce small fluctuations around this static offset. Typically the interferometer is operated with a DARM offset

between 10 and 20 pm, and the residual DARM motion is of order 10−13 meters, at frequencies around 1 Hz.

This residual motion is small enough that the response of PAS is well approximated by a linear function, and

gravitational wave perturbations of 10−19 m around 100 Hz are readily detectable. A detailed expression will be

derived in the next section (Eq. 5.6).

56



Figure 5.6. Sweep of the differential arm (DARM) offset with the full interferometer locked. Here, 2.3 W of
power is incident on the input mode cleaner, and about 80 W is incident on the beamsplitter (due to the gain of
the power recycling cavity). The power measured by the antisymmetric port DCPDs is a quadratic function of
the DARM offset.
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Component name Use DCC Vendor 

Fused silica 
breadboard Mounting of OMC components D1200105 Sydor Optics 

Optical prism Cavity input/output couplers; 
beamsplitters; high reflectors D1101968 Gooch & 

Housego 

Mounting prism Cavity high reflectors with PZT 
actuators D1102069 Mindrum 

Diode mount glass 
block 

Photodiode mounting; balance 
mass mounting; connector 

bracket mounting 
D1102211 Mindrum 

Mount bracket Mount points for suspension wire 
interface D1102209 Mindrum 

Beam dump Dumping of specular reflections   

 
Considering the thermal expansion coefficient of the fused silica breadboard, 0.52ppm/°C for 
Corning 7980, a 1°C temperature drift of the breadboard will produce a 0.5um change in the round-
trip length change of the cavity. Day-to-day variations in the in-chamber temperature are typically 
smaller than 1°C, but this sets the scale for the minimum cavity length actuation range; see section 
6. 

The optical layout on the breadboard is shown in Figure 1. 
 

 
Figure 1. Layout of optical and opto-mechanical components on the OMC breadboard. This layout 
(without the annotations) is found in D1201439. 
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Figure 5.7. Design of the advanced LIGO Output Mode Cleaner, from [30].
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A diagram of the OMC is shown in Fig. 5.7. The OMC is a four-mirror optical cavity in a ‘bowtie’ config-

uration with a cavity round-trip length of 2L = 1.132 meters and finesse of 390. The cavity mirrors, alignment

optics, and photodiodes are bonded to a fused-silica breadboard 45 cm long, 15 cm wide, and 4.175 cm thick.

The beam size (1/e2 radius) inside the cavity is about 0.5 mm. Two of the cavity mirrors are instrumented with

PZT actuators which are used to control the cavity length and lock the OMC on the carrier field. The transmitted

light intensity is measured using two low-noise DCPDs (arranged after a beamspitter), and the position and angle

of the input beam is measured using a small pick-off beam split between two quadrant photodiodes (QPDs). The

advanced LIGO OMC was designed and built by Koji Arai, Zach Korth, and others.

To reduce path length variations between the OMC and the main optics of the interferometer, the OMC

breadboard is suspended from steel wires in a two-stage suspension. The suspension resonance frequencies are

around 1 Hz, and the coupling of ground motion to the OMC breadboard is suppressed by approximately a factor

of 104 at 10 Hz. The OMC suspension is mounted on a seismic isolation platform inside of a vacuum chamber,

along with a variety of steering mirrors and sensors. A schematic of the vacuum chamber is shown in Fig. 5.8,

and Fig 5.9 is a photograph of the author working in the chamber.

The alignment of the beam incident on the OMC has four degrees of freedom, corresponding to the position

and angle of the beam in the horizontal and vertical directions. We control the alignment of the input beam

using three small suspended mirrors with electromagnetic actuators, called ‘tip-tilt’ mirrors. The position and

angle of the input beam is measured using either the centering information from the OMC QPDs (assuming some

prior information about the ‘good’ beam spot position on the QPD), or by constructing a lock-in amplifier using

acoustic frequency dithering of the tip-tilt mirrors1. In both cases, the error signals (from the QPD sensors, or

the demodulated signals from the tip-tilt dither) are decomposed into a the cavity axis position and angle basis.

This decomposition is described in [31].

Misalignments in the position or angle of the input beam will change the amount of transmitted light measured

by the DCPDs. If the alignment of the input beam into the OMC is poor, then small fluctuations in the input beam

alignment will linearly couple to the power transmitted by the cavity. If the input beam is well aligned to the

cavity axis, the coupling between alignment fluctuations and the transmitted light will be quadratic. Low-noise

operations require a well-aligned input beam to the OMC, in order to suppress the coupling of input beam jitter

to the gravitational wave channel.

1The OMC that was used during the S6 science run was aligned using a different method, the beacon dither, which maximized the signal
of the ETM solid-body mode at 8 kHz in the transmitted light through the cavity. [122]
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AS QPD

ID Size Mirror Type DCC
OptoMechanics 

Overview Holder/Post
Pico 

motors
Clip beam 

dump Comments

OM1 2" Curved ROC +4.6 m E1201104 Tip-Tilt D1001396 T=5% for low power 
E1100056-02 T = 800ppm for high power

OM2 2" Curved ROC +1.7 m E1100056-01 Tip-Tilt D1001396
OM3 2" BS99%1064 E1000457 Tip-Tilt D1001396
M4 2" HR1064 E1100048 2"LEFT hand on table  D1100361/D1000968 optional to AS AIR path
M5 2" HR1064 E1100048 2" LEFT hand on table  D1100361/D1000968 optional to AS AIR path
M6 2" BS50%1064 E1000671-02 2" LEFT hand on table  D1100361/D1000968 to AS AIR path
M7 2" HR1064 E1100048 2" LEFT hand on table  D1100361/D1000968 optional ASC QPD path
M8 1" HR1064 E1000595 1" lens mount on table D1100364/D1200237 Lens instead of mirror mount
M9 1" HR1064 E1000595 1" LEFT hand on table D1100362/D1200237 X X OMC REFL path
M10 2" HR1064 E1100048 2" RIGHT hand on table  D1100361/D1000968 X X OMC REFL path
M11 2" BS50%1064 E1000671-02 2" RIGHT hand on table  D1100361/D1000968 OMC REFL path
M12 1" HR1064 E1000595 1" LEFT hand on table D1100362/D1200237 X AS WFS path
M13 1" HR1064 E1000595 1" RIGHT hand on table D1100362/D1200237 X AS WFS path
M14 1" HR1064 E1000595 1" LEFT hand on table D1100362/D1200237 optional AS WFS path
M101 1" BS50%1064 E1000671-01 1" LEFT hand on sled D1100362/D1000968 X
M102 1" HR1064 E1000595 1" LEFT hand on sled D1100362/D1000968 X X
L101 1" f=+334mm E1000845-03 1" lens on sled D1100364/D1000968
M201 1" HR1064 E1000595 1" LEFT hand on sled D1100362/D1000968 X
M202 1" HR1064 E1000595 1" LEFT hand on sled D1100362/D1000968 X
M203 1" BS50%1064 E1000671-02 1" LEFT hand on sled D1100362/D1000968
L201 1" f=+334mm E1000845-03 1" lens on sled D1100364/D1000968
L202 1" f =-334mm E1000845-09 1" lens on sled D1100364/D1000968
L1 1" f=+334mm E1000845-03 1" lens on table D1100364/D1200237 ASC_AS QPD 
BDV1 2" BS90%1064 E40512-B3 Beam Diverter D1100642 BeamDiv AS
BDV2 2" HR1064 old HR iLIGO Beam Diverter D1100642 X BeamDiv OMC REFL
FS1 D1003318 Fast Shutter

AS WFS sled assembly        
D1200037

ASC OMC                           
REFL QPD assembly                   

D1200036

Figure 5.8. Arrangement of optics in the advanced LIGO HAM6 vacuum chamber. The optical table is approx-
imately two meters wide. The beam from the signal recycling mirror enters from the left. Pick-off beams for
monitoring the state of the detector leave the vacuum chamber at the top and are collected on an in-air optics
bench. The rectangles, mostly at the bottom of the figure, are 10 kg ballast masses to balance the seismic isolation
platform. Figure from [35].

Figure 5.9. Photo of the author working in the HAM6 chamber in August, 2014. The OMC suspension cage is
the tall structure on my left.
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Figure 5.10. When an optical cavity is locked at the resonance, small cavity length fluctuations (δL) couple
quadratically to the transmitted power (δP ). At the half-resonance point, length noise maximally couples to the
transmitted power. The same relationship is true for fluctuations in the alignment of the input beam. When the
cavity is well-aligned, power fluctuations in the transmitted light from input beam jitter are suppressed.

5.4 OMC Cavity Length Noise

Fluctuations in the OMC cavity length will also lead to variations in the transmitted power. The OMC cavity

length is controlled using a lock-in amplifier signal generated by a 4.1 kHz dither, applied using one of the PZT

actuators. The other PZT actuator is used to adjust the cavity length and maintain the resonance condition, using

the error signal provided by the length dither. In principle, OMC cavity length noise cannot be distinguished

from a gravitational wave signal, and could pollute the noise floor if it is not adequately suppressed.

There are a few methods to characterize the OMC length noise in situ. One is calibration of the demodulated

signal from the length dither; this is used as the error signal for the cavity length control and is intended to

be an accurate measure of the displacement from the fringe. Typically this approach is only accurate for low

frequencies (< 10 Hz), since the bandwidth of the lock-in dither signal is limited by the sensing noise of the

OMC DCPDs.

A second method uses the 45MHz sidebands present at the AS port of the interferometer to PDH lock the

OMC. This is somewhat invasive and requires an RF photodiode to sense the power of the reflected light from

the cavity. However, the PDH signal should be immune to many noise sources, for example intensity noise or

scattering from optical elements upstream of the OMC. The H1 OMC was PDH locked during interferometer

downtime in January, 2015, and the length noise was characterized to high frequency.

Another method is the so-called ‘half-fringe’ or ‘offset-locking’ technique. This is illustrated in Fig. 5.10.

When the OMC is locked at the resonance, length noise couples quadratically to the transmitted power and
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Figure 5.11. Relative intensity noise observed for a half-fringe lock of the OMC. Above 100 Hz the signal is
limited by input intensity noise.

generates only small amplitude signals in the DCPDs. If the OMC is locked halfway up the resonance, length

noise will couple linearly and generate a larger signal.

In Fig. 5.11 we show results from a half-fringe lock of the H1 OMC with the full interferometer locked at

low input power (2.3 W). Relative Intensity Noise (RIN) is the variation in the intensity of light measured by

the DCPDs as a function of frequency, normalized by the average intensity. In the plot, the red trace is the RIN

measured during the half-fringe lock. During this measurement the OMC was locked, and length fluctuations

were corrected using the dither lock-in signal and PZT actuation, which suppressed RIN noise from length fluc-

tuations at low frequencies where the control servo has significant gain. In the blue trace we have compensated

the observed RIN for the loop suppression. This is our estimate of the RIN due to ‘free-running’ length noise.

The plot includes estimates for the noise floor of the measurement. The gray trace is the measured electronics

noise for the DCPDs and the dashed gold line is the shot-noise limit for the DCPD photocurrent at the time of the

measurement (10.2mA). The black trace is the DCPD ‘null’ channel, the residual signal after the signal from one

DCPD is subtracted from the other. Note that the shot noise limit agrees well with the floor of the null channel

above 60 Hz. In this region, the residual noise between the DCPDs was incoherent and matched the expectation

from shot noise. Our signal is significantly higher than the shot noise limit, implying we were measuring real

intensity noise. The flat floor of the red curve above 100 Hz is suspicious, and the measurement was most likely

limited by input intensity noise in this band. There was some coherence above 100 Hz between the DCPDs and

intensity sensors upstream of the OMC, which indicates the RIN in this region was not entirely due to cavity

length fluctuations.
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Figure 5.12. Two measurements of OMC cavity length noise. Above 100 Hz the half-fringe method is limited by
input intensity noise. Between 1 and 100 Hz the PDH method is limited by noise of the PZT actuators. There is
agreement at low frequency, and also around 1 kHz, where resonances of the seismic platform disturb the cavity.
The body modes of the OMC silica breadboard are visible at 10 kHz in the PDH measurement.

Using the known resonance curve for the OMC (Fig. 5.10), we can calculate the δP/δL slope at the half-

fringe locking point; this is 2.72× 10−9 meters/RIN. For our measurement in Fig. 5.11, we calculate the length

noise assuming the RIN on transmission is entirely due to cavity length fluctuations. This is shown in Fig. 5.12,

where we also plot results from the PDH lock of the OMC. Note that the PDH method, which is not sensitive to

intensity noise, is lower than our measurement above 100 Hz. Importantly, the two measurements agree on the

forest of lines around 1 kHz. These lines are due to a resonance of the support struts in the seismic isolation table

that supports the OMC. Table vibrations at these frequencies propagate to the OMC glass breadboard and warp

the cavity, generating cavity length noise.

Our goal is to predict the OMC length noise coupling into the gravitational wave channel. We assume that

the free-running cavity length noise is the same whether the cavity is locked on the half-fringe (when we made

the length noise measurement) or on the full fringe (the configuration when the detector is in low-noise), and

we correct for suppression of the length noise due to the OMC control loop. On the full fringe, the coupling of

length noise to transmitted power is quadratic, and we can estimate the coupling of length noise into the DCPD

power measurement using the formalism for optical cavities. This coupling is given by:

δPOMC
AS (f) =

(
4F
λ

)2

ASD{L2(t)} , (5.3)
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where F = 390 is the finesse of the OMC, λ = 1064 nm, and ASD{L2(t)} is the amplitude spectral density

of the square of the timeseries of the cavity length noise. We measured L(t) while locked on the half fringe - it

is the time series corresponding to the red trace in Fig 5.11. Note that it is important to square the time-series

before calculating the ASD; in this way we correctly account for the quadratic coupling of length fluctuations

around the cavity resonance.

We convert PAS into δx (the variation in the differential arm length) using the quadratic form of Eq. 5.2 and

our knowledge of the DARM offset. Let us rewrite Eq. 5.2, and say that the relationship between the power at

the antisymmetric port and the DARM displacement x is given by [22]:

PAS = PBS (kx)2 =
P0

Pref

(
x

xf

)2

. (5.4)

Here, P0 is the input power to the interferometer, Pref is a normalization constant, and xf is a reference offset

from zero displacement. When the DARM displacement is equal to xf , PAS = P0/Pref . (It is convenient to

normalize PAS to the input power, since it is easier to measure than PBS .) If we assume the static DARM offset

is some value x0 and we wish to measure small fluctuations δx, then we can expand the term in the numerator:

PAS =
P0

Pref

(
x2

0 + 2x0δx+O(δx2)

x2
f

)
. (5.5)

Solving for δx, and dropping the DC term:

δx(f) = δPAS(f)
Pref
P0

x2
f

2x0
. (5.6)

This is how we measure the differential length fluctuations using homodyne readout. From here, we convert

to strain using the total arm length: δh = δx/L. During typical low-noise operations at H1, xf = 14 pm,

Pref = 1560, and P0 = 24.1 W. In this state, for x0 = 16 pm, PAS is about 20 mW.

Before we can compare this result to the detector sensitivity in Fig. 5.5, we must correct δx for the detec-

tor response, in particular the coupled-cavity pole of the arms and the signal recycling cavity. With this, our

expression becomes:

δxOMC(f) = δPOMC
AS (f)

Pref
P0

x2
f

2x0

(
1 + i

f

fpole

)
, (5.7)

with fpole = 389 Hz and δPOMC
AS (f) calculated from Eq. 5.3. The result of this calculation is shown in Fig. 5.13,

where we compare the noise in the gravitational wave channel due to OMC length fluctuations to the observed

displacement sensitivity. At all frequencies the noise from the OMC is lower than the current noise spectrum, and

we conclude that the OMC is not a limiting noise source. Furthermore, recall that above 100 Hz the measurement

63



Figure 5.13. Estimate of DARM noise due to OMC length fluctuations (loop-suppressed), compared to the
recent sensitivity of the H1 interferometer. Note the y-axis is in units of displacement sensitivity; divide by the
arm length to get the equivalent strain sensitivity.

of OMC length noise was likely to be an overestimate due to input intensity noise. The only region for worry is

the forest of lines around 1 kHz. These peaks are due to resonances in the seismic isolation table, as mentioned

above. There are currently efforts to design dampers to mitigate these resonances.

5.5 The OMC as a Spectrum Analyzer

We can use a high-finesse cavity like the OMC as a optical spectrum analyzer to measure the frequency and

spatial mode content of the laser field incident to the cavity. The resonant spatial modes in an optical cavity are

the familiar Hermite-Gauss or Laguerre-Gauss transverse electromagnetic modes (TEM). They are characterized

by two indices labeling the mode order in the transverse directions and are written TEMnm withm,n ≥ 0. Laser

fields composed of higher order spatial modes acquire excess round-trip phase as they circulate in the cavity. This

phase is referred to as the Gouy phase, ζ, and it increases the effective frequency of the laser field. Thus, higher

order modes are resonant for cavity lengths slightly offset from the resonance condition for the carrier. The

frequency spacing for higher order spatial modes is calculated using the Gouy phase,

fHOM =
ζ

π
fFSR , (5.8)

and the optical frequency for a mode of order m,n is

fmn = f0 + (m + n + 1)fHOM , (5.9)
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Figure 5.14. Scan of the OMC with a single-bounce beam off an ITM. The scan data are plotted in black and fits
to the peaks are plotted as colored Lorentzian functions (purple for sidebands, blue for higher-order modes, green
for an extended sample of higher-order modes). The gold trace is the sum of the fitted peaks. As the voltage
on the PZT decreases, the cavity length decreases, and higher-order modes with increasing optical frequency are
resonant.

where f0 is the carrier frequency. The round-trip Gouy phase of an optical cavity is calculated from the mir-

ror curvatures (for spherical mirrors this is quite simple, using the radii of curvature for the mirror surfaces).

The calculation of the Gouy phase for cavities with more than two mirrors is somewhat more complicated, but

straightforward [32]. For the aLIGO OMC, ζ = 39.5◦, fFSR = 261 MHz, and fHOM = 58 MHz. Even for an

input beam with pure TEM00 mode content, higher order modes can be generated by imperfect overlap of the

input beam with the resonant beam in the cavity, due to misalignments of the input beam or a mismatch in beam

size or shape.

To perform a spectral analysis with the OMC, we sweep the cavity length using the PZT actuator and measure

the transmitted power using the DCPDs. As the cavity length changes, modes of various orders and input fields

of various frequencies will resonate in the cavity. For an input beam with RF sidebands of frequency ωRF , we

can distinguish pairs of resonances at ω0 ± ωRF . A sweep of the OMC cavity across slightly more than one

cavity FSR is shown in Fig. 5.14. For this sweep, most of the optics in the interferometer were misaligned and

none of the cavities were locked. The input beam to the OMC was a ‘straight shot’ beam from the input mode

cleaner. Essentially it was a measurement of the quality of the laser field that is injected into the interferometer,

and the quality of the mode-matching and alignment into the OMC.

There are several notable features in the cavity scan shown in Fig. 5.14:

65



• The fundamental (00-mode) carrier peaks are the tallest feature, with 35mA of photocurrent. Most of the

input beam power was at the carrier frequency and well-aligned to the cavity. The peaks are approximately

located at 15 V and 56 V on the PZT voltage. These peaks are resonances of the same input field, but the

cavity round-trip length has been shifted by λ/2. The PZTs used on the OMC are roughly calibrated at

14 nm/V and change the cavity round-trip length by twice the PZT displacement: 14 nm/V × 2× ∼ 40 V

' 1064 nm. There is some nonlinearity in the PZT response, this will be discussed at the end of the next

section. (Note, from Chapter 4, the cavity resonance condition is L = Nλ/2 for the cavity one-way length

L. The round-trip cavity length (2L) changes by λ between resonances.)

• The 9.1 MHz sidebands are the small peaks on the shoulders of the carrier peaks, approximately one volt

higher or lower. These peaks are fit with Lorentzians, the fits are shown in purple.

• The 45.5 MHz sidebands are offset from the carrier by about six volts and their height is about 0.07mA in

the DCPD signal. Their Lorentzian fits are also shown with a purple trace.

• The carrier TEM20 mode is almost halfway between the two carrier peaks, at 36 V. Sometimes referred to

as the doughnut mode, the 20/02 mode is symmetric around the cavity axis and is sensitive to a mismatch

in beam size between the input beam and the ideal cavity beam. We calculate mode matching of an input

beam into a cavity using the relative power in the 00 and 20 modes, 1−(TEM20/TEM00). For this data the

mode matching is 0.91. The height of the 20/02 mode was later reduced using the thermal compensation

system (TCS), which uses a CO2 laser to generate a thermal lens in the ITM mirror substrates and tune the

effective mirror curvature.

• The sideband TEM20 modes are offset from the carrier TEM20 mode. These peaks (and others) are fit

with green traces.

• Higher-order carrier modes are visible up to n+m = 8. A single FSR only contains up to the 4th-order

mode, since 5× fHOM > fFSR, but 5th-order modes and higher wrap around the FSR due to the repetitive

resonance structure. These modes are fit with blue curves.

Peaks in the cavity scan are fit using a three-parameter Lorentzian function:

P (V ) =
A

1 +
(
V−V0

Vc

)2 , (5.10)

whereA, V0, and Vc are free parameters. The peak amplitudesA are used to derive information about the relative

power in each mode in the input beam. The peak locations V0 are used to calibrate the PZT voltage in terms of
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Modulation frequency Γ
9.1 MHz 0.191
45.5 MHz 0.284

Table 5.1. Modulation depths at H1 for the RF sidebands, measured using the OMC. For the calculation of the
contrast defect in the next section, we assume uncertainties in Γ9.1 and Γ45.5 of 0.005.

optical frequency using prior knowledge of fHOM and the sideband frequencies ωRF . In principle the peak

width Vc carries information about the finesse of the cavity, although in practice this measurement is limited by

the response of the DCPD electronics.

One useful measurement that can be performed with a cavity scan is a characterization of the sideband

modulation depth. From Chapter 4, recall the expression for the laser field after the phase modulation by the

EOM, using the Jacobi-Anger identity:

Einc = E0

[
J0(Γ)eiω0t + J1(Γ)ei(ω0+ωRF )t − J1(Γ)ei(ω0−ωRF )t

]
. (5.11)

Here, Γ is the modulation depth, measured in radians. If we were to measure the power at frequency ω0 ± ωRF ,

we would measure P0J0(Γ)J1(Γ). Similarly, the power of the carrier would be P0J
2
0 (Γ). With these two

expressions, we can use the ratio of power in the carrier to power in the sideband and provide and independent

measure of Γ:
Pcarrier
Psb

=
P0J

2
0 (Γ)

P0J0(Γ)J1(Γ)
=
J0(Γ)

J1(Γ)
. (5.12)

We can numerically invert this result to find Γ. Measuring the sideband modulation depth using an optical

spectrum analyzer downstream of the EOM such as the OMC is an important check of the RF modulation

electronics.

Using the peak heights for the carrier and the sidebands we can follow Eq. 5.12 and calculate the modulation

depths for the RF sidebands. The results for this cavity sweep are given in Table 5.1.

5.6 Measurement of the Interferometer Contrast Defect

In the full lock, the higher-order mode content at the antisymmetric port is considerably richer than with a

straight-shot beam from the input. Partially, this is due to the sidebands and their interactions with the optics of

the DRMI cavities. There is also carrier light present due to asymmetries between the carrier fields resonating in

the arms. One source of asymmetry, the DARM offset, is intentionally applied and should only contribute power

into the TEM00 mode. But there are other sources of asymmetry, such as slight differences in the mirror curvature,

imperfections in the mirror coatings or substrates, interactions between the carrier light and the DRMI optics,
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Figure 5.15. Scan of the OMC with the full interferometer locked with zero DARM offset. Higher-order modes
of the carrier and sidebands are labeled. Capital letters are used for the 45.5 MHz sidebands and lower-case
letters are used for the 9.1 MHz sidebands.

and most importantly any imperfections or misbalance in the beamsplitter reflectivity. These imperfections add

up to what is called the contrast defect between the arms. The contrast defect results in carrier power at the dark

port, even when no DARM offset is applied. Since these modes do not couple to gravitational waves, they can

act as a source of noise.

To measure the contrast defect, we performed sweeps of the OMC cavity with the full interferometer locked,

with the DARM offset on and off. The results of the sweeps and the fit to the complicated mode structure are

shown in Figs. 5.15 and 5.16.

First, note the height of the 45.5 MHz sideband peaks. This sideband frequency is resonant in the signal

recycling cavity and is the dominant source of light at the antisymmetric port, about 40 mA of total photocurrent.

Next, note the large order to which the carrier peaks extend: there is substantial power up to CR9, and other

peaks are present but not labeled. Finally, note the difference in height of the CR0 peak between the data with

the DARM offset off (Fig. 5.15) and the DARM offset on (Fig. 5.16). Without a DARM offset, there is almost

no TEM00 carrier field at the antisymmetric port. This gives us confidence that the contrast defect is small.

To calculate the contrast defect we match every peak to an optical mode and fit the peak using the Lorentzian

function given in Eq. 5.10. The amplitudes from the fits for the identifiable peaks are shown in Table 5.2.

We calculate the contrast defect in two ways:

68



Mode Carrier +45.5 MHz -45.5 MHz +9.1 MHz -9.1 MHz
0 0.040 (15.940) 19.450 (19.803) 18.95 (19.370) 0.041 (0.047)
1 0.231 (0.123) 1.421 (0.221) 0.650 (0.580) 0.294 (0.131)
2 0.327 (0.638) 0.794 (0.768) 1.31 (1.093) 0.116 (0.110) 0.201 (0.284)
3 0.501 (0.647) 0.123 (0.056) 0.087 (0.065) 0.180 (0.472)
4 0.247 (0.060) 0.044 (0.052) 0.123 (0.151) 0.632 (0.622)
5 0.437 (0.450) 0.055 (0.085) 0.074 (0.125)
6 0.211 (0.134) 0.013 (0.022) 0.150 (0.291)
7 0.185 (0.145) 0.025 (0.017) 0.033 (0.038)
8 0.178 (0.146) 0.021 (0.014) 0.077 (0.133)
9 0.435 (0.275)
Sum 2.79 (18.56) 21.67 (20.81) 21.07 (21.15) 1.14 (0.64) 1.35 (1.97)

Table 5.2. Peak heights for OMC cavity sweeps in full lock, with DARM offset off (on). Heights are given in
milliamps of DCPD photocurrent. Peaks without a measurement were either too small to fit, or degenerate with
another mode. We conservatively estimate the uncertainty of the carrier sums to be 0.05 mA.
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Figure 5.16. Scan of the OMC with the full interferometer locked with the DARM offset on, x0 = 15.8 pm.
Note the height of the CR0 peaks compared to Fig. 5.15.
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1. We assume that all the power in the carrier TEMnm modes with n + m > 1 with the DARM offset on is

due to the contrast defect. This sum (2.62 ± 0.03 mA) is likely an overestimate since some of the carrier

TEM00 power will be lost to higher order modes due to misalignments. The mode-matching for the carrier

field is around 90% for a single-bounce beam (as measured in the previous section), so the overestimate

may be as much as 10%.

2. We assume that all the carrier power with the DARM offset off (2.79 ± 0.03 mA) is due to the contrast

defect. In this case we are susceptible to overestimation from residual offsets due to the RF electronics or

electrostatic actuation on the ETMs.

In each case, we calculate the contrast defect as the ratio of carrier power at the anstisymmetric port to the the

total carrier power available before the destructive interference of the Michelson interferometer. We must account

for losses between the beamsplitter and the OMC to properly measure the available power.

The total power available at the antisymmetric port is equal to the product of the input power (at the time of

the measurement), the efficiency of the input optics (measured to be 88%), the power after the phase modulation

for the sidebands (using our measurement of Γ from the previous section), the carrier gain in the power recycling

cavity, and the transmission of the SRM:

P totalAS =Pin × J2
0 (Γ9.1)× J2

0 (Γ45.5)× εIO × g2
cr × TSRM

= (2.8± 0.1 W)× (0.982± 0.001)× (0.960± 0.001)

× (0.88± 0.02)× (33± 2)× (0.37± 0.001) = 28.3± 2.1 W . (5.13)

Losses between the SRM and the OMC are due to losses in the output Faraday isolator, the transmission of the

tip-tilt mirrors, and the responsivity of the OMC DCPDs:

P lossAS = TOFI × TOM1 × TOM3 × PDQE

= (0.95± 0.02)× (0.95± 0.001)× (0.99± 0.001)× (0.75± 0.02 A/W)

= 0.67± 0.017 A/W . (5.14)

The contrast defect is then given by:

∑
Pcarrier

P totalAS × P lossAS

=
2.62± 0.05 mA

28.3 W × 0.67 A/W
= 137.8± 11.1 ppm (first case)

=
2.79± 0.05 mA

28.3 W × 0.67 A/W
= 146.8± 11.8 ppm (second case) . (5.15)
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Figure 5.17. Fit to mode optical frequency, for OMC cavity sweep in full lock with DARM offset on. The
optical frequency for each mode was determined using the sideband frequencies and the OMC higher-order
mode spacing. The peaks were fit to Lorentzian functions of the PZT voltage, and the set of voltages were fit to
the mode frequencies with a 4th-order polynomial.

The two methods are in good agreement. The dominant source of uncertainty is from the carrier recycling

gain, g2
cr. Surprisingly, the first case, which we thought would overestimate the contrast defect, returned a smaller

result. There are a variety of potential systematic uncertainties for this measurement, especially the alignment

control of the interferometer, which was not in a complete state at the time the data were collected. In any case

we can be confident that the contrast defect is quite small. Note that if we have not accounted for all of the losses

between the beamsplitter and the OMC, our result is biased and the true contrast defect will be larger.

Finally, one last result: we can use the mode content from the output of the full interferometer to calibrate the

OMC PZT actuation in terms of optical frequency. We fit the PZT voltage to optical frequency using the sideband

frequencies and the higher-order mode spacing of the OMC, with a 4th order polynomial. The fit parameters are

set using thirteen data points: the four peaks of the 45.5 MHz sidebands, and the carrier peaks from CR0 to CR9.

The result of the fit was compared to all of the identified peaks in the sweep; this is shown in Fig. 5.17, for data

with the DARM offset on (Fig. 5.16). The response of the PZT is not quite linear. The residuals of the fit are

extremely small; this gives us confidence that we have correctly identified the optical modes.
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CHAPTER 6

DETECTOR CHARACTERIZATION

Be not afeard; the isle is full of noises,
Sounds and sweet airs, that give delight and hurt not

Gravitational wave observatories are complex instruments, and despite over a decade of experience their daily

operation are an ongoing research and development project. Observatories operate in two modes: commissioning,

when detector scientists make invasive changes to understand and improve the sensitivity to gravitational signals,

and observing, when the detectors are maintained in a resonant state as much as possible, with a minimum of

changes to the detector configuration. Typically, the instruments can be held at resonance for a few hours until

and environmental disturbance or control instability causes them to lose lock.

Calibrated strain data from the LIGO detectors is stored in a time-series format with a sample rate of

16,384 Hz. The strain output from the detectors is not a pristine, Gaussian-noise dataset. Numerous noise

artefacts are present in the data and can masquerade as gravitational wave signals. Excess noises range from

constant narrowband features such as lines, which are a problem for searches for continuous-wave signals, to

short-duration bursts of broadband excess noise. The latter case, referred to as glitches, are presumed to arise

from time-varying couplings of environmental or instrumental noise into the gravitational wave channel. Tremen-

dous effort has been applied to studying, categorizing, and searching for the cause of glitches [8]. Glitches form

a background that limits the sensitivity of astrophysical searches for short-duration signals.

In this chapter, I will broadly describe the typical data quality of the LIGO detectors, and quantify the non-

Gaussian component of the noise. I will present some results from a novel technique for identifying the instru-

mental cause of glitches, and conclude with an example of glitches in the advanced LIGO detectors.

6.1 Locking and Unlocking

During an observing run, the detectors are maintained in their low-noise state for as much time as possible by

round-the-clock operations staff. The duty cycle or uptime of a detector is limited by a variety of factors. During
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Figure 6.1. Accounting of the sources of downtime for the L1 detector during the two-year S5 science run.
Above-normal ground motion, in the form of earthquakes, wind, trains, construction and logging activities near
the site, and the microseismic peak due to ocean waves, was responsible for 100 days of lost science data. The H1
detector did somewhat better in S5, with 76.9% uptime. In the S6 science run, between July 2009 and October
2010, the instruments had slightly worse duty factor due to preparations for the advanced LIGO installation.

the two-year S5 science run a careful accounting of the causes for downtime was made at the L1 detector, and

the results are shown in Fig. 6.1. The downtime is organized into the basic categories that plague gravitational

wave observatories: environmental disturbances (wind, earthquakes, local seismic noise and microseism from

ocean waves); equipment failures; regular maintenance and commissioning activities; and the irreducible time

necessary to recover from a lock loss by running the ‘Up’ and ‘Down’ scripts.

The uptime achieved by the LIGO detectors has historically been a major focus of commissioning efforts.

Uptime between the LIGO sites is rarely correlated. If each site manages to collect data with 70% duty cycle in

randomly-distributed segments, the network duty cycle is less than 50%. This results in a factor of two reduction

in the anticipated event rate for an observing run and can make the difference between detections and upper

limits.

The durations of the science segments that represent undisturbed periods of data acquisition are highly vari-

able. A histogram of segment duration for the LIGO detectors in the S6 science run is shown in Fig 6.2. The

median duration for L1 segments was 2,400 seconds, the H1 median was 4,700 seconds.

Early duty cycle results from the advanced LIGO detectors are encouraging. The advanced seismic isolation

has dramatically reduced the coupling of seismic disturbances into aLIGO interferometers. This is especially the

case in the anthropogenic seismic band of 1-10 Hz, generated by human activity such as cars, trucks, trains, and

machinery, and also by logging activities near the Livingston site.
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Figure 6.2. Duration of science segments collected by the LIGO interferometers in their sixth science run, July
2009 - October 2010. The L1 instrument recorded 3,276 segments, H1 recorded 2,395.

Despite the increased complexity of the advanced detectors, the recovery from lock loss can be a straightfor-

ward, rapid process. In Fig. 6.3 we plot the recovery from a lock loss in the H1 detector. The ‘Guardian’ is the

automation software which controls the state of the instrument and manages the complex transitions between the

uncontrolled, unlocked state and the resonant low-noise state. Various steps in the path from unlocked to resonant

are given on the left-hand side of the plot. In this example, the instrument was locked for the first sixteen minutes

of the hour, lost lock, and recovered the full low-noise state (‘LSC FF’) in less than twenty minutes. The process

was entirely automated with no human intervention.

The first two weeks of June 2015 were set aside for an engineering run to quantify the duty cycle of the

instruments and provide data for tests of the analysis pipelines. The H1 instrument achieved a duty cycle of 63%,

and L1 42%. Many of the reasons for downtime during the engineering run were relatively well-understood and

are expected to be remedied before the first observing run in September 2015. These engineering run results can

be taken as a lower bound on future performance.

6.2 Stationarity of the Noise & Effects on the Searches

In the ideal case, the noise in the detector is described by a stationary Gaussian process. In reality, the

noise is nonstationary with many loud bursts of excess noise that are extremely improbable for noise drawn from

a constant Gaussian distribution. We can characterize the Gaussianity of the noise by studying the amplitude

spectral density (ASD) of the strain signal from the detectors. Recall that the power spectral density (PSD) of a

time series h(t) is given by:
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Figure 6.3. Example of a lock loss recovery for the H1 advanced LIGO detector. Figure by Duncan MacLeod.

S(f) =
1

N

N−1∑
i=0

|H̃i(f)|2 , (6.1)

where H̃i(f) are samples of the Fourier transform of h(t), taken over N discrete steps. If h(t) is drawn from

a Gaussian distribution, then its Fourier transform H̃i(f) will have real and imaginary components that are

independent Gaussian random variables with zero mean and variance σ2. The ASD is the square root of the

PSD, and for Gaussian noise the set of samples from each frequency bin in the ASD will follow a Rayleigh

distribution. Details of ASD estimation and the statistical distribution of the ASD for stationary Gaussian noise

are given in Appendix A.

We can compare the observed ASD of the detector to a Rayleigh distribution and quantify the excursions

from Gaussianity. This was done in detail for the LIGO detectors in the S6 science run, between July 2009

and October 2010. S6 was divided into four epochs, based on commissioning breaks that resulted in significant

changes to the sensitivity. For the study, the science-quality data from each epoch was Fourier transformed and

converted to an ASD. An example result is shown in Fig. 6.4 for the H1 detector. Here, we plot the percentile of

the noise ASD for each frequency bin, with 0.167 Hz resolution.

In Fig. 6.5, we normalize each percentile by the median, and compare the result to the expectation for a

Rayleigh distribution. Visualizing the data in this way gives us a picture of what fraction of time the noise

behaves in a non-Gaussianity manner, as a function of frequency. Notice that the median-normalized percentiles

largely match the dashed lines which give the expectation for Gaussian noise. At low frequencies, a deviation

from Gaussianity is clear after roughly the 95th percentile. This observation agrees with our experience from

the detectors. The rate of loud glitches is about 0.5 Hz and their median duration is about 100 msec, thus there is
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Figure 6.4. Distribution of sensitivity per frequency bin for the H1 detector during the S6D epoch (6.28 million
seconds of data, or about 72 days). The data were divided into 50% overlapping segments with 6-secnod duration.
The FFTs of these segments were collected and used to calculate percentiles of the noise for each frequency bin.
For 0.5% of the time, the noise was greater than the black trace.

some excess noise present about 5% of the time. Most glitches occur at low frequency. Broadband glitches up to

1 kHz are much less frequent, thus there are only small deviations from the dashed lines at high frequency.

The population of glitches in the detector acts as background noise for searches looking for transient gravita-

tional waves. Searches for compact binary coalescences (CBCs) are somewhat immune to the problem, since the

CBC signal morphology is well-defined, and searches can perform χ2 tests to check that event candidates agree

with the signal model. Searches for unmodeled, short-duration bursts have significant problems with glitches,

since they make no assumptions about the signal morphology. In Chapter 7 and Appendix C we discuss coherent

analysis techniques for glitch rejection. Since the noise in the detectors is non-Gaussian and glitch mechanisms

are largely unexplained, an analytical model for the background noise in transient searches is not possible. In-

stead, the background is measured empirically, by repeating the analyses with many unphysical time-slides, or

time offsets between the detector data. In this way the searches estimate the rate of random noise correlations

between the detectors.

An example of the results of the background estimation for an unmodeled burst search is shown in Fig. 6.6.

There is a long tail of high-SNR events, much higher than would be expected from astrophysical sources. In

order to claim a detection, an event candidate would need to have an SNR that was much higher than events

which are found to occur from chance noise fluctuations in the detectors. The events in the tail are so frequent

and so loud that the SNR threshold for detection all but excludes plausible astrophysical signals.
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Figure 6.5. Median-normalized sensitivity percentiles per frequency bin. The expected ratio for Rayleigh-
distribution noise for each percentile is given by the dashed lines. There is a clear deviation from Rayleigh-
distributed noise, especially at low frequency.

Figure 6.6. Cumulative histogram of time-slide events for the Coherent WaveBurst search in S6D [15]. The long
tail of events, especially at low frequencies, extends to an astrophysically unlikely SNR, and statistically blinds
the search to plausible signals. Vetoing the events based on correlations to instrumental and environmental noise
improved the results, but at the expense of duty cycle. Typically around 10-20% of the data are vetoed. The error
bars are

√
N . This plot is my own work, and should not be interpreted as a result of the CWB group.
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Ideally, the glitch background would be eliminated through studies of the noise couplings and modifications

to the detectors. Alternatively, we can monitor the noise sources or the coupling parameters and advise the

search groups to ignore times when we expect excess noise to be present in the gravitational wave channel. This

second approach is known as vetoing the data. The identification of glitch coupling mechanisms is not easy.

The coupling of any individual noise source to the gravitational wave channel can be modulated by time-varying

parameters, and the parameter space of the detectors is described by many hundreds of channels. In the next

section we describe a technique to identify instrumental couplings that generate glitches.

6.3 Instrumental Correlations of Glitches

A number of algorithms have been developed [23, 75, 120, 136] to study correlations between glitches in

the gravitational wave channel and auxiliary instrumental channels – for example, the alignment error signals,

length control signals for the DRMI optical cavities, seismic noise, environmental data from magnetometers and

microphones, and so on. These techniques have performed very well, and glitch backgrounds such as those

shown in Fig. 6.6 can generally be vetoed such that the analyses are sensitive to astrophysically plausible SNRs.

But these algorithms rarely give a clear answer for the instrumental cause of glitches. In a sense they answer the

question of ‘What caused the glitch in the gravitational wave channel?’ with the question ‘What cause the glitch

in the auxiliary channel?’ Sometimes the cause is readily apparent, for example when a photodiode is glitching

due to an electronics problem, but often the glitch in the auxiliary channel looks like a louder, filtered version of

the glitch in the gravitational wave channel. This does not always provides useful information.

The detector parameter space is described by hundreds of measurements: the length of optical cavities, the

position of the beam on mirrors, the alignment of the beam, and so on. We can visualize the interferometer state

at an instant in time as a high-dimensional vector in the parameter space of the instrumental channels which are

recorded. The veto algorithm presented here calculates the probability that the interferometer will experience

a glitch at each point in this high-dimensional space. There are two assumptions in the method. First, that the

duration of glitches is short (∼ 100 msec) and the noise coupling to the gravitational wave channel is changing on

this timescale. Second, we assume that the coupling is modulated by two or more parameters which are measured

by auxiliary channels (or parameters derived from them), and that studying a single channel is not sufficient to

describe the glitch mechanism. These assumptions are motivated by previous studies which correlated glitches

to the value of single channels over short and long timescales, with varying degrees of success.

For now we consider a two-parameter glitch coupling model. To illustrate the method, we will introduce a

source of glitches known as Barkhausen noise [145]. Barkhausen noise is generated by the discrete transitions

of the microscopic magnetic domains in a ferromagnetic material as an external magnetic field is varied. In
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Figure 6.7. Correlation between glitches and ETMX actuation current during highly elevated, narrowband mi-
croseismic noise on Oct 22 2009 at the H1 detector. The value of the coil current at the time of a glitch in the
gravitational wave channel is given by the red squares. The grey traces are the coil current around the time of the
glitch. The seismic noise on this day was sharply peaked around 0.125 Hz.

initial LIGO, the final-stage actuators on the test masses were electromagnetic coils, and Barkhausen noise was

observed during times when the amplitude of the drive to the actuators was very large.

In Fig. 6.7 we show the correlation between glitches and the coil current sent to the electromagnetic actuators

on ETMX. The signature of Barkhausen noise is clear. The bursts of noise arrive just after the time of most rapid

change in the magnetic field of the voice-coil actuators. These are the times when the largest number of magnetic

domains are flipping to align with the changing external field from the actuators.

Note that if we only examined the value of the coil current at the time of the glitches, the pattern would

be hidden from us. Furthermore, if we only examined the behavior of the channel on long timescales (say,

the average value of the channel during a science segment) we would miss the correlation. Earlier vetoes for

Barkhausen noise looked for times when the RMS coil current was elevated. These vetoes worked, but the

amount of time vetoed was very large.

The timing of the bursts of excess noise due to the Barkhausen effect can be anticipated using a model with

two parameters, the amplitude of the coil current and the phase. A plot of the current and its derivative extracts

this information; this is analogous to a phase-space diagram from classical mechanics. In Fig. 6.8 we plot the

location of glitches in the parameter space of the coil current (x-axis) and the time-derivative of the current

(y-axis). Each pixel in the plot represents a discrete value of the coil current and its time derivative.
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Figure 6.8. Location of Barkhausen-type glitches in a phase-space plot of the ETMX coil current and its time
derivative. Note the correlation between glitch times and the phase and amplitude of the coil current. The data
here are the same as in Fig. 6.7.

Figure 6.9. Glitch probability for two months of data in H1 S6B as a function of coil current and its time
derivative. Nearly all of the time the interferometer state is located in the very center of the plot, where the glitch
probability is around 10−3. During times of very large, low-frequency seismic disturbances, the coil current
amplitude is very large, and the interferometer state falls in points on the extremes of the plot. Barkhausen
glitches tend to occur in the upper right and lower left quadrants.
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Figure 6.10. Performance of a veto constructed by rejecting times when the coil current was in a probable
configuration to generate Barkhausen noise. Statistics are presented per science segment.

By dividing the glitch count in each pixel of Fig. 6.8 by the amount of time the coil current and its time

derivative had the value corresponding to that pixel, we can build a glitch probability map for the two-dimensional

parameter space of the coil current and its time derivative. This is shown in Fig. 6.9. Most of the time, the

interferometer state is located at the very center of this plot where the glitch probability is low. Glitches are

correlated with excursions from the center, and in particular there is a phase dependence shown by the two lobes

of low glitch probability. From here the definition of a veto is clear: we flag any times the coil current and its

time derivative cross a pixel with a large glitch probability.

The performance of a veto derived in this way is shown in Fig. 6.10. In the top panel we plot the veto

efficiency (the fraction of glitches vetoed) and the veto deadtime (the fraction of science time lost to the veto) per

science segment. In the middle panel, we plot the use percentage, the fraction of veto segments that contain a

glitch. In the bottom panel we show the veto efficiency-over-deadtime, a common measure of veto effectiveness1.

Vetoes with a large efficiency-over-deadtime indicate that we have understood a glitch coupling mechanism.

When you build a good veto, it means you have learned something about the detector.

The periods of best performance for this veto occur during periods of elevated microseismic noise (ground

motion in the 0.1-1 Hz band) due to storms in the northern Pacific in the fall of 2009. During these times, the

control loops had to apply large drives to the mirrors to maintain the interferometer lock, and the coil current

1A little algebra will reveal that the efficiency-over-deadtime statistic is equivalent to the ratio of the glitch rate during the veto segments
to the average glitch rate.
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was very large. Outside of these times the amplitude of the coil current drive was small and very little time was

vetoed. Note that the veto use percentage is quite high. More than 60% of the time, a veto segment contained a

glitch.

In the advanced LIGO detectors, great care has been taken to remove all ferromagnetic materials from the

test masses, and the final stage of the suspensions use an electrostatic drive rather than magnetic actuation. This

invites other problems, such as varying drive gain as the charge on the test mass changes due to cosmic rays, UV

emission from ion pumps in the vacuum system, and so on. But there has been no evidence of Barkhausen noise.

The veto algorithm presented here has been run on a variety of instrumental channels in data from the S6

science run, and some pairs of channels (or pairs of channels and time derivatives) have demonstrated impressive

veto performance. An example is the combination of a measure of the spot location on the OMC QPDs (recall

that the LIGO detectors used homodyne readout in S6) and a measure of the differential misalignment of the

arm cavities. The glitch mechanism implied by this combination of channels is not immediately clear. For the

advanced detector era we plan to implement a multidimensional model for glitch couplings that can identify noise

sources which are modulated by more than three instrument parameters. An added feature, still in development,

is a glitch clustering algorithm to classify glitches based on their morphology.

6.4 Glitches in aLIGO: OMC Scattering

Early data collected by the aLIGO instruments has shown that the glitch background is roughly the same as

that observed with the initial detectors. One class of glitches which has been studied, and which is germane to

this thesis, are bursts of noise due to scattered light from the OMC. Scattered light is a significant problem for

gravitational wave detectors, since even small changes in the amplitude of the carrier field at the antisymmetric

port will generate a signal. A scattering source that reflects light back into the beam path with a varying path

length will generate an electromagnetic field at the DCPDs with a phase shift relative to the carrier field. In this

section we provide a brief derivation of the signal from scattered light (following [64]) and give some initial

results from the H1 aLIGO instrument.

Imagine a scattering source located somewhere between the beamsplitter and the DCPDs. This source will

reflect a small amount of the electric field incident on the antisymmetric port back into the interferometer, with

a path length given by x(t). When viewed from the AS port, the interferometer is almost perfectly reflective, so

all of this light will be reflected back towards the AS port. Let us assume that the scattering source reflectivity

rs is small, so higher-order reflections can be neglected. The field at the DCPDs in the presence of a scattering

source is given by:

EscatterAS =
√

1− r2
sEAS e

iω0t + rsEASe
iω0t+ikx(t) , (6.2)
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whereEAS is the field leaving the interferometer. The path length from the interferometer to the scattering source

and back, for a source moving at frequency ωs with amplitude A, is changing like:

x(t) = 2A sin(ωst) . (6.3)

Therefore the field detected by the OMC is being phase-modulated like:

EscatterAS =
√

1− r2
sEAS e

iω0t + rsEAS e
iω0t ei

4πA
λ sin(ωst) . (6.4)

We can expand the second term using the Jacobi-Anger identity (Eq. 4.13, with Γ = 4πA/λ). This gives us

the following expression for the field incident on the OMC:

EscatterAS =
√

1− r2
sEAS e

iω0t + rsEAS e
iω0t

[ ∞∑
n=−∞

Jn(Γ)einωst

]
. (6.5)

If we assume the scattering source does not change the TEMnm mode content of the light, this field will be

transmitted by the OMC and be detected by the DCPDs. Dropping higher-order terms in rs, and assuming that

1− r2
s is close to unity, the excess signal is given by:

EscatterAS = |EAS |2
(

1 + rs

[ ∞∑
n=−∞

Jn(Γ)einωst

])
. (6.6)

In the frequency domain, the Fourier transform of the second term is a series of delta functions at frequencies

ω0±nωs with amplitudes rsJn(Γ). In practice the carrier field EAS eiω0t has broadband frequency content, and

this broadens the delta function peaks.

The distinguishing feature of scattered light noise is the presence of a sharp cutoff frequency, sometimes

called the scattering shelf. The shelf is due to the cutoff in the amplitude of the scattering harmonics, since

Jn(Γ) drops rapidly after n > Γ (see Fig. 6.11). The cutoff frequency can be related to the properties of the

scattering source by:

fshelf = nshelfωs = Γωs =
4πA

λ
ωs =

2vs
λ
, (6.7)

where vs is the velocity of the scattering source, vs = Aωs, from the time derivative of x(t)/2.

A spectrogram of scattering noise in the H1 detector is shown in Fig. 6.12. The maximum frequency of

the scattering noise, out to 100 Hz or more, implies a scattering source velocity of tens of microns per second

relative to the OMC if we assume a single reflection. In this case it was motion of the OMC suspension itself that

was modulating the path length between the scattering source and the interferometer. During a test run of the
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Figure 6.11. Cutoff of Bessel functions of the first kind as the order n grows larger than Γ.

Figure 6.12. Top panel: spectrogram of scattering noise in the calibrated gravitational wave channel. Bottom
panel: velocity of the longitudinal degree of freedom of the OMC suspension in µm/sec. Scattering arches are
correlated with peaks in the velocity of the OMC, indicating that the path length between a scattering source and
the interferometer is being modulated by large motions of the OMC suspension. (The motion of the OMC is
measured at the middle stage of the suspension, and the bottom stage, with the optical components, is moving
faster.)
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Figure 6.13. Photo of the author working to check beam alignment into the OMC black glass shroud, designed
to enclose the output mode cleaner in a non-reflective covering to prevent scattered light. The black welder’s
glass can be seen around the OMC suspension cage in the upper left of the image.

instruments in early June, noise variations due to scattered light were a significant source of background events in

the searches for unmodeled burst signals. Later that month, a black glass shroud was installed around the OMC

suspension cage to mitigate the effects of scattered light. The installation of the shroud is shown in Fig. 6.13. In

the future scattered light noise is expected to be a frequency obstacle to improved sensitivity at low frequencies.

85



CHAPTER 7

A SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH
GAMMA-RAY BURSTS

Yet from those flames
No light, but rather darkness visible.

Gamma-ray bursts (GRBs) are intense flashes of high-energy photons which are observed approximately

once per day and are isotropically distributed in the sky [93]. Since their public discovery in 1973 [79], as-

tronomers have found that most GRBs are extra-galactic in origin, and there is substantial evidence that they

emit gamma-rays in tightly beamed relativistic jets [61]. GRBs are grouped into two broad classes based on their

spectral hardness and the duration of the initial gamma-ray flash [82]. The progenitors of long-soft GRBs are

generally accepted as core-collapse supernovae (CCSN) in massive, rapidly rotating stars [148]. The progenitors

of short-hard GRBs have yet to be constrained by observation, but are widely thought to be associated with

compact binary coalescences (CBCs), such as the mergers of binary neutron star (BNS) or neutron star-black

hole (NSBH) systems [97]. Both the merger and core-collapse supernovae scenarios result in the formation

of a stellar-mass black hole or magnetar with an accretion disk. CBCs are expected to be bright sources of

gravitational waves, while the gravitational wave emission by supernovae is more speculative [100].

In this chapter I present the methods and results of a search for gravitational waves associated with 129

GRBs using data from the LIGO, Virgo, and GEO detectors [11]. The analysis was primarily carried out by

myself and Tom Adams, a graduate student at Cardiff University in the United Kingdom. This was the first

search for gravitational wave transients to use data from GEO 600, and the first to use data from a squeezed-

light interferometer [14]. Due to the sensitivity of the GEO detector, the search focused on a higher frequency

band than previous searches. This motivated novel methods for analyzing GRBs with sky localizations from

the Fermi GBM instrument, which typically have uncertainty regions of dozens of square degrees. The use of

a linear search grid for an analysis with two detectors was found to significantly reduce the computational cost

of the search. As a part of this work, we characterized the ability of the analysis pipeline to localize a detected

gravitational signal. In the search itself, no gravitational wave events were detected. We placed upper limits on
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the gravitational wave emission from the GRBs, for generic narrowband waveforms at 500 Hz and 1 kHz, and

placed lower limits on the distance to the GRBs assuming a gravitational wave emission energy of 10−2 M�c2.

7.1 Gamma-ray Burst Physics

The prevailing model of GRBs is the so-called fireball model [63]. A compact central engine generates

a relativistic explosion of material composed of hadrons and electrons, with a bulk Lorentz factor Γ & 102.

Variations in the density of matter in the relativistic outflow are called shock fronts. As the material moves

away from the central engine, electrons in the shock front plasma interact with magnetic fields and emit photons

through synchrotron radiation. Since the photon energy in the rest frame of the shock front is in the x-ray band,

photon-photon interactions such as pair production are suppressed, and the fireball remains optically thin. In the

frame of the observer, the photons are blueshifted (Lorentz-boosted) in the direction of the relativistic outflow,

and reach energies beyond 1 GeV [104]. Further interactions between the shock fronts and the circumstellar

environment will generate a long-lived afterglow. The hadronic content of the fireball produces pions, which

decay to electrons, muons, and neutrinos. These high-energy neutrinos are a target for detectors such as IceCube

[1]. The fireball model is in agreement with many of the observed properties of gamma-ray bursts, such as

the millisecond structure in their light curves, the non-thermal radiation spectrum of the gamma-ray flash, and

the presence of long-lived afterglows in the x-ray and optical bands. But, the model is agnostic regarding the

properties of the central engine, other than it being compact and capable of releasing tremendous energy on a

short timescale.

An additional property of GRB progenitors, which strictly speaking is not required as part of the fireball

model, is that the central engine is rapidly rotating. This assumption is motivated by the luminosity of the

gamma-ray emission, which implies a tightly beamed jet rather than isotropic emission. (If the gamma-rays

are emitted isotropically, the energy released would be equivalent to tens of solar masses, which would strain

the bounds of theoretical astrophysics.) Beamed emission is known to be generated by collimated jets that are

produced by magnetized, rotating systems, such as the accretion disk around a black hole. Thus, independent of

the specific physics of the central engine, the sources of GRBs are likely to be compact, rapidly rotating objects.

This makes GRBs good candidates for short-duration gravitational wave signals.

Observational evidence for beamed emission comes in the form of jet breaks, or the characteristic dimming

of the GRB afterglow as the fireball slows and becomes nonrelativistic. As the Lorentz factor of the outflow

approaches unity, the electromagnetic radiation is no longer beamed in the direction of the outflow, and the

emission from any point in the fireball becomes isotropic in the frame of the observer. If the initial explosion

is isotropic, the intensity measured by a distant observer will remain the same. But if the explosion is beamed,
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the collimated emission from the jet will broaden as the jet becomes nonrelativistic, and the intensity of photons

emitted in the original direction of the jet will decrease. This results in a sharp discontinuity of the GRB light

curve, the jet break. The timing of the jet break after the GRB prompt emission can be used to determine the

initial Lorentz factor of the jet, and from there the opening angle of the prompt gamma-ray emission (see Eq. 6

of [37], and references therein). The typical timescale for GRB jet breaks is O(1) day after the event, implying

an opening angle of less than 10◦.

Over the past two decades, astronomers have constrained the physics of GRB central engines through a

variety of observations. The cosmological nature of GRBs was first established in 1997 by the BeppoSax satellite,

which localized GRB 970228 to a galaxy at redshift z=0.695, a distance of 2.5 Gpc [51]. Soon after this discovery,

BeppoSax astronomers associated long GRBs with core-collapse supernovae for the first time, with GRB 980425,

also known as SN 1998bw [149]. Further observations have established a strong connection between long GRBs

(duration > 2 sec) and type Ib,c core-collapse supernova. These supernovae originate from massive, rapidly

rotating stars which have shed their outer envelope of hydrogen. Long GRBs tend to occur in young spiral

galaxies with active star forming regions [39], consistent with the hypothesis that they are generated by CCSN

from short-lived massive stars.

Short GRBs are a challenge to localize due to their short duration in the gamma-ray band (' 2 sec) and their

faint x-ray and optical afterglows. The first optical afterglow of a short GRB was detected by the Swift satellite,

from GRB 050509B [68]. This and subsequent observations have not established a clear progenitor for short

GRBs, but several properties have been established (see [37] for a review):

• Short GRBs originate from non-star-forming regions in late-type elliptical or irregular galaxies [60]. This

implies a progenitor population of old stars.

• Short GRBs tend to be offset from their host galaxies by several kiloparsecs. Galaxy offsets are predicted

for binary star systems in which one or both of the stars have undergone a supernova, giving the system an

angular momentum ‘kick’ out of the galaxy.

• Short GRBs have smaller redshifts than long GRBs, with a median of z = 0.2 compared to z = 2.0

for long GRBs, after correcting for luminosity and detector sensitivity. Small redshifts are evidence for

progenitors that require a long period of evolution before the GRB event.

• No short GRB has been associated with a supernovae, out to deep observing limits.

• One short GRB has been associated with an infrared afterglow consistent with a ‘kilonovae’, or a reddish

re-brightening due to the radioactive decay of neutron-rich matter [131].
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All of these properties are consistent with the model of BNS or NSBH mergers as the progenitors of short

GRBs. Numerical simulations of BNS mergers have provided further evidence, in particular that BNS mergers

can generate large magnetic fields capable of powering a relativistic jet along the axis of rotation [108, 110].

The beamed nature of GRBs has significant implications on their rate density. Call the rate of short GRBs

RGRB , and the rate of observed short GRBs Robs. The opening angle of the relativistic jet, θj , is inversely

proportional to the Lorentz factor Γ of the jet, and determines the fraction of GRBs whose gamma-ray emission

is collimated in the direction of the Earth:

Robs = (1− cos θj)RGRB . (7.1)

As mentioned above, astronomers measure θj by observing the jet breaks in GRB afterglows. Jet breaks have

been observed in many long GRBs and a handful of short GRBs, and both populations have median inferred

opening angles of θj ∼ 6◦ (although the measurements for short GRBs are more uncertain). This implies that

only one in a hundred short GRB events are aligned such that the gamma-ray flash is directed towards Earth.

For short GRBs, the observed beaming angles imply an overall rate that is in tantalizing agreement with the

projected rate for CBCs discussed at the end of Chapter 2. Consider the following calculation, starting with the

observed rate of short GRBs, Robs ' 3× 10−3 Mpc−3 Myr−1 [118]. Some fraction of short GRBs could be due

to soft gamma repeater flares (SGRs) or other events in the nearby universe; call fγ the fraction of GRBs due to

a BNS or NSBH. We calculate the rate of CBCs giving rise to short GRBs as:

RCBC =
RGRB
fγ

=
Robs

fγ(1− cos θj)
. (7.2)

For θj = 6◦ and fγ = 1/2, RCBC is equal to the best guess for the rate of BNS mergers, Rmerger ∼

1 Mpc−3 Myr−1 [12]. While we should stress the large uncertainty in estimates of θj , fγ , and the BNS rate,

the fact that Rmerger and RCBC are in agreement for plausible values of θj and fγ is encouraging. See [47] for

a detailed discussion.

Whatever their precise mechanism, the luminosity of GRBs, combined with their extra-galactic distances,

implies such an immense energy budget that GRBs are almost certainly associated with the birth of a black hole.

Black holes are the most efficient converters of mass into energy, and they are essentially the only way a large

fraction of a solar mass rest energy can be converted into electromagnetic radiation in a timescale of seconds.
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7.2 GRB Satellite Missions

Photons in the gamma-ray portion of the spectrum do not penetrate the Earth’s atmosphere, so GRBs are

only observed by satellite experiments. (Some terrestrial detectors have been built to observe the Cherenkov

radiation from a GRB-induced electromagnetic shower in the atmosphere, but their sensitivity does not match the

spaceborne experiments.) There are several gamma-ray detectors onboard satellites in Earth orbit or elsewhere

in the solar system. Most GRBs are detected by dedicated experiments on the Swift and Fermi satellites.

Swift, launched in 2005, is a dedicated GRB mission that uses a coded-mask gamma-ray detector to accurately

localize the burst’s position on the sky [67]. Swift takes its name from its rapid slew rate. The satellite can point

its onboard X-ray and optical telescopes at the GRB location within minutes (sometimes seconds) of the event.

The Swift Burst Alert Telescope (BAT) can localize a GRB to within several arcminutes on the sky, and x-ray or

optical followup can localize the afterglow to within several arcseconds.

Fermi, launched in 2009, is a high-energy astrophysics mission with an observing window ranging from the

soft X-ray to the hard gamma-ray end of the spectrum [90]. The Gamma-ray Burst Monitor (GBM) is an array of

scintillation detectors onboard Fermi that detects GRBs with roughly half-sky coverage. The localization ability

of the Fermi-GBM is much rougher than Swift; the 95% containment radius for Fermi triggers is typically 10-12

degrees [49, 74, 119].

After Swift or Fermi detect an event, the sky location, gamma-ray flux, energy spectrum and other data

are transmitted to the ground and disseminated to astronomers via the Gamma-ray burst Coordinates Network

(GCN). The information is typically available within minutes of the arrival of the gamma-ray burst at Earth.

7.3 Gravitational Waves from GRBs and Previous Searches

In this section we provide a non-exhaustive survey of theoretical predictions for gravitational waves from

GRBs. The progenitors of GRBs are expected to have unique gravitational wave signatures [50], and most of the

models of GRB central engines predict gravitational wave emission at high frequencies (> 500 Hz), where the

search presented in this chapter was sensitive.

Short GRBs are believed to be associated with the inspiral and merger of a neutron star either with another

neutron star or with a black hole. The inspiral phase of these mergers is expected to be a bright source of

gravitational radiation [133], although most of the gravitational energy flux from the inspiral occurs at frequen-

cies below 500 Hz. Numerical simulations of the merger phase have shown that substantial gravitational wave

emission can occur at frequencies greater than 1 kHz [78, 115]. BNS mergers may result in the formation of a

hyper-massive neutron star (HMNS), which can produce strong gravitational wave emission as it collapses to a

black hole [99, 77].
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The progenitors of long GRBs are believed to be core-collapse supernovae (CCSN) in rapidly rotating mas-

sive stars. Simulations of CCSN indicate several methods for gravitational wave emission at frequencies of

several hundred Hz to 1 kHz, but the amplitude of the emission is highly uncertain [100]. The most optimistic

emission models arise from the pulsations of a proto-neutron star core, which may release 10−7M�c2 in gravi-

tational waves in a narrow frequency band around 1 kHz [101, 102].

Both types of GRBs are expected to result in the formation of a black hole with a rapidly-rotating accretion

disk. Instabilities in the accretion disk can emit significant energy in gravitational waves, perhaps 10−2M�c2.

The so-called bar mode instability, in the l = 2, m = 2 non-axisymmetric mode, is an optimistic model for

gravitational wave emission. Typical frequencies are between 500 Hz and 2 kHz [66, 80]. An accretion disk

that cools rapidly enough to become self-gravitating may fragment into one or more smaller bodies and generate

an inspiral-like signal that persists to higher frequencies [105]. The micro structure of GRB light curves may

be explained by precession of the accretion disk and the jet due to the Lense-Thirring effect [112] which can

produce gravitational waves up to 1 kHz. Instead of an accretion disk, a torus may form around the black hole

and convert the spin energy of the black hole into gravitational waves in the 1-2 kHz band [134, 135]. Numerical

simulations have produced similar signals [116, 78]. Finally, the infall of matter from a rapidly-rotating accretion

disk could produce long-duration gravitational waves in the 700 Hz–2.4 kHz band [106].

As an alternative to the merger scenario, a fraction of short GRBs could be produced by giant flares from a

local population of soft gamma repeaters (SGRs) which are expected to produce some gravitational wave energy

(. 10−8M�c2) in the 1 kHz range [56, 130, 73, 89].

Although most GRB progenitors will be at distances too large for the resulting gravitational signals to be

detectable by gravitational observatories, it is possible that a few GRBs could be located nearby. Recent studies

indicate the existence of a local population of under-luminous long GRB with an observed rate density approx-

imately 103 greater than the high-luminosity population [123, 86, 85, 46, 137, 72]. GRBs of this kind could be

due to quenched jets or the breakout of relativistic shocks from a CCSN [103].

The LIGO and Virgo collaborations have performed several searches for gravitational waves coincident with

GRBs. Most recently, data from the sixth LIGO science run (S6) and the second and third Virgo science runs

(VSR2 and 3) were examined for generic gravitational wave bursts and for signals from CBCs associated with

GRBs [17]. No signals were detected. In separate analyses, the non-detection of gravitational wave counterparts

for GRB 051103 [16] and GRB 070201 [19], two short GRBs with error boxes overlapping the M81 galaxy at

3.6 Mpc and the Andromeda galaxy at 770 kpc respectively, ruled out the progenitor objects being CBCs in M81
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10−4M"c2 extrapolation
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Fig. 7.— Cumulative redshift distribution F (R) exclusion from
the analysis of 150 GRBs with the GWB search. We exclude
at 90% confidence level cumulative distance distributions which
pass through the region above the black solid curve. We assume
a standard siren sine-Gaussian GWB at 150 Hz with an energy
of EGW = 10−2 M"c2. We extrapolate this exclusion to Ad-
vanced LIGO/Virgo assuming a factor 10 improvement in sensi-
tivity and a factor 5 increase in number of GRB triggers analyzed.
The black dashed curve is the extrapolation assuming the same
standard siren energy of EGW = 10−2 M"c2 and the cyan (gray)
dashed curve assuming a less optimistic standard siren energy of
EGW = 10−4 M"c2 (Ott et al. 2006; Romero et al. 2010). For ref-
erence, the red staircase curve shows the cumulative distribution of
measured redshifts for Swift GRBs (Jakobsson et al. 2006, 2012).

GRB distance distribution models that predict a uniform
local rate density and a more complex dependence at red-
shift > 0.1, as the large redshift part of the distribution
is well beyond the sensitivity of current GW detectors.
The exclusion is then performed in the (F, R) plane. Full
details of the exclusion method are given in Appendix B.

The exclusion for GWBs at 150Hz with EGW =
10−2 M"c2 is shown in Fig. 7, whereas the exclusion
for the CBC model for short GRBs is shown in Fig. 8.
Both exclusions are shown in terms of redshift, where we
assume a flat ΛCDM cosmology with Hubble constant
H0 = 70 km s−1Mpc−1, dark matter content ΩM = 0.27
and dark energy content ΩΛ = 0.73 (Komatsu et al.
2011). The exclusion at low redshift is dictated by the
number of analyzed GRBs and at high redshift by the
typical sensitive range of the search. These exclusions
assume 100% purity of the GRB sample. For purity p
the cumulative distribution should be rescaled by 1/p;
for instance, only one third of our short GRB sample
has a T90 < 2 s. For comparison, each figure also shows
the distribution of measured GRB redshifts, for all Swift
GRBs (Fig. 7) or for all short GRBs (Fig. 8). While the
distribution of GRBs with measured redshifts includes
various observational biases compared to the distribu-
tion of all GRBs detected electromagnetically (and on
which we perform exclusions), it is clear that the exclu-
sions from the current CBC and GWB searches are not
sufficient to put any additional constraint on the nature
of GRBs.

While this search for gravitational wave signals in co-
incidence with observed GRBs was not at the sensitivity
necessary to detect such coincidences, it is interesting
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NS-BH exclusion
NS-NS extrapolation
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Fig. 8.— Cumulative redshift distribution F (R) exclusion from
the analysis of 26 short GRBs with the CBC search. Assuming
that all the analyzed short GRBs are NS–BH mergers (NS–NS
mergers), we exclude at 90% confidence level cumulative distance
distributions which pass through the region above the black solid
curve (cyan solid curve). The dashed curves are the extrapolation
of the solid curves to Advanced LIGO/Virgo, assuming a factor
10 improvement in sensitivity and a factor 5 increase in number
of GRB triggers analyzed. For reference, the red staircase curve
shows the cumulative distribution of measured redshifts for short
GRBs (Dietz 2011).

to consider the chances of detection with the Advanced
LIGO/Virgo detectors (Acernese et al. 2009; Harry et al.
2010), which should become operational in 2015. At their
design sensitivity, these detectors should offer a factor
of 10 improvement in distance sensitivity to both GWB
and CBC signals, dramatically improving the chances to
make a gravitational-wave observation of an electromag-
netically detected GRB.

In Fig. 7 and Fig. 8 we extrapolate the current exclu-
sion curves to the advanced detector era, by assuming
a factor 10 increase in sensitivity of the GW detectors
and a factor 5 increase in the number of GRBs analyzed
(equivalent to approximately 2.5 years of live observing
time at the rate that GRBs are currently being reported).
These extrapolations show that detection is quite possi-
ble in the advanced detector era. Even if a detection is
not made, targeted gravitational wave searches will allow
us to place astrophysically relevant constraints on GRB
population models.

For long GRBs, the Advanced LIGO/Virgo detectors
will be able to test optimistic scenarios for GW emission
– those that produce ∼ 10−2 M"c2 in the most sensitive
frequency band of the detectors. The sensitive range for
these systems will include the local population of sub-
luminous GRBs that produce the low-redshift excess in
Fig. 7. We note, however, that GWB emission with sig-
nificantly lower EGW or at non-optimal frequencies is
unlikely to be detectable.

For short GRBs, a coincident GW detection appears
quite possible. This conclusion is consistent with simple
estimates such as that of Metzger & Berger (2012), who
estimate a coincident observation rate of 3 yr−1 (0.3 yr−1)
for NS–BH systems (NS–NS systems) with the advanced
detectors. The precise rate of occurrence will depend on
the typical masses of the compact objects; we are sen-

Figure 7.1. Comparison of results from previous searches for gravitational wave associated with GRBs and the
observed redshift distribution for GRB progenitors. On the left, we plot lower limits on the distance to 150 GRBs
from a search for unmodeled gravitational wave signals, assuming EGW = 10−2M�c2 in a narrowband signal
around 150 Hz. On the right are lower limits to CBC events associated with 26 short GRBs. The dashed curves
are extrapolations for the advanced detectors, assuming a 10x improvement in sensitivity and a 5x increase in the
number of GRBs analyzed. The red curves are the redshift distributions for Swift GRBs (left: all GRBs, right:
short-hard GRBs). Figure from [17].

or M31 with high confidence1. A summary of recent lower limits on the distance GRB progenitors from LIGO-

Virgo GRB searches is given in Fig. 7.1. In this figure, the exclusion distances set by the searches are compared

to the observed distribution of GRB redshifts. A projection for five years of data from the advanced detectors

indicates that a coincident detection with a short GRB is possible, if short GRBs are generated by BNS or NSBH

mergers.

7.4 Formalism of Coherent Searches

Searches for gravitational waves from GRBs coherently combine the data from widely separated detectors

to increase the significance of a signal and reduce the effect of noise. In this section, we present an outline of

coherent analysis methods, especially in the context of searches for gravitational waves associated with GRBs.

The algorithm that implements these methods is known as X-PIPELINE [127, 141] and it has been used in

searches for unmodeled gravitational wave signals associated with GRBs since 2005 [13, 17, 6]. The coherent

analysis performed by X-PIPELINE assumes that the gravitational signal is short duration, with a peak time

known to withinO(10) minutes and a sky location known to within∼ 20◦. Searches of this kind are referred to as

externally triggered searches, since the event time and sky location are constrained by independent observations.

1These non-detections support the hypothesis that some fraction of short GRBs are due to less energetic events in the nearby universe,
rather than BNS or NSBH signals in distant galaxies.

92



Figure 7.2. Vector space of detector signals for the 3-detector case. The green plane is the space spanned by the
antenna response vectors. Figure from [127].

As shown in Chapter 3, the sensitivity of a Michelson interferometer to gravitational waves is not isotropic,

and the sensitivity of the detector to an event at a given sky location depends on the polarization of the grav-

itational waves. Taken by itself, the data from a single detector cannot distinguish the location of a transient

gravitational wave source on the sky. Furthermore, the large background of glitches in gravitational wave detec-

tors makes it unlikely that a single instrument could distinguish a short-duration event from noise.

These problems can be overcome by analyzing the data from a network of two or more detectors simulta-

neously. Recall our expression for the time-series data from a single detector due to a source at (θ, φ) from

Chapter 3:

d(t, θ, φ) = h+(t)F+(θ, φ) + h×(t)F×(θ, φ) + n(t) . (7.3)

For a network of D gravitational wave detectors, we rewrite the elements of the equation as matrices:

d = Fh + n , (7.4)

where the matrices are given by:



d1(t)

d2(t)

...

dD(t)


=



F+
1 F×1

F+
2 F×2
...

...

F+
D F×D


 h+(t)

h×(t)

 +



n1(t)

n2(t)

...

nD(t)


. (7.5)

The detector antenna factors F+
i and F×i are functions of the ith detector and the sky position of the GRB; recall

Eq. 3.14 and Figs. 3.3 and 3.4.
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We exploit the fixed dimensionality of the signal vector h and the D-dimensionality of the network to con-

struct linear combinations of the data vector d which are sensitive to gravitational waves from the GRB sky

location. In this way we construct a detection statistic that is particularly sensitive to gravitational waves from

the GRB location. Furthermore, we can construct a linear combination of d for which a gravitational wave signal

will cancel. This null vector gives us a powerful method for distinguishing signal from noise. This is illustrated

in Fig. 7.2, for a network of three detectors.

Note that since the detector noise is uncorrelated between detectors, the vector n has an identity covariance

matrix, which is invariant under change of orthonormal basis. In other words, no linear combination of n should

be special.

In the D-dimensional space, a signal h is restricted to the hyperplane defined by the column space of the

matrix of antenna factors, F . This is the plane spanned by the F+ and F× vectors. The unit vectors of the

hyperplane are e+ = F+/|F+| and e× = F×/|F×|. The null vector orthogonal to the (e+, e×) hyperplane

is constructed using the vector cross product, en = e+ × e×. We can measure the content of the data vector d

in each of these directions by taking the dot product, (e(+,×,n) · d).

We will measure our signal strength using the coherent energy, defined for a projection eα as:

Eα = |eα · d|2 =

D∑
i,j=1

eα∗i eαj did
∗
j . (7.6)

We will also make use the incoherent energy:

Iα =

D∑
i=1

|eαi |2|di|2 . (7.7)

For a true gravitational wave signal, the coherent energy for the projections e+ and e× will be much larger than

the coherent energy in the null direction, en, where the contribution of a signal vanishes. For a glitch that occurs

in only one of the detectors, the coherent energy in the null direction en will be roughly equal to the energy in the

(e+, e×) plane. Thus we can distinguish signal from glitches by making a cut on the ratio between the coherent

energy in the e+,× direction and the null direction. In practice, using the ratio of the coherent null energy to the

incoherent null energy is more robust. Examples of how this cut is applied are given in Appendix C.

Using the unit vectors for the two polarizations, we can construct other directions, for example those that

align with left or right circularly polarized gravitational waves:

e� = e+ + ie× ,

e	 = e+ − ie× . (7.8)
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For GRBs, we can assume that we are viewing a rotating system along the axis of angular momentum. The

gravitational radiation from such a system will be circularly polarized, h× = ±ih+. This is especially useful

if the detector network is composed of only two misaligned detectors, i.e. detectors with different values for

F+
i and F×i . In this case the plane formed by F+ and F× spans the space of possible data vectors and there

is no null direction. In order to distinguish signal from noise, we need to make an assumption about the signal

morphology. The assumption of circular polarization is well-motivated by GRB physics and allows us to define

the ‘circular null’ direction as orthogonal to the direction that maximizes the coherent energy:

En© = min(|e� · d|2, |e	 · d|2) . (7.9)

The detection statistic used to rank events is a Bayesian log-likelihood ratio of the probability of circularly

polarized gravitational signal to the probability of pure noise with a prior on signal amplitude. This is called the

‘loghbayesiancirc’ statistic (where ‘h’ indicates the prior on the signal amplitude). The statistic is given by, for

example in the right-circularly-polarized direction:

2L(d| �, σh) =

[ |e� · d|2
1 + 1/(σh|f�|)2

]
− log(1 + σ2

h|f�|2) , (7.10)

where f� is the noise-weighted unit vector in the right-circular-polarization direction, and σh is an amplitude that

corresponds to our prior expectations for a plausible signal. The final statistic is calculated by marginalizing over

σh. A similar expression is calculated using f	. The noise weighting accounts for differences in sensitivities

between the detectors as a function of frequency. A derivation of the statistic is given in Appendix B.

In practice, the detection statistic is calculated using the Fourier transforms of the time-series data from each

detector. The time-frequency maps that are generated by the Fourier transform are projected onto the left and

right circular polarizations; the direction with maximum coherent energy is taken to be the signal direction,

and the direction with minimum coherent energy is the null direction. An example time-frequency map for the

loghbayesiancirc statistic for a simulated gravitational wave signal is given in Fig. 7.3. The signal was added

to live data from the H1 and L1 detectors as a “blind injection”, intended to test the effectiveness of the search

pipelines. Note the chirping shape of the waveform, as the amplitude and frequency increase with time. At high

frequencies (above 250 Hz) the sensitivity of the detectors degrades and the signal is no longer distinguishable

from noise. The simulated waveform corresponds to an NSBH merger about 25 Mpc away. The distance was

chosen to provide a signal with reasonable SNR in the initial detectors, and is quite optimistic when compared

with expectations from astrophysical population studies.

Signal events are distinguished from noise using the ratio of the coherent energy to the incoherent energy, in

the null direction. This is illustrated in Fig. 7.5. In this figure, events that are due to true gravitational signals
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Figure 7.3. Time-frequency map for the ‘loghbayesiancirc’ detection statistic for a simulated gravitation wave
event. The waveform is an NSBH inspiral. The color of each pixel indicates the value of the detection statis-
tic. Adjacent time-frequency pixels that lie in the 99th percentile or larger are used to calculate the total event
significance. For this event the sum of the significant pixels is 126.

Figure 7.4. Energy and incoherent energy in the circular energy plane for an example analysis with the H1-L1
detector network. The x- and y-axes have arbitrary units of non-normalized signal energy. The starred event
is the signal shown in Fig. 7.3. The many hundreds of small crosses indicate background events. Background
events and signal usually have roughly equal energy and incoherent energy in the non-null direction.
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Figure 7.5. Null energy vs. null incoherent energy for an example analysis with the H1-L1 detector network,
in units of non-normalized signal energy. The starred event is the signal shown in Fig. 7.3. The purple dashed
line indicates the threshold for the coherent cut. Events lying below this line are inconsistent with a gravitational
wave signal from the sky location of the GRB and are rejected by the search.

have very little coherent energy in the null direction, and lie above the diagonal. Loud background events, due

to glitches in one detector or another, have roughly the same coherent and incoherent null energy and lie on the

diagonal. In this way we can define coherent cuts which distinguish between signal and noise. The coherent cut

threshold is shown by the dashed purple line. Events lying below this line are inconsistent with a gravitational

signal from the GRB sky location. The cut threshold is tuned independently for each GRB analysis to maximize

the sensitivity to simulated gravitational signals; this is necessary to account for different sky locations, detector

sensitivities, and background distributions, which can vary substantially from one GRB to another. A detailed

description of the coherent cut method used by X-PIPELINE is given in Appendix C.

Data from the detectors surrounding the time of a GRB are divided into an off-source window, which is used

to characterize the background of transient signals around the time of the GRB, and an on-source window, which

is searched for gravitational wave events. To allow for possible gravitational precursors from, for example, the

CCSN associated with long GRBs, the on-source window is [-600,+60] sec around the start time of the gamma-

ray signal observed by a satellite experiment. For very long-lasting GRBs, the on-source window is extended to

include the entire T90 time of the event, defined as the time interval over which 90% of the total background-

subtracted photon counts are observed. The standard off-source window is ±1.5 hours around the time of the

GRB trigger, excluding the on-source window.
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Figure 7.6. Foreground and background event rates for an example GRB analysis. The traces are cumulative
histograms that count the number of events over a particular significance threshold. The significance of each
event is the value of the detection statistic given in Eq. 7.10. Traces for the on-source (foreground) and off-
source (background) event distributions are shown, before and after the coherent cuts are applied. The on-source
has an outlier, with a significance of about 120. This is the NSBH signal shown in Fig. 7.3.

To estimate the rate of background events, the analysis of the off-source data is repeated many hundreds of

times with unphysical time-slides of >3 sec applied to the data from one of the detectors. This technique is used

to estimate the probability that random noise fluctuations in the detectors may appear to be a true gravitational

wave signal in the on-source window. A typical search with X-PIPELINE will perform O(103) time-slides on

the data in the off-source window, enough to quantify the rate of background events to a false-alarm rate (FAR)

below 10−6 Hz. Repeating the analysis for hundreds of time-slides is the most computationally intensive portion

of the search.

To determine if a gravitational wave is present in the data, the loudest on-source event is compared to the

distribution of off-source events. The false-alarm probability (FAP), or p-value of this event is defined as the

fraction of off-source events with equal or greater significance. This is an empirical measure of the probability

of obtaining such an event in the on-source under the null hypothesis. Events with p < 0.01 are followed up with

detailed investigations to determine if the events can be associated with noise artefacts in the detectors.

Examples of the on-source and off-source event distributions for an X-PIPELINE analysis are shown in

Fig. 7.6. This analysis contained the event shown in Fig. 7.3 in its on-source region. The blue trace is the

distribution of background events before the coherent cuts are applied. Many of the background events are de-

termined to be inconsistent with the signal model and are cut, leaving behind the red trace. The purple trace is
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the distribution of on-source events following the coherent cuts. The significance of the loudest on-source event

is 126, and no event in the background (red trace) has a significance above 90. Since the foreground event has

a significance larger than all of the estimated background, we place an upper limit on its p-value, using the total

area under the off-source curve, after vetoing: p . 10−4.

To claim evidence for a detection, the analysis must estimate a sufficient number of background trials to

estimate the p-value to less than 3σ, or 1/370. To claim a detection at the 5σ threshold we would need to

analyze O(106) background trials. Due to the computational cost of the analysis, the standard search performs

a background analysis sufficient for p-value estimation out to 3σ. GRBs with a significant outlying event are

followed up with a full background estimation out to the 5σ level.

For a search that includes many GRBs analyzed together we must account for the trials factor, sometimes

called the look-elsewhere effect. This is a multiplicative factor, equal to the number of GRBs in the search, that

is applied to the individual p-values returned by the collection of individual, independent searches. To quickly

motivate the trials factor, note that if p-values are randomly drawn from a uniform distribution, and 100 GRBs are

analyzed in a search, the probability to measure a p = 0.01 in at least one of the individual analyses is quite high.

This we must weight the significance of any one event by the probability to observe an event of that significance

is a set of N independent searches.

If no single GRB analysis contains a significant event, the set of all GRBs in the search can be tested for an

excess of sub-threshold events. This is referred to as the weighted binomial test, described in the appendix of

[17]. The weighted binomial test calculates the probability to observe the collection of p-values returned by a

population of independent analyses, while de-weighting the significance of GRBs whose analysis had relatively

poor sensitivity to gravitational waves. Since the test collects the results from all of the GRBs analyzed in the

search and returns a single p-value describing the significance of the foreground events, it usually presented as

the final, one-line summary of the significance of the search results.

7.5 Sky Localization Uncertainty

The sky localizations of GRBs detected by the Fermi GBM can have uncertainty regions covering hundreds

of square degrees depending on the gamma-ray flux and energy spectrum. In a coherent search for gravitational

waves associated with GRBs, performing the analysis using an incorrect sky location can reduce the significance

of a signal in two ways.

First, the analysis will incorrectly estimate the sensitivity of each detector to gravitational waves from the sky

location of the GRB. This can result in a loss of coherent signal energy when the time-frequency maps from each

detector are combined. Over most of the sky, the antenna factors vary slowly, and the loss of signal is of order a
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Figure 7.7. Event significance as a function of phase shift error between two detectors, for three sets of narrow-
band signals with different central frequencies. When the error in the time shift between detectors corresponds
to a multiple of 180◦, the coherent energy is essentially nulled, and the signal will not be detected by the search.
This plot was generated using a search grid of a single point and scattering the simulated waveforms widely
across the sky.

few percent. The effect of this small variation on the analysis has been checked with a variety of empirical tests,

and we conclude that this effect is not large enough to alter the results of our search.

Second, and more significantly, an error in the sky location will lead to an incorrect time-shift of the data when

synchronizing the arrival time of a gravitational signal across detectors. For pairs of ground-based detectors the

difference in arrival time for a gravitational wave signal is O(10) milliseconds, and an error in the sky location

of a few degrees could introduce incorrect synchronizations of a millisecond or more. For waveforms with

frequency content above 1 kHz this results in the misalignment of the gravitational signal by several periods,

and when the data vectors are combined the coherent signal energy will be diminished. In the worst case,

the waveform will be shifted by a half-period between the detectors and the signal will cancel entirely in the

coherent summation. An illustration of signal loss due to a mismatch between the searched sky location and the

event location is shown in Fig. 7.7.

The standard solution in gravitational wave searches is to repeat the analysis over a discrete grid of sky

positions covering the uncertainty region. The grid step is chosen such that the timing synchronization error

between any position in the GRB error box and the nearest grid point is less than 25% of the period for the

highest-frequency gravitational wave signals included in the search. The time delay between the detectors is a

function of sky position, but for simplicity the grid step size is held constant across the search area, at the smallest
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step size required within the uncertainty region. For uncertainty regions with radii ofO(10) degrees the variation

in the magnitude of the time-of-arrival correction is not large enough to warrant a variable grid spacing.

For two detectors separated by a distance d, the difference in time of arrival of the gravitational wave is:

t =
d cos θ

c
, (7.11)

where θ is the angle between the inter-detector baseline and the line-of-sight to the GRB and c is the speed of

light. Call α the value for 25% of a full period for the highest frequency included in the search. We require that

the maximum time delay error dt is less than α for every point within the uncertainty region. Thus the spacing

dθ between grid points is:

|dθ| ≤ 2c

d sin θ
α . (7.12)

Previous GRB searches with LIGO and Virgo data have used regular grids of concentric circles around the

best estimate of the source location, covering at least 95% of the sky location probability distribution. For the

Fermi GBM, the 68% containment radius is typically 2◦ − 3◦ due to statistical effects, but the localizations have

additional systematic errors of several degrees. As a result, the 95% containment region can cover hundreds of

square degrees, and a search for gravitational signals with frequencies larger than O(100) Hz will require many

hundreds of search points. Since the search is essentially repeated for every point in the grid, the computational

costs can be unrealistic, even for computing clusters with thousands of CPU cores.

For a two-detector network, the problem can be simplified. Within the GRB error box, the time shift between

the detectors will only change across one dimension. To minimize the computational cost of the search, we are

free to cover the search region with a linear search grid, arranged parallel to the maximum gradient of change

in the time-of-arrival between detectors. In the case of a 2-detector network, this linear pattern is sufficient

to capture the dominant source of coherent energy variability as the likelihood is calculated across the GRB

uncertainty region. A comparison of the circular and linear search grids for the Fermi event GRB 080906B is

shown in Fig. 7.8.

We verified the effectiveness of the linear search grid by analyzing a handful of GRBs using both the linear

and circular tiling. The GRBs in our test sample were chosen to represent a variety of grid densities, detector

antenna responses, and sizes of the 95% containment region. The results for the two methods were nearly

identical. For simulated gravitational signals, the minimum amplitude for detection was the same for each method

within a few percent. Furthermore, the analysis using the linear grid was completed in a fraction of the time

required for the circular grid, and typically requiredO(103) or fewer CPU hours. Using computing clusters with

thousands of CPU cores, it was possible to analyze some GRBs localized by the GBM in less than three hours.
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Figure 7.8. Example linear and circular grids for a search for gravitational wave signals up to 1792 Hz. The
localization for the Fermi GBM event GRB 080906B is shown. The linear search grid contains 41 sky positions,
arranged in the direction of the gradient of the time shift been the H2 and G1 detectors. The circular grid contains
1324 sky positions and would require several days to analyze on a massively parallel computing cluster.

7.6 A Search With Data From GEO 600

We have applied the linear grid technique in a search for gravitational waves associated with 152 GRBs

detected between June 2006 and September 2011. These GRB events occurred during times when the GEO 600

detector in Hannover, Germany was operating in coincidence with one other kilometer-scale detector. Previous

searches for gravitational waves associated with GRBs focused on the best sensitivity region of the kilometer-

scale detectors, typically around 100-200 Hz. GEO 600 reaches its best sensitivity above 500 Hz, and for searches

using GEO data it is sensible to extend the search bandwidth above 1 kHz to explore the entire sensitive band

(see Fig. 7.9). The density of search grid points required by this frequency range would have made a circular

search pattern computationally infeasible; this was the motivation behind the development of the linear search

grid.

The times and localizations of the GRB events were obtained from the Gamma-ray burst Coordinates Net-

work (GCN) [36], supplemented by the Swift and Fermi on-line catalogues 2, as well as the published Fermi

four-year catalogue [138]. Most of the GRBs in our sample were detected by Swift and Fermi; a few of the GRBs

were detected by other space borne experiments such as INTEGRAL [147], AGILE [58], or MAXI [88].

We analyzed GRBs which were observed when GEO 600 plus one other observatory was taking science-

quality data. For the LIGO and Virgo interferometers, science mode is a rigorous definition, and identifies

2http://heasarc.gsfc.nasa.gov/W3Browse/fermi/fermigbrst.html, http://swift.gsfc.nasa.gov/archive/grb table
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Figure 7.9. Demonstrative noise spectra for the detectors used in The GEO-GRBs search. GEO’s best sensitivity
is around 500 Hz in the early epoch, and above 1 kHz in the late epoch when quantum-noise squeezing was
applied to reduce the shot noise [14].

times when the detector configuration is stable and the interferometer is operating in a resonant, low-noise state.

GEO 600 has no strictly-defined science mode, and collects data on an opportunistic basis between commission-

ing activities.

In our search, we made no distinction between short GRBs and long GRBs, and the analysis was performed

without regard to the observed GRB fluence or redshift (if known). As part of our data quality checks, we

excluded segments of the data which were flagged as having poor noise quality, and we only analyzed GRBs

with sufficient good-quality data around the time of the event. We also discarded GRBs that were determined to

have exceptionally high rates of background events or exceptionally poor sensitivity to gravitational waves from

the sky location of the GRB. This, for example, can result from environmental or instrumental noise at the time

of the GRB (identified using methods described in [38, 8, 10, 120, 75]), or a GRB sky location that includes one

of the sensitivity null points of the detectors.

In addition to these sources of noise, the sensitivity of the GEO 600 detector can change by 20% or more at

frequencies >1 kHz, depending on whether squeezed light states are being injected. A change in sensitivity of

this magnitude may bias the background estimation if it occurs partway through the off-source window around a

GRB. In this analysis, no GRB off-source (or on-source) window includes time when GEO 600 changed from a

squeezing to a non-squeezing state, or vice versa. As final check on data quality, we inspected the detector noise
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characteristics at the time of each GRB by hand, and verified that the sensitivity of the detectors in the off-source

window agreed with the on-source window. In this way were confident that the background estimation was not

biased compared with the foreground.

In the epoch of our search (Feb 4th 2006 to Nov 3rd 2011), there were 152 GRBs with sufficient science data

to analyze. For 130 GRBs had good sensitivity to potential gravitational wave signals based on the results of the

background estimation. For each of these GRBs we calculated the p-value for the loudest event in the on-source.

Three GRBs in our sample had on-source events with p < 0.01:

• GRB 060502A, a Swift BAT detection with T90 = 28.4 sec and an observed redshift of z = 1.51 [52], was

analyzed using data from the L1 and G1 detectors. There were three significant events in the on-source

window. An examination of the data quality around the time of the GRB revealed non-stationary noise in

the L1 detector associated with ground motion due to a magnitude 5.0 earthquake in Costa Rica. All three

on-source events occurred during a segment of time that was identified a priori as likely to experience an

increased rate of transient signals due to elevated seismic noise. Since 35% of the on-source window for

this GRB was flagged as having elevated ground motion, we vetoed the three events and do not include

this GRB in the cumulative results.

• GRB 080816A, a Fermi GBM detection with T90 = 4.6 sec [138], was analyzed using data from the

H2 and G1 detectors. There was one significant on-source event, with p = 0.001. A signal processing

algorithm revealed multiple instrumental channels in the H2 detector with excess noise at the time of the

event. The nature of the instrumental noise is not understood, but the signal in the gravitational wave

channel is unlikely to be of astrophysical origin. No redshift observations are available for this GRB.

• GRB 090712A, a Swift BAT detection with T90 = 145 sec [138], was analyzed using data from the G1 and

V1 detectors. There was one significant on-source event, with p = 0.003. While we found no plausible

instrumental or environmental cause for the signal, the observed p-value for this GRB is not significant in

a data set containing 129 GRBs. No redshift observations are available for this GRB.

The distribution of p-values for the most significant event in the on-source window for the 129 GRBs is

shown in Fig. 7.10. To test the sample of GRBs for a population of sub-threshold signals, we used the weighted

binomial test to check that the distribution of p-values was compatible with the uniform distribution expected

from the null hypothesis. The test yielded a background probability of 0.193, indicating that the distribution was

consistent with no gravitational events being present. An illustration of the statistical significance of our observed

p-value distribution is shown in Fig. 7.11, where we compare our results to a collection of pseudo-experiments.

For 129 events we select a random number between zero and 1, following a uniform distribution. This is repeated
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Figure 7.10. Distribution of p-values for the loudest event in each of the 129 GRBs analyzed in the search.

for 500 trials and plotted in the gray points. The observed p-value distribution is completely contained by the

distribution of p-values from the pseudo-experiments.

As part of the analysis, we measured the sensitivity of the search to simulated gravitational wave signals, as

a function of amplitude. We simulated gravitational waves from GRBs using circularly polarized sine-Gaussians

with quality factor Q = 9 (recall Eq. 2.44). To account for errors in the detector calibration, timing, and the

GRB sky location, we jittered the simulated waveforms in amplitude, phase, and central time before adding

them to the detection data. The magnitude of the jitter was Gaussian-distributed with variance proportional to

the calibration uncertainties of each detector. For GRBs detected by the Fermi GBM, the sky positions of the

simulated waveforms were distributed according to the systematic uncertainties of the GBM detector [49]. This

sky position jittering was performed across the entire uncertainty region, and was not restricted to the axis of

the linear search grid. For each GRB analysis, several hundred simulated signals were generated for a range of

amplitudes, and the overall detection efficiency was measured using the entire population of jittered waveforms.

In this way we estimated the search sensitivity and marginalized over the uncertainty in detector calibration and

the GRB sky localization.

For each GRB we calculated the total amplitude in gravitational wave-induced strain that would result in a

detection for 90% of the simulated signals. In terms of gravitational wave strain amplitude hrss, the median 90%

upper limit for our GRB sample was 2.8×10−21 Hz−1/2 for circularly-polarized sine-Gaussian signals at 500 Hz

and 3.4 × 10−21 Hz−1/2 at 1 kHz. The search sensitivity to signals below 300 Hz was limited by the sensitivity
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Figure 7.11. Illustration of possible p-value distributions using 500 pseudo-experiments, each with 129 GRBs.
The results from the search, in red, fall within the distribution of results from the pseudo-experiments, in grey.

Figure 7.12. Distribution of upper limits on strain amplitude for gravitational wave signals from the 129 GRBs
analyzed in the GEO-GRBs search. The simulated gravitational wave signals are Q = 9 sine-Gaussians with
central frequencies 500 Hz (red) and 1 kHz (black). The upper limits have been marginalized over detector
calibration uncertainties and GRB sky localization uncertainty. Figure from [11].
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Figure 7.13. Distribution of lower limits on distance to gravitational wave signals from the GRBs in the search. A
standard gravitational wave emission energy of 10−2M� is assumed, for sine-Gaussian waveforms with central
frequencies 500 Hz (red) and 1 kHz (black). Figure from [11].

of the GEO 600 detector and by the choice of coherent cut thresholds, which were tuned to minimize the effect

of nonstationary noise in GEO at low frequencies. In general low-frequency signals were not detectable by the

search, including the inspiral waveform from a BNS or NSBH merger. Our upper limits on gravitational wave

strain at 500 Hz and 1 kHz for the 129 GRBs are shown in Fig. 7.12.

If we assume a fixed gravitational emission energy, we can use the upper limits on hrss to calculate lower

limits on the distance to the GRB, using Eq. 2.46:

Dexcl =

√
5

2

√
G

π2 c3

√
EGW

f0 hrss
. (7.13)

Here, EGW is the energy released by the GRB central engine in gravitational waves, G is Newton’s constant,

f0 is the central frequency of the rigid rotator model, and hrss is the strain amplitude upper limit observed

by the search. Recall that the factor of
√

5/2 arises from the beamed gravitational emission from a rotating

system, viewed on-axis. The lower limit on the distance to a GRB, using an assumption of the energy emitted in

gravitational waves, is referred to as the GRB exclusion distance.

The distribution of exclusion distances for waveforms with central frequencies of 500 Hz and 1 kHz for the

129 GRBs is shown in Fig. 7.13. The median exclusion distance for the 500 Hz and 1 kHz waveforms are 0.8 Mpc

and 0.3 Mpc respectively, where we have assumed the GRB central engine releases EGW = 10−2 M�c2 total

energy in gravitational waves. The distance limits scale with the square root of the assumed emission energy,
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Figure 7.14. Upper limits on gravitational wave strain amplitude for sine-Gaussian waveforms at 500 Hz and
1 kHz, for Swift and Fermi events. The upper limits are largely the same; this indicates that the sky localization
of the Fermi events (and the use of the linear search grid) did not affect the sensitivity of the search.

E
1/2
GW , and for a pessimistic assumption of EGW = 10−8 M�c2 the median exclusion distance becomes 0.8 kpc

at 500 Hz. For comparison, the GRB in our sample with the smallest observed redshift is GRB 080905A, with

z = 0.1218 [113] or D ' 590 Mpc [150].

As a check to verify that the linear grids did not degrade the sensitivity, we examined the upper limits from

the sample of Swift and Fermi GRBs separately. The results are shown in Fig. 7.14. There is no significant

difference between the populations.

Finally, we verified that the search sensitivity was limited by the sensitivities of the detectors the GRB sky

locations. Excursions from this hypothesis might indicate problems with the coherent cut thresholds or partic-

ularly bad distributions of background noise. The results of the check are shown in Fig. 7.15, which plots the

ratio of the upper limits from each of the 129 GRB analyses to the sensitivity of the least-sensitive detector. The

results are plotted as a function of the ratio of the sensitivities of the two detectors in the search. When the two

detectors are well-matched, the upper limits are a a factor of 6-8 above the detector noise floor, corresponding to a

detection threshold SNR of about 8-12. This detection threshold SNR is in good agreement with past experience

from gravitational wave searches, indicating that the sensitivity achieved by the search was in agreement with

reasonable expectations, given the sensitivity of the detectors. As the detector sensitivities diverge, the upper

limits of the search approach the level of the noise floor in the least sensitive detector.
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Figure 7.15. Ratio of upper limits on gravitational wave strain amplitude to the least sensitive detector, as a
function of the ratio of detector sensitivities.

7.7 Sky Localization for Fermi-GBM Events

One of the primary goals of gravitational wave searches is the prompt localization of the source sky location

for follow-ups by electromagnetic (EM) astronomers. Currently, very few GRBs detected by the Fermi GBM are

examined for optical counterparts, due to the telescope resources that are required to search an uncertainty region

of hundreds of square degrees. The detection of a gravitational wave signal associated with a GRB will be of

tremendous interest to the astronomical community, and any improvement of the GBM localization can increase

the chances that astronomers will detect an optical, radio, or X-ray counterpart.

If a gravitational wave signal is detected in the on-source window, X-PIPELINE can localize the source to

within a few degrees along the axis of the linear grid, depending on the frequency content of the signal and its

duration. The reconstructed sky location is the point on the search grid that maximizes the coherent energy of

the signal. For a search using data from two widely-separated detectors, the localization using the gravitational

wave signal is limited to an annulus on the sky encircling the line connecting the two detectors [4]. In principle,

this localization cannot be improved in the direction perpendicular to the search grid. A hypothetical localization

by the linear grid for a typical Fermi GBM event is illustrated in Fig. 7.16.

For searches using data from three or more widely-separated detectors, a gravitational wave signal can be

localized in both dimensions, and in this case the computational cost of the full circular tiling may be worthwhile.

Efforts to characterize X-PIPELINE’s ability to localize signals using three or more detectors are ongoing.

We characterized X-PIPELINE’s localization errors using a linear search grid for a handful of GRBs. A

typical result is given in Fig. 7.17, for an analysis with the H1 and V1 detectors. We plot the observed errors
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Figure 7.16. Sky location reconstruction with the linear grid. Figure from [11]. The true GRB location is marked
by the star. The red dot is the sky localization from the Fermi GBM, and the black circle illustrates a typical 95%
containment region around the GBM localization. A GRB search with X-PIPELINE could further localize a
detected signal along the linear search grid, with a localization uncertainty illustrated by the grey band.

for 600 simulated short-duration gravitational wave signals with central frequencies of 150 Hz and 1.5 kHz in a

cumulative histogram. High-frequency signals have better localizations, due to larger sensitivity to time delays

as the sky position changes across the grid. For signals at 1.5 kHz, 95% of the simulations were reconstructed to

less than 2.5◦ along the axis of the linear grid. This provides an empirical measurement of the 2σ uncertainty in

X-PIPELINE’s localization.

The usefulness of improved GRB localizations using coincident gravitational wave detections is limited, but

important. One of the primary science goals of the advanced LIGO and Virgo instruments is an independent

measurement of the Hubble constant, using BNS mergers to directly measure the source luminosity distance

(DL) and redshift (z). Recall that the Hubble constant is given by:

H0 = c
z

DL
(7.14)

for z << 1. The waveform of a BNS merger can be parametrized in terms of the chirp mass, defined as a

function of the masses of the binary system m1 and m2:

M =
(m1m2)3/5

(m1 +m2)1/5
. (7.15)
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Figure 7.17. Accuracy of sky localization for various waveforms, for the H1-V1 detector network in S6 noise.
The first four waveforms are Q=9 sine-Gaussians with the central frequencies given in the legend. High-
frequency signals can be localized to roughly 1◦ in the direction parallel to the linear grid. Waveforms from
CBCs are longer-duration and can be localized to less than 1◦.

To first order, the phase evolution of the waveform and the absolute amplitude are determined by the chirp mass.

For this reason, BNS inspirals are sometimes called standard sirens: the absolute amplitude of the signal can be

constrained by the signal itself. The luminosity distance is then directly calculated from the observed amplitude.

There are two challenges to this approach, which make a direct calculation of the Hubble constant difficult

without some assumptions about the BNS system. First, the phase evolution (and thus the chirp mass) of the

waveform is degenerate with the redshift of the source, and more highly redshifted systems will appear to have

higher mass. Second, the observed amplitude of the waveform is inversely proportional to the inclination of

the binary system, and systems that are tilted with respect to the line of sight will appear dimmer. A variety of

solutions to these challenges have been proposed to enable a measurement of the Hubble constant from BNS

detections alone, for example the source redshift can be constrained by galaxy distributions from catalogs [107]

or the chirp mass can be assumed to follow the distribution of known neutron star masses [132]. Each of these

solutions relies on assumptions of the source population which add uncertainty to the overall measurement.

These assumptions can be avoided if a population of BNS inspirals is detected in coincidence with short

GRBs. In this case, the mass/redshift degeneracy is broken using observations of the GRB host galaxy, and the

distance/inclination degeneracy is broken by assuming a BNS associated with a GRB is viewed nearly on-axis

(ι ' 0). Nissanke et al. have shown that a measurement of H0 to better than 10% accuracy can be made with as

few as twenty coincident detections [98].
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The crucial step in this method is the localization of the source host galaxy, which requires an observation

of the GRB afterglow. A localization with X-PIPELINE could significantly improve the chances for a detection

and ultimately a measurement of H0. Targeted searches like X-PIPELINE can have sensitivity up to two times

better than the equivalent all-sky search [141], and while the analysis has greater latency than realtime all-sky

searches, the sensitivity improvement from a targeted search could make the difference between a missed signal

and a detection candidate. In principle, a gravitational wave signal detected by X-PIPELINE could reduce the

localization uncertainty from the Fermi GBM within a few hours of the GRB detection, quickly enough that

electromagnetic astronomers could detect an optical afterglow.

112



CHAPTER 8

CONCLUSION

If we do meet again, why, we shall smile;
If not, why then this parting was well made.

This thesis has endeavored to cover the broad field of experimental gravitational-wave astrophysics, from

instrumentation, to detector characterization, and finally data analysis.

In the coming years, the advanced LIGO and Virgo instruments will begin to take data at unprecedented

sensitivity. In Fig. 8.1 we visualize the expected number of detections for a two-detector network with a given

average sensitivity to BNS mergers, assuming the rate density predictions in Ref. [12]. The initial detector

observing runs, labeled as ‘S5+S6’, were not expected to make any detections, even for the most optimistic

merger rates. The second observing run, expected to start in September 2016 and last six months, could provide

the first detections if the ‘best guess’ rate estimates are true. As we pointed out in Chapter 7, these ‘best guess’

rates are in agreement with the rate of short GRBs, which are presumed to be due to BNS and NSBH mergers.

Despite this optimistic future, we must keep in mind that advanced LIGO is a detection machine. Even with

optimistic rates, the SNR of BNS events in the aLIGO detectors will generally be between ten and thirty, and

SNRs greater than forty are unlikely. These signals will be too faint to constrain the sort of fundamental questions

these detectors were built to answer. For example, measurements of the neutron star equation of state require

high-SNR signals, either to quantify the tidal disruption of the stars in the final orbits before the plunge, or detect

ringing of the body modes of the hyper-massive neutron star that results from the merger.

Another example: constraining the mechanism for core-collapse supernovae requires a CCSN detection.

Models of gravitational wave emission from CCSN are not optimistic, and advanced LIGO is likely not sensitive

enough to detect a CCSN signal unless the event is within the Milky Way. To increase the probability of a

detection to better than one per century the instruments must be upgraded to detect signals beyond the Local

Group.

Finally, gravitational waves from BNS mergers could provide an independent measure of the Hubble expan-

sion, if the distance-inclination and mass-redshift degeneracies can be broken (see the discussion in Chapter 7).
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Figure 8.1. Anticipated number of BNS detections for proposed advanced LIGO observing runs. The average
detector sensitivity to BNS mergers is expressed in megaparsecs (x-axis). The expected number of detected
signals is calculated using estimates of the rate density for BNS mergers, for observing runs of different sensitivity
and duration. The sensitive volume is given by the cube of the value on the x-axis, and the duration of the
observing run is given in the legend. Data points are the expected number of events for the most likely rate
derived from population synthesis models and extrapolation from the known population of BNS systems. Error
bars indicate the range of possible rates consistent with observation, which is quite large. The dashed line
indicates the threshold at which the probability for at least one detection crosses 50%.
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Both of these can be accomplished if the gravitational wave signal is associated with a gamma-ray burst. The

beaming angle for short GRBs implies the rate of coincident detections with the advanced gravitational obser-

vatories will be very small, perhaps one in five years. Without a significant upgrade in sensitivity it will be

challenging to collect a large population of coincident detections.

The prospects for Advanced LIGO are bright, but the true discoveries will be made by the next generation –

of detectors, and of grad students.
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APPENDIX A

NOTES ON AMPLITUDE SPECTRAL DENSITY

In this appendix we discuss the calculation of the amplitude spectral density for a discrete time-series signal,

and present the general expression for the signal-to-noise ratio in terms of the ASD. We conclude with a discus-

sion of the statistical distribution of the ASD for ideal Gaussian noise and present some extended results from a

study of the noise during the LIGO S6 science run.

A.1 Amplitude Spectral Density

Let us say we have a discrete time-series signal h with sample rate Fs (measured in Hz) and duration T

(measured in seconds). The total number of samples is N = Fs · T . The Fourier transform of h will have

frequency resolution dF = 1/T (measured in Hz) and a Nyquist frequency of Fs/2 (again, in Hz). Remember

the rules of Fourier transforms: the result will have values for both positive and negative frequencies. Thus, our

DFT of h will have Fs/(2 ∗ dF ) = Fs · T/2 samples from f = 0 to f = Fs/2, and again from f = 0 to

f = −Fs/2. So the total number of samples in the Fourier transform will be Fs · T = N . This is equal to the

number of samples in the time series; all the information in the original data is preserved.

We can write this down in a more explicit analytical form. Recall that the Fourier transform and inverse

Fourier transform for continuous, infinite signals are given by:

H̃(f) =

∫ ∞
−∞

h(t)e−2πift dt h(t) =

∫ ∞
−∞

H̃(f)e2πift df . (A.1)

We convert the continuous time-series h(t) to a discrete time-series hn:

h(t) ⇒ hn, n = 0...N − 1, N = Fs · T . (A.2)

Frequency-domain data are written like so:

H̃(f) ⇒ H̃k, k = 0...N − 1 . (A.3)
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The Discrete Fourier Transform (DFT) is then defined as:

H̃k =

N−1∑
n=0

hne−2πikn/N hn =
1

N

N−1∑
k=0

H̃ke2πikn/N . (A.4)

We normalize the Fourier components by the sampling frequency, in Hz. This will give us a set of numbers

which have units [signal]/Hz, where [signal] stands for whatever units the initial timeseries was measured in –

meters, volts, or (as in the case of strain data from LIGO) unitless. Also we can use only the magnitude of the

complex numbers and drop the phase information. This is done like so:

h̃k = |H̃k|/Fs . (A.5)

We now convert the normalized Fourier components h̃k into the power spectral density (PSD). In the strictest

mathematical sense, the PSD of a time series x(t) is the Fourier transform of the expectation value of the auto-

correlation of x(t):

G(f) =

∫ ∞
−∞

Rx(τ)e−2πfτdτ , (A.6)

where

Rx(τ) = 〈x(t) ∗ x(t− τ)〉 = lim
T→∞

1

T

∫ T

0

x(t)x(t− τ)dτ , (A.7)

and the angle brackets indicate the expectation value, or average value. This is a statement of the Weiner-Khinchin

theorem. Consider, for a moment, what this relationship means: if the PSD of a signal is a delta function, the

autocorrelation function will be constant in time, and vice versa. Signals which are correlated in time will have

structure in the frequency domain.

For our purposes, we can use a simpler definition for the PSD, which can be derived from the Weiner-

Khinchin definition by taking τ = 0 and using Parseval’s theorem. We say:

G(f) = lim
T→∞

1

T
〈|h̃(f)|2〉 , (A.8)

where h̃(f) are the normalized Fourier components, and 〈|h̃(f)|2〉 denotes the expectation value for the square

of each of our Fourier components h̃(f). Here, the PSD is defined as an average of the magnitude squared of the

Fourier coefficients.

Note that since h̃(f) has units [signal]/Hz, and 1/T has units of Hz, the PSD has units of [signal]2/Hz. The

power spectral density is the mean square amplitude per hertz of bandwidth, as a function of frequency. Put

another way, the PSD is a measurement of the power of the signal in each frequency bin, normalized by the
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bandwidth of the frequency bin – it is the the expected energy spectral density per unit time. The bandwidth

of each frequency bin is determined by the duration of the FFT, BW = dF = 1/T . The quantity 1/T tells

you how narrowly you can measure signal frequency; longer duration FFTs will be able to discern narrower

frequency characteristics. (But: longer FFTs will be less sensitive to short-duration signals; there is a trade-off!)

The PSD has positive and negative frequency information; we call this the two-sided power spectral density.

It’s more natural to restrict ourselves to the positive frequencies. For a real input h(t), the negative frequency

values will have the same magnitude as their positive frequency counterparts: h̃(f) = −h̃(−f). We can ignore

the negative frequency bins and express the same information if we multiply the positive frequencies by a factor

of two. The one-sided PSD is typically written as S(f):

S(f) = 2G(f) , f > 0 . (A.9)

From here, we calculate the one-sided amplitude spectral density (ASD) of the data, which is just the square root

of the PSD. Note the units: 1/
√

Hz. The ASD is a density: it represents the root mean square (rms) amplitude of

the signal in each frequency bin, normalized by the square-root of the width of the bin (the bandwidth). To get

the true rms amplitude for each frequency component, we multiply the ASD by
√

1/T , the width of each bin,

which has units sqrt[Hz]. The result is known as the amplitude spectrum.

An important quantity in data analysis is the signal-to-noise ratio, or SNR, usually written as ρ. To calculate

the SNR, we take the ratio of a signal PSD (G(f)) with the PSD of the noise (Gn(f)), and integrate over all

frequencies. In integral form (for continuous signals) this looks like:

ρ2 =

∫ ∞
−∞

G(f)

Gn(f)
df = 2

∫ ∞
0

G(f)

Gn(f)
df = 2

∫ ∞
0

h̃∗(f)h̃(f)

Gn(f)
df . (A.10)

Note that since ρ2 is the ratio of PSDs, then the SNR itself is given by the ratio of ASDs. This leads to a helpful

rule for narrowband signals: the SNR for a narrowband signal (such as a low-Q sine-Gaussian waveform as was

used in the GRB search in Chapter 7) is approximately
√

2 times the ratio of the ASD of the signal to the ASD

of the noise. For a narrowband signal, the ASD at the central frequency is given by hrss, the quantity we derived

in Chapter 2.

A.2 Statistics of Stationary Gaussian Noise

Ideally, the sensitivity of gravitational wave detectors is limited by a collection of stationary Gaussian pro-

cesses with different frequency characteristics. The combination of these Gaussian noise sources produces the
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familiar sensitivity curve when we calculate the ASD of the strain sensitivity of the detectors, for example

Fig. 5.5.

If the noise is truly Gaussian and stationary, we can make quantitative predictions for the statistical behavior

of each frequency bin in the PSD and ASD. From Eq. A.8 we see that the PSD is the magnitude of the Fourier

components of the time-series data. The Fourier components are complex numbers, h̃(f) = x + iy, and if

the noise is Gaussian the real and imaginary part of h̃(f) will be independent, identically distributed Gaussian

random variables with zero mean and variance given by σ2. In general the variance will be a function of frequency

The PSD is the quadrature sum of the real and imaginary parts of the Fourier terms:

S(f) = x(f)2 + y(f)2 , x = Re[h̃(f)] , y = Im[h̃(f)] . (A.11)

A random variable constructed from the quadrature sum of two i.i.d. Gaussian random variables with variance σ2

follows a Gamma distribution with a shape parameter k = 1 and scale parameter θ = 2σ2. (This is also known

as an exponential distribution with a rate parameter λ = 1/θ.) An important property of Gamma distributions of

this type, Γ(k = 1, θ = 2σ2), is that their mean and standard deviation are both equal to
√

2σ. This is used to

construct the so-called Rayleigh statistic for a PSD, which is the ratio of the standard deviation in each frequency

bin to the mean value of that bin,

R = σ/µ . (A.12)

For Gaussian noise the Rayleigh statistic is equal to one. Deviations from unity can be used to study the noise

characteristics [128]. R > 1 indicates variance in the noise larger than expected from Gaussian processes alone

(i.e., the presence of glitches), and R < 1 indicates coherent variation in the noise (for example, a mechanical

resonance with constant amplitude).

There is a minor but common misconception that each frequency bin of the PSD of Gaussian data should

follow a Poisson distribution. In a strict (pedantic?) sense this is not correct, since a Poisson distribution is

defined only for discrete values. The correct description for the PSD of Gaussian noise is the continuous Gamma

distribution. Importantly, the Rayleigh statistic can be calculated for both discrete Poisson distributions and for

the Γ(k = 1, θ = 2σ2) distribution, and so noise studies that assume the PSD follows a Poisson distribution are

nonetheless correct.

The ASD of Gaussian noise is the square root of a Gamma-distributed random variable:

√
S(f) =

√
x(f)2 + y(f)2 . (A.13)
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Figure A.1. Distributions of ASD values for three frequency bins in L1 data from S6B. The deviation from the
expected Rayleigh distribution is more dramatic for the low frequency data where glitches are more common.

The value of the ASD for each frequency bin of Gaussian noise will follow a Rayleigh distribution. Deviations

from the expected Rayleigh behavior for Gaussian noise can be studied to characterize the properties of the noise,

for example in the results presented in Chapter 6. In Fig. A.1 we plot a direct comparison between the Rayleigh

distribution and data for three frequency bins of the noise ASD from the L1 detector in S6B.

A subtle but important point to consider when calculating the ASD for Gaussian noise is the inherent bias in

the method used to estimate the ASD. This bias is important for searches which rely on the precise estimation of

the ASD of the noise to calculate the SNR for detected signals, using Eq. A.10, see for example Appendix B of

[27]. The details of ASD estimation and the biases inherent in the usual methods have been described by Evan

Hall [70].

A.3 Studies of Noise from the S6 Science Run

In this section we include some interesting plots from a study of the long-term noise quality during the

S6 science run. Plots for all of the S6 epochs and details of the study are available at the following address:

https://wiki.ligo.org/DetChar/S6RayleighDistributions.
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Figure A.2. Distribution of sensitivity per frequency bin for the L1 detector during the S6B epoch. The plot
contains data from 952 science segments between Sept 21 2009 and Jan 8 2010, for a total of 3.42 million
seconds of data, or about 40 days.
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Figure A.3. Median-normalized sensitivity percentiles per frequency bin, for L1 in S6B. The expected ratio for
each percentile for Rayleigh-distributed noise is given by the dashed lines. There is a broadband deviation from
Gaussian noise due to excessive seismic disturbances during this four-month epoch.

121



Figure A.4. Median ASDs for the H1 detector for the epochs of the S6 science run. Note the steady improvement
of the noise due to commissioning efforts.

Figure A.5. Comparison of the 95th percentile noise for the H1 detector for the epochs of the S6 science run, to
the median noise of the S6D epoch.
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Figure A.6. Median ASDs for the L1 detector for the epochs of the S6 science run.

Figure A.7. Comparison of the 95th percentile noise for the L1 detector for the epochs of the S6 science run, to
the median noise of the S6D epoch.
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APPENDIX B

DETECTION STATISTIC FORMALISM

In this appendix we will work through the derivation of the loghbayesiancirc detection statistic used by the

X-PIPELINE GRB search to rank events. The derivation follows Ref. [140] with some added details.

B.1 Bayesian Formalism

Consider the time-series output of a gravitational wave detector, d(t), which may be pure noise, d(t) = n(t)

or contain signal and noise, d(t) = h(t) + n(t). For now, we will assume that the noise n(t) is stationary zero-

mean Gaussian noise with a two-sided power spectral density Gn(f). The signal, h(t), is a particular waveform

with a specific amplitude, peak time, and other parameters.

We wish to know the probability that d(t) contains a signal of type h(t); we write this probability as p(h|d)

(pronounced “the probability of h, given d”). Using Bayes’ Theorem, we can rewrite p(h|d) into a expression

that lends itself to measurement (see [40] for an explicit derivation of the following steps):

p(h|d) =
p(h)p(d|h)

p(d)
. (B.1)

Here, the quantity p(d) is called the a priori probability of observing a specific detector output d(t), and p(h)

is the a priori probability to observe a signal h(t). p(h|d) is the a posteriori probability that h(t) was observed,

given a particular detector output d(t). These quantities are informally referred to as the “prior” and the “poste-

rior” probabilities. The expression p(d|h) is called the likelihood of observing a particular detector output d(t)

in the presence of the signal h(t).

We can write the probability to observe a particular detector output in the following way:

p(d) = p(h)p(d|h) + p(0)p(d|0) , (B.2)

where p(0) is the prior probability of observing no signal, and p(d|0) is the posterior probability of detector

output d(t) in the absence of signal. (This is a mathematical expression for a simple truth: there either is a signal,
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or there isn’t.) Finally, we define a likelihood ratio in the following way:

Λ(d|h) =
p(d|h)

p(d|0)
. (B.3)

Λ(d, h) is the ratio of two hypotheses: the denominator is the probability of the null hypothesis, or the probability

that d(t) is pure noise, and the numerator is the probability of the signal hypothesis for a particular signal h(t).

The ratio of the two tells us how much more likely the signal hypothesis is than the null hypothesis. We can

guess that Λ needs to be a function of the typical noise background n(t). This will become explicit in the next

section.

Bringing all of this together, we rewrite the probability that we have observed a signal h(t) as:

p(h|d) =
p(h)p(d|h)

p(d)
=

p(h)p(d|h)

p(h)p(d|h) + p(0)p(d|0)

=
Λ

Λ + p(0)/p(h)
. (B.4)

The ratio of priors in the denominator, p(0)/p(h), is a constant for a given signal h(t) and does not depend on

the detector output. Therefore, the probability that we have observed a signal of type h(t) is a monotonically

increasing function of the likelihood ratio Λ(d, h), and approaches unity in the limit of Λ large compared to the

ratio of priors.

The likelihood ratio is thus an acceptable detection statistic for the signal h(t). In the sense of the Neyman-

Pearson lemma, it is an optimal statistic: for a given false-alarm probability α, we can always find an appropriate

theshold Λ∗, above which the probability of the null hypothesis is less than α. For most experiments the prob-

ability of detecting a signal is much, much less than the probability of the null hypothesis. In this case Λ must

be very large before p(h|d) is significant. Since the range of interesting Λ is so large, what is typically discussed

and plotted is the log-likelihood ratio, ln Λ.

An important consequence of the formalism that follows is that we need not compute the full likelihood ratio

every time we want to search the data. From the form of the likelihood ratio we can calculate a sufficient statistic

for the data which monotonically increases with Λ.

B.2 Calculation of the Likelihoods

In order for the likelihood ratio to be a useful detection statistic, we need to calculate it for a given discrete

time series d(t). So, we need to write an analytical expression for p(d|h) and p(d|0).
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In the presence of Gaussian noise (possibly colored, or changing with frequency) with zero mean and covari-

ance matrix Σn, the probability of observing a data vector X = {xi} of length N is given by:

P (X) =
1√

(2π)N |Σn|
exp

−1

2

N−1∑
i,j=0

xi Σ−1
n,ij xj

 . (B.5)

Here, Σ−1
n is the inverse of the noise covariance matrix and and |Σn| is the determinant. Now we apply a trick:

take the limit of an large number of samples N � 1, such that the discrete time series X can be considered a

continuous function x(t). In this limit, we can express the covariance matrix Σn as the autocorrelation function

of the noise Rn(τ), where τ = t− t′, and write the sum in the exponent as an integral:

N−1∑
i,j=0

xi Σ−1
n,ij xj =

∫ ∫ ∞
−∞

x(t)R−1
n (t− t′)x(t′) dt dt′ . (B.6)

See [59] for a rigorous derivation. For our next trick, we use the Weiner-Khinchin theorem to write the integral

of the autocorrelation function in the time domain as an integral of the Fourier transform of Gn(f) (the PSD of

the noise) in the frequency domain:

Rn(t− t′) =

∫ ∞
−∞

Gn(f)e2πif(t−t′)df . (B.7)

Finally, by integrating over t and t′ and exploiting the orthogonality of the Fourier basis, we have the following:

∫ ∫ ∫ ∞
−∞

x(t)x(t′)
Gn(f)

e2πif(t′−t) dt dt′ df =

∫ ∞
−∞

x̃∗(f) x̃(f)

Gn(f)
df . (B.8)

This expression is familiar - it’s the same as our expression for ρ2 from Eq. A.10.

From here, we are motivated to define an inner product for the vector space of data functions a(t) and b(t) in

the presence of noise with has a one-sided PSD given by Sn(f) = 2Gn(f):

〈a|b〉 =

∫ ∞
0

ã(f) b̃∗(f) + ã∗(f) b̃(f)

Sn(f)
df , (B.9)

where ã∗(f) is the complex conjugate of the Fourier transform of a(t). For a given a(t) and b(t), this inner

product is a mapping from the infinite-dimensional vector space of signals onto R.
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Armed with this new definition, our probability to observe a detector output d(t) becomes an exponential

function of the inner product. For example, the probability to observe d(t) under the null hypothesis is:

p(d|0) ∝ exp

(
−1

2
〈d|d〉

)
. (B.10)

where we have neglected constants that do not depend on d or h. Finally, we can write the likelihood ratio Λ in

terms of the inner product:

Λ(d|h) =
p(d|h)

p(d|0)
=
p(d− h|0)

p(d|0)
= exp

(
−1

2
〈d− h|d− h〉+

1

2
〈d|d〉

)
= exp

(
−1

2
[〈d|d〉 − 2〈d|h〉+ 〈h|h〉] +

1

2
〈d|d〉

)
= exp

(
〈d|h〉 − 1

2
〈h|h〉

)
. (B.11)

Note that the likelihood, Λ(d|h), is a function of a signal waveform h(t) – and the log-likelihood ratio is just the

SNR minus a constant!

You might ask how we can calculate the likelihood ratio if we do not know the signal waveform ahead of

time. The answer is we are free to use any basis of waveforms h(t) to calculate Λ as a function of the waveform

parameters, and then sum the likelihood over the subspace of waveforms that contain the complete signal. For

the GRB search with X-PIPELINE we calculate the likelihood in the Fourier basis of sine waves, by decomposing

the signal into time-frequency pixels using the DFT. Adjacent pixels with significant likelihood are summed to

construct a final value for Λ.

B.3 The Detection Statistic

In this section we present the full expression for the loghbayesian detection statistic used in the GEO-GRBs

search (Eq. 7.10) and work through an example calculation. The derivation follows section 5.3 of [140].

For GRB searches with X-PIPELINE, we construct a detection statistic from the likelihood ratio given by

Eq. B.11, with the inner product defined by Eq. B.9. Signals are assumed to be circularly polarized, and we

only test waveforms h which have right- or left-circular polarization. For the remainder of this section we will

restrict ourselves to right-circularly-polarized signals; the expressions for left-circular-polarization are the same.

We write our signal as h = Ae�, where e� is the unit vector in the right-circularly-polarized direction.

We make a further assumption regarding the amplitude of the signals, motivated by our expectation that

detectable signals will be distributed around some characteristic amplitude. Signals that are very strong (i.e.,

very close by) are unlikely, since we assume our sources are distributed uniformly (and sparsely) in the nearby
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universe. Signals that are very weak will fall below the sensitivity of the detector and are indistinguishable from

noise. This assumption is expressed as a prior p(A), and we construct the detection statistic by marginalizing

over A:

Λ(d|h) =

∫
Λ(d, h) p(A) dA , (B.12)

where p(A) is a Gaussian prior with characteristic amplitude σh:

p(A) =
1√

2πσ2
h

exp

[
−1

2

(
A

σh

)2
]
. (B.13)

Using Eq. B.11 and with some rearrangement, we have:

Λ(d|h, σh) =

∫
dA√
2πσ2

h

exp

[
〈d|h〉 − 1

2
〈h|h〉 − 1

2

(
A

σh

)2
]
. (B.14)

We can perform this integral using the usual tricks for Gaussian integration. Recall the general form of a Gaussian

integral is solved using: ∫ ∞
−∞

e−ax
2+bx+c dx =

√
π

a
e
b2

4a+c . (B.15)

Expressing the signal h as Ae� and the data as a vector, we rewite the integral as:

Λ(d| �, σh) =

∫
dA√
2πσ2

h

exp

[
−A

2

2

(
〈e�|e�〉+

1

σ2
h

)
+A〈d|e�〉

]
. (B.16)

The result is:

Λ(d| �, σh) =
1√

1 + σ2
h〈e�|e�〉

exp

[
1

2

〈d|e�〉2
〈e�|e�〉+ 1/σ2

h

]
. (B.17)

Recall that our expression for the inner product, Eq. B.9, carried a factor of 1/Sn(f) as part of the calculation of

the SNR. In practice, this is included in the calculation of the unit vectors, and we call f� = e�/
√
Sn(f) the

noise-weighted unit vector in the right-circularly-polarized direction. With this shorthand we can simplify the

inner products, and we get the expression:

Λ(d| �, σh) =
1√

1 + σ2
h|f�|2

exp

[
1

2

|e� · d|2
1 + 1/(σh|f�|)2

]
, (B.18)

where |f�|2 is of order 1/Sn(f). Finally, by taking the log, we have an expression for the log-likelihood that d

is consistent with a right-circularly polarized gravitational wave with amplitude σh:

2L(d| �, σh) =

[ |e� · d|2
1 + 1/(σh|f�|)2

]
− log(1 + σ2

h|f�|2) . (B.19)

The overall factor of two is a nonstandard choice to simplify the expression.
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B.4 The Detection Statistic in Practice

Now, we turn to an example calculation of the detection statistic. The waveform that will maximize L is

of the form h = Ae�, a right-circularly polarized gravitational wave with an amplitude A. For now we drop

the noise term, and say that d = h. As part of the data conditioning, the time series from each detector is

whitened to filter out steady features in the noise such as lines, and is normalized to the detector noise floor to

produce a unit-variance time series. For data containing a gravitational wave with amplitude A we write this as

d = Ae�/
√
Sn(f) = Af�.

The log-likelihood given this data vector is:

2L(d| �, σh) =

[ |e� ·Af�|2
1 + 1/(σh|f�|)2

]
− log(1 + σ2

h|f�|2)

=
A2|f�|2

1 + 1/(σh|f�|)2
− log(1 + σ2

h|f�|2) . (B.20)

The likelihood ratio Λ(d| �, σh) is then:

Λ(d| �, σh) =

√
1

1 + σ2
h|f�|2 exp

[
1

2

A2|f�|2
1 + 1/(σh|f�|)2

]
. (B.21)

Working out the denominator in the exponent,

1 +
1

(σh|f�|)2
=

(σh|f�|)2

(σh|f�|)2
+

1

(σh|f�|)2
=

1 + (σh|f�|)2

(σh|f�|)2
. (B.22)

So,

Λ(d| �, σh) =

√
1

1 + σ2
h|f�|2 exp

[
1

2

A2|f�|2 (σh|f�|)2

1 + (σh|f�|)2

]
. (B.23)

The noise-weighted antenna response vector f� is of order 1/
√
Sn(f), where Sn(f) is the one-sided PSD

of the noise. For the initial LIGO detectors the amplitude spectral density of the noise was a minimum of about√
Sn(f) ' 2 × 10−23 Hz−1/2 in a 100 Hz band around f = 150 Hz. If we assume our signal is a narrowband

waveform around this frequency, we can make a back-of-the-envelope estimate for the value of the likelihood

under various assumptions of signal strength and the amplitude prior. The expression for Λ is:

Λ(d| �, σh) =

√
1

1 + σ2
h/Sn(f)

exp

[
A2σ2

h/S
2
n(f)

1 + σ2
h/Sn(f)

]
. (B.24)

The term in the square root amounts to a normalization constant, and for the purposes of illustration we will

neglect it. Let us focus on the term in the exponent, and calculate its value for a variety of signal amplitudes.
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For initial detector searches, the amplitude width σh ranges from 10−23 to 10−21 Hz−1/2. For a loud signal,

for example with A ∼ 10−21 Hz−1/2, we can calculate the likelihood ratio for each value of the amplitude prior.

Here we go:

Λ(d| �, σh = 10−23) ∝ exp

[
10−42 × 10−46/(16× 10−92)

1 + 10−46/(4× 10−46)

]
= exp

[
104/16

1 + 1/4

]
' exp

[
104

20

]
Λ(d| �, σh = 10−22) ∝ exp

[
10−42 × 10−44/(16× 10−92)

1 + 10−44/(4× 10−46)

]
= exp

[
106/16

1 + 100/4

]
' exp

[
106

400

]
Λ(d| �, σh = 10−21) ∝ exp

[
10−42 × 10−42/(16× 10−92)

1 + 10−42/(4× 10−46)

]
= exp

[
108/16

1 + 104/4

]
' exp

[
108

4× 104

]
.

For a weak signal, for example with A ∼ 10−23 Hz−1/2, we have:

Λ(d| �, σh = 10−23) ∝ exp

[
10−46 × 10−46/(16× 10−92)

1 + 10−46/(4× 10−46)

]
= exp

[
1/16

1 + 1/4

]
' exp

[
1

20

]
Λ(d| �, σh = 10−22) ∝ exp

[
10−46 × 10−44/(16× 10−92)

1 + 10−44/(4× 10−46)

]
= exp

[
102/16

1 + 100/4

]
' exp

[
102

400

]
Λ(d| �, σh = 10−21) ∝ exp

[
10−46 × 10−42/(16× 10−92)

1 + 10−42/(4× 10−46)

]
= exp

[
104/16

1 + 104/4

]
' exp

[
104

4× 104

]
.

Note that the value of the detection statistic for a given signal amplitude scales like A2 (or, like ρ2, where ρ

is the SNR). The final calculation of the loghbayesian detection statistic is performed by marginalizing over σh.

In this calculation, we have only measured the strength of the signal with respect to the detector noise floor

Sn(f). Importantly, we have not quantified the consistency of the signal to a coherent circularly-polarized signal

across the detector network. The method by which we quantify the signal coherence is described in the next

section.
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APPENDIX C

COHERENT CONSISTENCY CHECKS

In this appendix we illustrate the method we use to distinguish gravitational signals from loud noise transients

(glitches). The methods of this section rely on the assumption that the noise of the detectors in the network is

stationary and Gaussian, with occasional large-amplitude transients at random, uncorrelated times. The example

given here is an expansion on section 5.7.2 of [140].

For a given projection with unit vector e, we calculate the the coherent energy as:

E = |e · d|2 =

D∑
i,j=1

e∗i ejdid
∗
j . (C.1)

The incoherent component of the energy is the sum of the only the diagonal (autocorrelation) terms:

I =

D∑
i=1

|ei|2|di|2 . (C.2)

For a circular signal, the circular energy E# is taken to be the maximum of either the left- or right-circular

energy; the incoherent part is equal in both cases. The null projection en is used to find the null energy.

Consider a detector network comprised of two instruments. Our data vector is composed of the data streams

from each detector, and is equal to whatever gravitational signal is present, plus noise (which may be Gaussian,

or due to a loud glitch):

d =

 d1

d2

 = s + n =

 s1 + n1

s2 + n2

 . (C.3)

We consider two examples: one where a gravitational wave signal is present in the data and the amplitude is large

compared to the Gaussian background noise (|s| � |n|, s1 = s2 = A), and one where no signal is present and

one detector has a large glitch (s = 0, n1 = A � n2). We will calculate the coherent and incoherent energies

for the circular and null projections in both cases to see how the coherent consistency checks are constructed.
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The general expression for the coherent energy in the 2-detector case is:

E = |e · d|2 = |e · s + e · n|2 . (C.4)

In the circular polarization projection, this becomes:

E# = min(E�, E	) = min(|e� · e|2, |e	 · e|2)

= |e# · s + e# · n|2 = (|e#
1 |s1 + |e#

2 |s2 + |e#
1 |n1 + |e#

2 |n2)2 . (C.5)

For the incoherent energy:

I# = |e#
1 |2(s1 + n1)2 + |e#

2 |2(s2 + n2)2 . (C.6)

In the null direction, any signal component will vanish (en · s = 0), so the coherent null energy expression is

only noise:

En = |en · s + en · n|2 = (|en1 |n1 + |en2 |n2)2 , (C.7)

and the incoherent null energy is the same,

In = |e#
1 |2(s1 + n1)2 + |e#

2 |2(s2 + n2)2 . (C.8)

Following through the arithmetic and collecting only the leading order terms in amplitude A, we have the fol-

lowing for case of a gravitational wave signal:

E# ∝ A2 ,

I# ∝ A2 ,

En ∝ |n|2 ,

In ∝ A2 . (C.9)

For the case of a glitch where s = 0 and n1 = A,

E# ∝ A2 ,

I# ∝ A2 ,

En ∝ A2 ,

In ∝ A2 . (C.10)
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We see that in the signal case, the signal energy will cancel in the null direction, and In > En, whereas in the

case of noise the incoherent and coherent null energies will be roughly equal. In this way we can apply a ratio

test on the null energies to distinguish signal from noise. Cuts of this sort are very effective for rejecting loud

glitches.

For low-amplitude glitches, we consider two more expressions. First, the difference of the coherent and

incoherent null energies, in which the terms which are quadratic in noise components will cancel:

En − In = (|en1 |n1 + |en2 |n2)2 − |en1 |2(s1 + n1)2 + |en2 |2(s2 + n2)2

= 2|en1 |n1|en2 |n2 − |en1 |2s2
1 − 2|en1 |2s1n1 − |en1 |2s2

1 − 2|en2 |2s2n2

∝ n1n2 − s2
1 − s2

2 − s1n1 − s2n2 . (C.11)

We call this the cross-correlation term, since it removes the autocorrelation terms from the coherent energy.

We also need the sum of the coherent and incoherent null energies:

En + In ∝ n2
1 + n2

2 + n1n2 + s2
1 + s2

2 + s1n1 + s2n2 . (C.12)

In the case of a loud glitch in one detector with no signal, the magnitude of the cross-correlation term,

|En − In|, will be proportional to the glitch amplitude A. In the presence of a true gravitational wave, the signal

is present in both detectors, so |En − In| ∝ A2. In all cases, the magnitude of the summation expression is

proportional to A2.

We therefore use the ratio of the two to set a threshold r on the acceptance of events:

|En − In|
(En + In)α

> r . (C.13)

Note the exponent α in the denominator; if we choose α = 1, the denominator will dominate in the noise case,

and glitches will be rejected with probability increasing with amplitude:

|En − In|
(En + In)

∝ A2

A2
= const (for signal)

|En − In|
(En + In)

∝ A

A2
=

1

A
(for glitches) . (C.14)

If we choose α = 1/2, the numerator will dominate in the signal case. Signals will fall above the cutoff with

a probability increasing with amplitude, and glitches will be rejected at a constant fraction:
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|En − In|
(En + In)1/2

∝ A2

A
= A (for signal)

|En − In|
(En + In)1/2

∝ A

A
= const (for glitches) . (C.15)

In either case, lowering the threshold r will accept more events, whether they be signal or noise. In practice,

we used a fixed α = 0.8 and tune for the value of r which optimizes the background rejection while maintaining

the lowest possible threshold for detection.

One final observation: if both detectors have loud glitches at the same time, each with significant amplitude

in the null projection, the difference |En − In| can be of the order A2, due to the crossterm n1n2; in this case

the consistency check can fail. Coincident noise transients between detectors are a source of indistinguishable

background for the search and limit the sensitivity. The rate of coincident glitches is estimated empirically, by

repeating the analysis many times with unphysical time offsets in the data from one of the detectors.
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APPENDIX D

EPIGRAPHS

The chapter epigraphs in this thesis are from the following sources:

Acknowledgements: Shakespeare, As You Like It, Act I Scene 2.

Chapter 1 (Introduction): Shakespeare, The Tempest, Act II Scene 1.

Chapter 2 (Gravitational Waves): Shakespeare, Troilus and Cressida, Act I Scene 3.

Chapter 3 (Detectors): Shakespeare, Sonnet 14.

Chapter 4 (Optics): Shakespeare, Sonnet 77.

Chapter 5 (Advanced LIGO): Shakespeare, The Winter’s Tale, Act IV Scene 4.

Chapter 6 (Detector Characterization): Shakespeare, The Tempest, Act III Scene 2.

Chapter 7 (GRB Search): Milton, Paradise Lost, Book 1.

Chapter 8 (Conclusion): Shakespeare, The Tragedy of Julius Caesar, Act V Scene 1.
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