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Einstein’s General Theory of Relativity (GR) has been well tested in the weak field regime over
the past century. However, such tests have not been carried out in the highly dynamical and
inherently non-linear strong field regime. Recent advancements in ground based gravitational wave
detectors, (e.g., Advanced LIGO, VIRGO) will allow us probe this regime of general relativity
by investigating gravitational waves produced by astrophysical systems with strong gravitational
fields such as compact binary coalescences. While current search techniques utilize standard GR
waveforms to identify weak GW signals in the presence of noisy data, alternative theories of gravity
predict signals that may differ significantly from GR. We investigate our ability to find non-GR
effects in detected waveforms of an astrophysical source in an alternative theory of gravity by
introducing an arbitrary parameter to modify standard GR waveform features, such as ringdown
frequency, merger frequency, and amplitude. We then perform statistical methods, such as matched
filtering and bayesian inference, to quantify how well future detectors will be able to distinguish
between the gravitational waveforms in the event that GR is not the complete theory of gravity.

I. INTRODUCTION

General Relativity (GR) is a theory of gravity origi-
nally proposed by Albert Einstein in 1915 to generalize
special relativity and Newton’s law of universal gravita-
tion. Led by the fundamental principle of equivalence,
Einstein used GR to describe the motion of accelerat-
ing, massive particles by describing the associated field
strength as the extent to which these particles warp the
four-dimensional geometry of space and time, or space-
time. The principle of equivalence is now often viewed as
the broader overall idea that spacetime is curved. Cou-
pled with this fundamental postulate, [1] proposed a set
of ideas which became known as the Einstein equiva-
lence principle (EEP). Simply stated, the EEP is com-
prised of three broad ideas: the motion of a freely falling
body under only the influence of gravity is independent
of structure and composition (also known as the Weak
Equivalence Principle), the outcome of any local non-
gravitational experiment is independent of the velocity
of the reference frame in which it is performed (local
Lorentz invariance), and that the outcome of an experi-
ment is independent of when and where it takes place in
the Universe (local position invariance) [2]. The EEP has
allowed for a wide range of experimental tests that aim
to test the foundation of GR and the notion of curved
spacetime describing the nature of gravity.

Experiments aimed at testing the foundations of GR
include the perihelion shift of Mercury, the orbital decay
of the Hulse-Taylor binary pulsar B1913+16, and labo-
ratory based tests of the WEP. GR predicted the rate
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of perihelion shift of Mercury, ˙̃ω ∼ 42.′′98 (arc seconds
per century), a problem previously unsolved since an-
nounced by Le Verrier in 1859. The orbital decay of
the Hulse-Taylor binary pulsar, Ṗb, as predicted by GR
yields a value of Ṗb ∼ −2.402531 ± 0.000014 × 10−12,
which when compared to the corrected observed value,
Ṗ corr
b /ṖGR

b ∼ 0.997 ± 0.002 [3]. Tests of the WEP in-
clude measuring the fractional difference in acceleration
between two bodies. This difference is referred to as the
“Eötvös ratio” and is defined by η ∼ 2|a1−a2|/|a1 +a2|,
where a1 and a2 refer to the acceleration of the respective
bodies considered for the test. One specific example per-
formed at the University of Washington was able to reach
a value of η ∼ 2 × 10−13 [4–6], with continued efforts to
further constrain this parameter ongoing [7].

The strength of the gravitational field is often charac-
terized by the “compactness” parameter, ε ∼ GM/Rc2,
where G is the gravitational constant, M is the charac-
teristic mass, R characteristic radius, and c the speed
of light in a vacuum. Despite the many successful tests
of GR described here, all previous tests have been car-
ried out in the dynamically slow and weak field regime.
For example, within our Solar system, the field strength
takes a value of ε ∼ 10−6. Although many alternative
theories of gravity predict solutions in agreement with
GR within the weak field, they also give rise to devia-
tions from GR in the highly dynamical and non-linear
strong field regime.

Alternative theories of gravity that predict devia-
tions from GR include: scalar-tensor, massive gravi-
ton, f(R), variable G, non-commutative geometry and
gravitational parity violation [8–14]. The parameter-
ized post-Einsteinian (ppE) framework [15] allows one
to quantify the extent to which an alternative theory

mailto:cef@asu.edu


2

may produce changes to the physical nature of systems
in which GR is taken to be the complete theory of gravi-
tation. For example, modified quadratic gravity predicts
a change to the strong-field interaction of compact bi-
nary coalescences (CBCs) by introducing corrections to
the Einstein-Hilbert action which depend on higher pow-
ers of the curvature. Such alternative theories can be
tested directly by investigating these extremely relativis-
tic and dynamical systems wherein the gravitational field
strength ε ∼ 0.1 to near unity. The final moments of
CBC’s are extremely luminous in gravitational radiation
and encoded within these gravitational wave signals is
the necessary information to further constrain alterna-
tive theories of gravitation [2, 16–19].

Gravitational waves (GWs) are propagating oscilla-
tions in the gravitational field caused by the accelera-
tion of massive bodies [20]. The amplitude of a gravita-
tional wave is characterized by the wave amplitude, or
strain, h ∼ ∆L/L, where ∆L denotes the total change
in length L between two objects, such as a pair of mir-
rors forming an optical cavity of an interferometer in
the presence of gravitational radiation [19]. Carrying en-
ergy, angular momentum, and inducing orbital decay in
tight compact binary systems, gravitational waves prop-
agate unimpeded through the Universe at the speed of
light. GWs have two independent polarizations: h+ and
h×, where the distinction between the two is the way in
which a circular ring of test particles in the (x, y) is af-
fected by the presence of a transverse wave propagating
in the z direction. It has been shown that GW signals
can be systematically analyzed to extract intrinsic infor-
mation about their astrophysical source [21–26]. Com-
pact binary coalescences (CBCs), inspiralling binary star
systems consisting of neutron stars (NSs) or black holes
(BHs), are promising sources for the direct detection of
gravitational wave signals for next generation gravita-
tional wave detectors [27–29].

Highly compact objects have field strengths that range
from ε ∼ 0.1 to near unity and during the final stages of
coalescence reach relativistic orbital velocities of 0.1c .
v . 0.6c, thus providing a direct probe of the highly
non-linear and dynamical strong field. Beyond tests of
GR, NS-NS binary systems can be used to constrain
the nuclear equation of state (EOS) of ultra relativis-
tic, degenerate neutron star matter deep within the core
or to probe tidal deformations of the companion stars
approaching the innermost stable circular orbit (ISCO)
[30–33]. Contrary to tests on the behavior of matter
in NS-NS binaries, BH-BH binaries provide the clean-
est, direct test of GR as black holes are purely mass,
or curved spacetime, allowing one to neglect the com-
plex behavior of matter [34]. Recent advancement in
ground based gravitational wave detectors such as Ad-
vanced LIGO (aLIGO), VIRGO, and KAGRA will be
capable of detecting signals from these compact binary
systems while also expanding the detector coverage area
leading to an increase of expected detections [35–38].

The Laser Interferometer Gravitational-Wave Obser-

vatory (LIGO) project is involved in the development
and operation of increasingly sensitive gravitational wave
detectors. The Initial LIGO detectors were built in the
late 1990’s and operated at and beyond design sensitivity
from 2005 to 2007 [39]. Advanced LIGO is the next gen-
eration of detectors wherein the infrastructure created
with iLIGO will be upgraded and expanded to signifi-
cantly increase range and detector sensitivity [35]. These
upgrades are expected to give aLIGO a maximum sensi-
tivity to strain, for a frequency band of f ∼ 100-200 Hz,
of hrms ∼ 4 × 10−23, along with an increased horizon
distance of up to ∼ 450 Mpc. This increase in detector
sensitivity also increases the number of possible events
to 10-100 events per year, resulting a higher likelihood
of detection. Compact binary systems are a particularly
promising candidate for direct detection of gravitational
waves as well as direct tests of general relativity in the
strong field regime [40].

Current techniques for determining if an observed sig-
nal originated from an astrophysical source as opposed to
a non gaussian glitch or instrumental error include check-
ing for coincident triggers within a small timeframe, sta-
tistically minimizing the known noise from the detector,
and then using statistical methods to compare the ob-
served signal with a template bank of approximate wave-
forms [41–44]. The techniques used to model the grav-
itational radiation emitted from different astrophysical
sources, have been shown to provide an accurate descrip-
tion in the static slow moving, weak field regime where
v � c [45, 46]. However, alternative theories of gravity
lead to GR-like solutions in the weak-field but could di-
verge strongly in violent events, such as the merging of
two compact objects [47–49]. In the event that GR is
not the complete theory of gravitation, a detection from
such a highly relativistic source that emits a GW that de-
viates significantly from GR could bypass detection for
a template bank utilizing only standard GR waveforms
and also introduce unexpected degeneracies with inferred
intrinsic parameters of the system. Therefore, it is pro-
posed that the methods by which incident signals are
analyzed thoroughly account for physically motivated de-
viations from GR that have been inferred by alternative
theories of gravity.

In this paper we investigate the effect of non-GR de-
viations in simulated gravitational waveforms used to
determine detection of a GW signal. For this investi-
gation, we consider binary systems composed of binary
black holes in the context the next generation gravita-
tional wave detector, aLIGO. We perform numerical cal-
culations to model these gravitational waveforms from a
variety of binary systems. We then introduce a param-
eterized phenomenological function to modify the gravi-
tational waveform which produces a significant deviation
from GR. Then, we perform a quantitative assessment
of the properties of these modified waveforms and their
implications on possible detection signals. In Sect. II we
discuss our methods, in Sect. III we present our stan-
dard GR waveforms, in Sect. IV we present our modified
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waveforms, in Sect. VII we discuss our results, and in
Sect. VIII we present our conclusions.

II. METHODS

We begin our investigation by considering briefly a first
order approximation of gravitational radiation in com-
pact binary systems. We then calculate gravitational
waveforms for non-spinning, equal mass ratio BBH sys-
tems for a range of total mass of M ∈ [10, 200] M� using
the IMRPhenomC waveform approximation, an implemen-
tation within the lalsimulation algorithm library [50].
Once a set of standard unmodified waveforms have been
constructed, we explore the effects of altering the param-
eters associated with our model by introducing a multi-
plicative parameter, αnGR. To quantify the effects of this
modification to the standard waveform we perform sta-
tistical techniques such as matched filtering and bayesian
inference.

A. Compact Binary Systems

Compact binary systems containing neutron stars or
black holes are thought to be a promising source for di-
rect detection by next generation gravitational wave de-
tectors [51–53]. The evolution of binary systems include
in order: inspiral, merger, and ringdown. The inspiral is
the orbit of two bodies about a common center of mass
wherein the orbital radius decreases with time due to en-
ergy loss from sources including gravitational radiation.
The merger is characterized by the orbital radius below
that of aisco wherein the two bodies begin to interact
whether through tidal deformation in neutron stars or
direct collision. The final stage is the ringdown wherein
the newly formed massive BH or NS will oscillate at a
damping ringdown frequency, emitting gravitational ra-
diation as it settles to its new state. To illustrate these
systems we consider the inspiral phase of a binary black
hole system in a nearly circular orbit with companion
masses of m1 = m2 = 5M� and an initial orbital period
of T = 0.1 (s).

Using Kepler’s Law of Orbits, we write the relation
between the orbital period and orbital separation a, for
a circular orbit with e ≈ 0,

T 2

a3
=

4π2

GM
, (1)

where M = m1+m2 ≡ 10 M�, for this example. The ini-
tial orbital velocity of the binary objects can be deduced
using these values

vorb =
2πa

T
, (2)

where the initial orbital velocities of the system consid-
ered here are an appreciable fraction of the speed of light,

β =
vorb
c

, (3)

with β ≈ 0.15 at T = 0.1 s. The frequency of the gravita-
tional waves emitted for such a system can be expressed
as

fGW ∼ 2forb . (4)

As these compact systems evolve, they rapidly spiral in-
wards becoming more efficient in radiating energy via
gravitational waves as the orbital radius shrinks and the
orbital velocities increase. We can determine the time
frame in which the binary will coalesce by calculating
the innermost stable circular orbit (ISCO), the innermost
stable orbital radius as determined by the Schwarzschild
solution,

aisco ∼ 6
GM

c2
. (5)

The timescale in which a binary system will reach this
orbit, from an initial orbital period, T , is often referred
to as the “’chirp’ time,

tchirp ∼
5GM2

256µc3β8
, (6)

where we find for the system considered here, tchirp ≈
18.92 (s). The approximate amplitude of the gravita-
tional wave strain can be calculated using the stationary
phase, quadrupole approximation

h+(t) ∼ 4G2µM

Dc4a(t)
cos(Φ(t)), (7)

where the phase can be expressed as

Φ(t) ∼
∫

2πfGW(t) dt, (8)

where fGW is the frequency of the emitted GW, D is the
distance from the system to the observer, µ is the reduced
mass (m1m2/M), and a is the orbital separation of two
objects in a tight circular orbit. For the system here we
only consider the “plus” polarization of the GW emitted.
As the binary system approaches ISCO the objects orbit
with orbital velocities at β ≈ 0.41 and the approximate
GW strain of |h+| ≈ 2.1× 10−20 (strain) at a frequency
of fGW ≈ 439 (Hz). The compactness of this system
at ISCO yields a value of ε ∼ GM/Rc2 ∼ 0.2. The
final seconds of the inspiral occur well within the non-
linear, highly dynamical strong field regime providing di-
rect tests of alternative theories of gravity that predict
observable deviations from GR. The Fourier transform of
the gravitational wave strain can also be useful for deter-
mining the amplitude of the GW signal in the frequency
domain. We numerically compute the Fast Fourier Trans-
form (FFT) as the following,

F [h+(t)] = h̃+(f) ≡
∫ +∞

−∞
h+(t)ei2πftdt . (9)

To determine the frequencies at which the gravitational
wave detector will be likely to observe a detection, the
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FIG. 1. Diagram showing the design amplitude spectral density of Initial LIGO (iLIGO), Advanced LIGO (aLIGO), and the
equivalent gravitational wave strain for sources located at D = 16 Mpc with mass ratio, q = 1. The dark green (dash-dot)
line shows a binary neutron star system (BNS) with total mass of Mtot ∼ 2M�, while the light green (dash-dot) line shows
a BNS with total mass, Mtot ∼ 4M�. The gold (dashed) line shows a binary black hole system (BBH) with total mass of
Mtot ∼ 16M� and the red (dashed) line shows a BBH with Mtot ∼ 24M�.

incoherent sum of the various sources of the noise within
the detector (e,g. seismic noise, thermal noise, and shot
noise) are used in determining a power spectral density.
The power spectral density (PSD) is the power of the
noise at a given frequency, while the amplitude spectral
density (ASD) can be considered as the amplitude be-
low which the interferometer is insensitive to a detec-
tion. Therefore, it is often useful to compare the ASD
of a given detector to a variety of gravitational wave sig-
nals to determine the most likely astrophysical sources.
The expected amplitude spectral density for Initial LIGO
(iLIGO) [39], Advanced LIGO (aLIGO) [35], and approx-
imate GW signals from possible astrophysical sources are
shown in fig. (1). The sources shown were constructed us-
ing the IMRPhenomC waveform approximant as described
in [54] with source distances D = 16 (Mpc), the approx-
imate distance to the Virgo Cluster. Figure (1) suggest
that for binary neutron star systems nearing coalescence,
the inspiral phase will emit gravitational radiation within
the frequency band of aLIGO but the merger phase will
likely occur at frequencies outside of this range. However,
binary black hole (BBH) sources are predicted to expe-
rience inspiral, merger, and ringdown well within aLIGO
sensitivity, such as the compact binary system considered

above.

B. Modeling Gravitational Waves Emitted by
Compact Binary Systems

Waveform approximations for various astrophysical
sources have been constructed by combining Nth or-
der post newtonian (PN) approximation waveforms with
those calculated by the data available from numerical rel-
ativity (NR) [55–57]. IMRPhenomC is a phenomenological
waveform model constructed using this method to de-
scribe non-precessing BBH systems [54]. These model
waveforms have been shown to yield an overlap with the
hybrid waveforms of greater than 97% for all BBH sys-
tems observable by Advanced LIGO and are in agreement
with results obtained in [46]. For this study, we perform
calculations of non-spinning, equal mass ratio binary sys-
tems for a range of total mass using the IMRPhenomC
template waveform as implemented in lalsimulation,
a set of numerical routines used to compute the gravi-
tational wave signal for a particular waveform template,
contained in the LALSuite algorithm library [50]. Here
we briefly review the steps necessary for complete and ac-
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curate waveform model for the BBH systems considered
in this work. We focus on three aspects that completely
define the GW signal, the phase, the amplitude and the
frequency regimes over which these models transition.

1. Phase

The first stage of compact binary coalescence is the
inspiral. This stage can be adequately modeled under
the assumption of a weak gravitational field using the
Post Newtonian (PN) approximation to general relativ-
ity. The GW phase of the early adiabatic inspiral of
a BBH coalescence is based on a stationary phase ap-
proximation and has been well modeled by the following
analytical formula

ψPN(f) = 2πft0 − φ0 −
π

4

+
3

128η
(πf)−5/3

7∑
k=0

αk(πf)k/3 ,
(10)

where f is the GW frequency, φ0 is the orbital phase of
the binary, and αk corresponds to the k’th coefficient of
the TaylorF2 description of the Fourier phase [58–61]. As
mentioned in Section II A, the assumption that the grav-
itational field is sufficiently weak begins to break down as
the binary approaches the pre-merger phase, a → aisco.
Modeling of the pre-merger phase, ψPM was done by [54]
using

ψPM(f) = η−1(α1f
−5/3 + α2f

−1 + α3f
−1/3

+ α4 + α5f
2/3 + α6f)

(11)

where αk are phenomenological coefficients fitted to agree
with hybrid waveforms for 0.1fRD . f . fRD. Lastly,
the linear ansatz proposed by [54] for the ringdown phase
is

ψRD = β1 + β2f (12)

with coefficients determined by the pre-merger phase.
The final phenomenological phase is produced from a
smoothed transition between frequency regimes using
tanh-window functions to produce

ΨIMR = ψPNw
−
f1

+ ψPMw
+
f1
w−fRD

+ ψRDw
+
fRD

, (13)

where f1 = 0.1fRD.

2. Amplitude

The PN model of the GW amplitude obtained from
the stationary phase approximation can be expressed as

APN(f) = Cf−7/6(1 +

3∑
i=2

αiν
i) for f < fisco, (14)

where ν = (πMf)1/3 and C is a numerical constant
that depends on the sky location, orientation and masses
[46]. While this amplitude can be considered adequate
for weak gravitational fields, as the binary approaches
merger, a more descriptive approach is required.

A pre-merger amplitude is proposed by the re-
expansion of eqn. (14) leading to

APM = APN + γ1f
5/3 , (15)

where γ1 is fit to obtain the pre-merger amplitude in NR
simulations of binary black hole mergers [62, 63].

The ringdown amplitude is approximated using a
Lorentzian

ARD = δ1L(f, fRD, δ2Q)f−7/6 , (16)

with phenomenological coefficients fit to the hybrid data.
The final amplitude function, Aphen is expressed as a
combination of the models given above with appropriate
smoothed transitions to fully capture the entire evolu-
tion of the gravitational waveform. For a detailed review
of the calculation of the fitting parameters for this phe-
nomenological model, see Table II of [54].

3. Frequency Regimes

Possibly the most important part of construction of
the phenomenological model is how one determines the
frequencies at which these transitions occur. The under-
lying frequency that determines when these transitions
occur is the BH ringdown frequency.

The ringdown frequency, fRD is determined from the
spins and masses of the black holes considered and can
be computed by the following form

fRD =
c3

2πGM
[k1 + k2(1 + a)k3 ] , (17)

where ki = {1.521,−1.1568, 0.1292} while the quality fac-
tor of the BH ringdown is characterized by

QBH = q1 + q2(1 + a)q3 , (18)

with qi = {0.700, 1.4187,−0.4990} as given in Table
VIII of [64].The transition from pre-merger (approach-
ing ISCO) to ringdown was chosen by [54] for a value of
f = 0.98fRD, to fit data from NR results [65].

C. Modeling Gravitational Waves Predicted by
Alternative Theories of Gravity

Among the many alternative theories of gravity, only
a few have been studied to the extent which observable
deviations from GR can be inferred [2]. To investigate the
effect of these alternatives one may consider a variety of
methods. The two main methods considered are often
referred to as the top down approach and the bottom
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up approach. We will discuss briefly the two different
approaches and their different consequences.

The bottom up approach involves considering a spe-
cific alternative theory and its physical influence on the
system and the extent to which it will modify the GR ap-
proximation of the system. For example, Jordan-Fierz-
Brans-Dicke (BD) scalar tensor theory predicts dipole ra-
diation in addition to the quadrupole radiation predicted
by GR [66–69]. This radiation is expressed by

ĖBD ∼ −
2G3η2M4S2

3c5a4ωBD
, (19)

where η is the symmetric mass ratio (m1m2/M
2), M

the total mass, a the orbital separation, ωBD is the di-
mensionless Dicke coupling constant and S is the dif-
ference in sensitivity of the two objects with sensitivity,
si = (∂ln(mi)/∂ln(G))N at fixed baryon number, N . The
additional radiation term predicted by BD scalar tensor
theory suggests that systems will be more efficient in los-
ing the energy contained in a binary system resulting in
a different cutoff frequency, fcut, than that which is pre-
dicted by GR. Therefore, one can investigate the possible
consequences of a particular alternative theories and their
influence on systems modeled using GR waveforms.

Alternatively, in the top down approach one may adopt
a general framework considering deviations from GR not
particular to any one alternative theory but rather adopt-
ing phenomenological parameters constrained by weak
field measurements in the context of different theories.
A theoretical framework for introducing such modifica-
tions to standard GR waveforms has been proposed in
[15, 70]. This framework, called the “Parameterized
Post-Einsteinian” (ppE) framework introduces a minimal
set of parameters from which “non GR” waveforms may
be constructed for the inspiral, merger, and ringdown
stages of binary systems. The ppE waveform model in
the stationary phase approximation is constructed by

h̃nGR(f) ∼ h̃GR(f)[1 + αua]eiβu
b

, (20)

with

u ∼ πMfGW . (21)

Eqn. (21) is the inspiral reduced GW frequency [15] and
M = Mη3/5, commonly referred to as the chirp mass.
For values of α = β = a = b = 0, the ppE model results
in the waveform model predicted by GR. In this repre-
sentation, the exponents a and b are fixed exponents for
a specific modified theory of gravity, while α and β corre-
spond to the magnitude of modification to the amplitude
and phase, respectively. For example, one recovers the
leading ppE corrections to the Brans-Dicke theory for
(a, α, b, β) = (a, 0,−7/3, β) [68, 71, 72] where tracking
of the Cassini spacecraft has provided constraints on the
parameters, α and β [73].

D. Matched Filtering

Proper analysis of a gravitational wave signal requires
the ability to determine as much about the astrophysical
source as possible. One such technique used for esti-
mating the parameters of a given GW signal is known
as matched filtering. Matched filtering is a technique in
which a GW signal can be analyzed to determine how
well it correlates or matches a template waveform for a
particular set of intrinsic input parameters. A match
threshold may be set such that a time series, s(t), must
match with a particular waveform by more than, say,
97%. To calculate the match of a GW signal and a par-
ticular waveform we first determine the the overlap, using
the following noise weighted inner product

〈A|B〉 = 4<
∫ +∞

−∞

Ã(f)B̃∗(f)

Sn(f)
df , (22)

where Sn is the power spectral density of the detector, Ã
is the FFT of a signal A, and B̃∗ is the complex conjugate
of the FFT of a waveform templateB. The optimal signal
to noise ratio (SNR) of the filter is

ρ2opt = 〈A|A〉 , (23)

and the normalized match can then be calculated by max-
imizing the overlap for φ0 and t0,

Match = max{φ0,t0}
〈A|B〉√
〈A|A〉 〈B|B〉

. (24)

For a given signal A, such that A ≈ B, the match will
yield a value of unity, matching the template waveform
to 100%. Matched filtering allows for a quantitative as-
sessment of the differences between signals and template
waveforms as well as a means by which non GR devi-
ations to the waveform approximations can affect the
match. In addition to t0 and φ0, signals are identified
by maximizing the match over other parameters such as
the component mass, spins, etc.

E. Bayesian Inference

Statistical methods have been applied to the analy-
sis of weak gravitational wave signals in the presence of
noisy data to: (i) Test competing hypotheses through the
computation of the evidences, or marginal likelihoods, of
different models, and (ii) estimate parameters of a par-
ticular signal upon which a model depends. [74–80]. The
former is often referred to as model selection and is used
to quantify our ability to distinguish between different
models, or theories of gravity, while the latter (parameter
estimation) is concerned with the ability to infer parame-
ters using a GW signal within a particular theory of grav-
ity or a particular parameterization of ppE parameters,
such as those discussed in section II C. Here we describe
these techniques within the context of Bayesian inference



7

101 102 103

f (Hz)
10−24

10−23

10−22

10−21

10−20

|h̃
+
|√
f

(s
tr

ai
n/

√
H

z)

IMRPhenomC
D = 16 Mpc

aLIGO Design

20.0
40.0
60.0
80.0
100.0
120.0
140.0
160.0
180.0
200.0

M
(M

�
)

FIG. 2. Diagram showing the inspiral, merger, and ringdown gravitational wave strain as a function of frequency for a set of
different systems. The waveform template used for these calculations was IMRPhenomC, a phenomenological waveform template
constructed to describe non-precessing binary black hole systems. The systems considered here were equal mass, non spinning,
χ = 0, and were of the mass range M ∈ [20, 200] M�, a range chosen to encompass low to intermediate mass BH binaries. The
most massive binaries, those with M ≥ 160 M�, merge before fGW ∼ 100 (Hz) while the less massive systems take longer to
merge, with merger frequency increasing as total mass decreases.

and as an application to non-GR waveform analysis with
aLIGO.

We wish to compute the predictive posterior probabil-
ity of a particular value of αnGR, given a set of data,
d and backgroud information I. The set of parameters

considered is ~X = {. . . , χ, q,D, z, φ0}. To determine the
posterior, we first compute the evidence, P (d|αnGR, I),
by

P (d|αnGR, I) =

∫
d~Xp(~X|I)p(d|αnGR, ~X, I) , (25)

where p(~X|I) is the prior probability and p(d|αnGR, ~X, I)
is the likelihood density distribution. By a straightfor-
ward application of Bayes’ theorem we can then calculate
the posterior probability distribution of our non-GR pa-
rameter by

P (αnGR|d) =
P (d|αnGR, I)P (αnGR|I)

P (d|I)
, (26)

yielding the normalized posterior, marginalized over the

additional parameters ~X. For the purpose of this study
we restrict our parameter space to consider only the total

mass of the system. The remaining intrinsic parameters
of the system, such as Mchirp, χ, q,D, z, and φ0 are cho-
sen to provide a baseline model against which we can
compare are shown in Table (I). To estimate this pos-
terior probability distribution we used a Markov chain
Monte-Carlo (MCMC) simulation implemented within
lalinference, a set of bayesian statistical methods for
use in GW data analysis. For a detailed review of the
MCMC implementation, see [81].

III. STANDARD GR WAVEFORMS

To begin our investigation, we first consider a set of
standard waveforms as predicted by GR. The waveform
template considered is the IMRPhenomC model [46]. We
use this template to compute the inspiral, merger, and
ringdown phase of binary BH systems in the mass of
M ∈ [20, 200] M�. To compute this GW signal requires
a choice of input parameters corresponding to intrinsic
parameters of the astrophysical source. These parame-
ters include the orbital phase of the binary system, the
frequency interval (sampling rate), the BH reduced mass
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spin parameter χ, starting and stopping frequencies, and
lastly, the distance from the source. We wish to study de-
viations from GR that could potentially manifest them-
selves as very small changes to the overall waveform.
Therefore, it is important that one not introduce unnec-
essary uncertainty to the system by an impractical choice
of input parameters [81–83].

TABLE I. Input Parameters

Parameter Value

Orbital Phase (φo) 0 (rad)
Frequency Interval (∆f) 1/32 (Hz)
Reduced Mass Spin (χ) 0.0
Mass Ratio (q) 1
Start Frequency (fmin) 10 (Hz)
End Frequency (fmax) 4,000 (Hz)
Distance (D) 16 (Mpc)

We restrict our investigation to non-spinning, BBH
systems at the peak orbital phase and at a relatively close
distance. The frequency interval, or sampling rate, of
the calculation is arbitrary except in that we require it
be sufficiently resolved to properly compute the wave-
form. The component masses considered are equiva-
lent to half of the total mass for an equal mass ratio
of q = m1/m2 = 1. The computation interval, the start
and ending frequencies, were chosen such that the entire
evolution of the system was calculated for frequencies de-
tectable by aLIGO, fmin ≥ 10 (Hz). The standard input
parameters used throughout this paper are shown in Ta-
ble (I) provide a baseline set of waveforms with which
we can compare. Figure (2) shows the inspiral, merger,
and ringdown gravitational wave strain in the frequency
domain for a grid of models from total mass, M from
M ≤ 10 ≤ 200M�. We can see that the most massive
BBH systems (M ≥M = 160 M�), the merger occurs at
a GW frequency of fGW ∼ 100 (Hz). This frequency cor-
responds to the approximate frequency at which aLIGO
is designed to be most sensitive (See fig. 1). The mass
range considered for this study may not represent the
most likely mass range of binary black hole systems in
nature but allows for a first step towards quantifying the
effects of non-GR deviations using potential astrophys-
ical sources. See [84, 85] for a review of potential can-
didates of BBH systems and the associated population
characteristics.

IV. MODIFIED WAVEFORMS

Here we introduce our method to implement deviations
from general relativity that may have non-negligible ef-
fects on the gravitational waveform used in detection of
GW signals. We focus our investigation by considering

only the IMRPhenomC waveform and discuss the associ-
ated parameters and our motivation in altering this wave-
form. The SNR lost by introducing these deviations is
examined to determine our ability to detect gravitational
waves by using waveforms predicted by general relativity.
To explore potential deviations from GR that may arise
in highly dynamical and non-linear systems, we consider
physical quantities used in the construction of the phe-
nomenological models for template waveforms.
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FIG. 3. Diagrams showing the inspiral, merger, and ringdown
evolution of a BBH system with total mass M = 20(M�) us-
ing the standard input parameters listed in Table (I). The
modified waveforms use a value of αnGR ∈ [−0.5, 0.5] to al-
ter the pre-merger amplitude AnGR

PM (top) and the pre-merger
frequency fnGR

PM (bottom). The (gray) line shown is each dia-
gram represents the standard GR waveform for αnGR = 0.

To begin, let ψi be a physical parameter of the phe-
nomenological waveform contained in the set of all pa-
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rameters such that

~Ψ =

N∑
i

ψi . (27)

We can then perform generic modifications to a particu-
lar parameter in the following way

ψnGR
i = ψGR

i [1 + αnGR] , (28)

allowing us to investigate one parameter at a time. With
the intention of investigating the strong field dynamics
of GR, we focus on modifications to the pre-merger and
ringdown phase. For all of the modifications considered
here we use values of −0.5 . αnGR . 0.5, to represent a
small deviation from GR.

A. Pre-Merger

We first modify the amplitude of the pre-merger in
the IMRPhenomC waveform template using eqn. (28). The
GW strain for this modification for a range of values is
shown in (top panel) Figure (3). The color bar shown
represents a discrete value of αnGR used to generate the
waveform. Also shown in each panel is the standard
waveform predicted by GR (gray line) for αnGR = 0. The
pre-merger regime is of particular interest since it is well
within the strong field and the velocities of the compan-
ions as are extremely relativistic (see Sec. II A). Also
shown in Figure (3) (bottom panel) is the GW strain for
a set of waveforms for which the pre-merger frequency,
fPM, was modified. We can see that even for small values,
α ∼ ±0.1, the waveform is shifted dramatically. Such
modifications can lead to a significant loss in SNR ratio
for GW searches which utilize standard GR waveforms,
the extent of this effect is discussed in Sec. (V).

B. Ringdown

Next, we consider the ringdown amplitude in the
IMRPhenomC waveform template. Defined in eqn (16),
the ringdown amplitude ARD is modified using eqn. (28).
Figure (4) (top panel) shows this alteration of the wave-
form. Modification of the frequency at which the ring-
down occurs, fRD, is shown in (bottom panel) fig. (4).
The modification to this parameter is represented by a
monotonic shift in the waveform, which could be due to a
system in which the binary is more efficient in radiating
away energy than as predicted by GR. This could lead
to the system reaching ISCO, or merging sooner than
anticipated.

V. OVERLAP STUDIES

We now focus our attention on quantifying the extent
to which these non-GR modifications affect next gener-
ation gravitational wave detectors, specifically, aLIGO.
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FIG. 4. Diagrams showing the inspiral, merger, and ringdown
evolution of a BBH system with total mass M = 20(M�) us-
ing the standard input parameters listed in Table (I). The
modified waveforms use a value of αnGR ∈ [−0.5, 0.5] to al-
ter the ringdown amplitude AnGR

RD (top) and the ringdown
frequency fnGR

RD (bottom). The (gray) line shown is each dia-
gram represents the standard GR waveform for αnGR = 0.

We perform matched filtering techniques on a set of
modified waveforms to address this question. Figure (5)
shows the match calculated for a range of total system
masses such M ∈ [20, 200] M�. The values of αnGR con-
sidered were chosen such that αnGR ranges from -0.5 to
0.5, where αnGR = 0.0 is the standard GR waveform,
such as those shown in fig. (2).

We find that, in general, modifications to the pre-
merger and ringdown amplitudes do not result in a large
loss in match. The loss in match can be considered as a
probe for how steeply the SNR is affected by these mod-
ifications, because of the relationship shown in eq. (24),
Match ∝ ρ. For example, in fig. (5) we see that for
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FIG. 5. Match calculations for a range of total system masses from 20 M� to 200 M� for modifications to the pre-merger
amplitude (top-left), ringdown amplitude (top-right), pre-merger frequency (bottom-left), and ringdown frequency (bottom-
right). The calculations used parameters listed in Table (I).

even the largest modification considered (αnGR = ±0.5)
the match yielded falls by ∼ 0.3% from a value of unity
obtained with the standard GR waveform for the pre-
merger amplitude (top-left panel) and by ∼ 0.1% for the
ringdown amplitude (top-right panel). However, for the
same modification values considered we see that the pre-
merger and ringdown frequencies are much more sensi-
tive to deviations. In fig. (5) we see the match for the
pre-merger frequency falls by ∼ 15% for αnGR ± 0.5 and
total mass M = 200 M�. For lower mass systems (e.g.,
M = 60 M�), the loss in match in much steeper when
modifying the ringdown frequency (bottom-right panel)
in fig. (5), with the match falling by ∼ 20% from unity.

VI. PARAMETER ESTIMATION

An important step in analyzing GW data is the ability
to estimate the parameters of the astrophysical source
form which the detection originated. To quantify our
ability to recover injected parameters form weak GW sig-
nals in the presence of noisy data, we use a nested sam-
pling MCMC algorithm within lalinference. Given
some data d, we wish to understand how well we can esti-
mate parameters using standard GR waveform templates
with the increased aLIGO design ASD. Additionally, we
look to explore the difference in parameter recovery when
using modified waveforms. We outline the input param-
eters used for our MCMC calculations in tbl. (II). This
section will focus on modifications to only the ringdown
frequency as described in sec. (IV B).
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FIG. 6. Predictive posterior distribution of αnGR given the data d for a set of pinned parameters and an injected value of
αnGR = 0.0 (left panels) and αnGR = 0.4 (right panels). The 68% confident interval is shown by the (dashed-red) lines while the
95% confident interval is shown by the (dashed-black) lines. The injected chirp mass for the low mass system (top panels) was
Mchirp ∼ 8.65 M� and M = 20M�, with a source distance of D = 99.95 Mpc, and SNR ∼ 24. While the injected chirp mass
for the high mass system (bottom panels) was Mchirp ∼ 86.99 M� and M = 200M�, with a source distance of D = 112.95
Mpc, and SNR ∼ 174.

TABLE II. lalinference Parameters

Parameter Value

Live Points (Nlive) Nlive ≥ 512
Max MC Length (Lmax) 256
Lower Frequency (flow) 10 (Hz)
Detectors L1,H1
Power Spectral Density (SaLIGO) aLIGO DESIGN

We perform four lalinference calculations using
αnGR = 0.0 for M ∼ 8.65 M� (hereafter “low-mass”),

and Mchirp ∼ 86.99 M� (hereafter “high-mass”) then
repeat the calculations using αnGR = 0.4. In fig. (6) we
show the predictive posterior probability distribution for
a MCMC calculation utilizing the numerical parameters
outlined in tbl. (II). The (top-left) panel shows the low

mass calculation for which αinj
nGR = 0.0. The 68% con-

fident interval is shown by the (dashed-red) lines while
the 95% confident interval is shown by the (dashed-black)
lines. This provides a baseline against which we can ex-
pect to be able to measure our new non-GR parameter
αnGR. We see that although we have not introduced a
modification to our waveform here, our 95% confidence
interval spans a value of −0.1 . αnGR . 0.44 for a fixed
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chirp mass of M ∼ 8.65 M� and an SNR of 23.3. For

αinj
nGR = 0.4 (top-right panel), we see a similar distribu-

tion with a peak near the injected value. While we see
that the distributions tend towards the injected values,
we see a broad range for our 95% confidence intervals
(C.I.), ∆α ∼ 0.52 for αinj

nGR = 0.0 and ∆α ∼ 0.3 for

αinj
nGR = 0.4. The smaller range for αnGR = 0.4 is likely

due to that in our numerical implementation, we limit
the MCMC sampler to values of αnGR ∈ [−0.5, 0.5]. If
the sampler were able to attempt values beyond 0.5, we
would expect a similar width for our low mass αinj

nGR = 0.0
posterior distribution.

In stark contrast to our ability to measure αnGR for
relatively low mass BBH systems, we show the posterior
probability for a higher mass system in fig. (6) (bottom
panels). Similar to the low mass systems, the parame-
ters utilized initialization values enumerated in tbl. (II).
In the (bottom-left panel) of fig. (6) we see the posterior

probability for an injected value of αinj
nGR = 0.0. The 68%

confidence interval region is shown by the (red-dashed)
vertical lines. We see that higher mass systems we can
provide a much stronger constraint on measurements per-
formed on our non-GR. This distribution suggests that
with 98% confidence, we can assume that αnGR lies with
-0.004 and 0.011. For αinj

nGR = 0.4, fig. (6) bottom-right
panel, we see a similar trend. The posterior spans a nar-
row range about the injected value, allowing us to claim
with 95% confidence αnGR is between 0.394 to 0.409. The
increase in our ability to measure such small deviations
of standard GR waveforms in high mass systems can be
directly attributed to the increase in SNR for these sys-
tems. The increase in mass shifts the waveform higher
into the aLIGO sensitivity curve, e.g., the 200 M� sys-
tem in fig. (2). The range of the 95% confidence intervals
for high mass systems is significantly less than those for
low mass. With αnGR = 0.0, we find ∆α ∼ 0.015 and for
αnGR = 0.4 we also find ∆α ∼ 0.015.

VII. DISCUSSION

We have investigated modifications to the phenomeno-
logical waveform template IMRPhenomC by introducing
a multiplicative parameter αnGR to different physical
parameters used in the construction of the complete
inspiral-merger-ringdown evolution of binary black hole
systems. For these modified waveforms we have per-
formed overlap studies for a range of total mass systems
between 20 M� to 200 M�. Furthermore, we have com-
puted the predictive posterior probability distribution for
modifications to the ringdown frequency using the ASD
for the expected aLIGO GW detector. We now compare
our results with previous efforts and discuss implications
for next generation GW detectors.

Work by Agathos et al. [18] found that a GR violation
of as small as 10% can be distinguished in BNS systems
to nearly 100%. They used similar statistical methods
including the odds ratio calculated within the Bayesian

framework. With as few as 15 sources, they show that
one can separate an event in which a 10% modification
to the TaylorF2 at 1.5PN order. While our results agree
with the ability to strongly distinguish between GR and
non-GR sources for high mass BBH systems, we do not
reach such precision for our low mass systems. However,
if our calculations were carried out on multiple sources
such as in [18], we may find that a more stringent con-
straint can be placed on αnGR using low mass BBH merg-
ers. Furthermore, we consider less parameters for our
investigation that could impact this result e.g. detector
calibration, spin, etc.

VIII. CONCLUSION AND FUTURE WORK

We have shown that high mass BBH systems are effi-
cient in detecting small deviations from GW waveforms
as predicted by GR. Deviations form GR can be mea-
sured with 98% confidence from ∼ -0.005 to 0.01 of its
standard GR value. This result suggests that next gener-
ation GW detectors such as Advanced LIGO can measure
such deviations to high precision. Furthermore, we find
that low mass systems are not as efficient in distinguish-
ing small deviations from GR, but provide a C.I. range
that can be used with other analysis methods to reach a
precision as those for the higher mass systems.

Future work includes using the methods described here
different waveforms and additional intrinsic parameters
not considered here e.g. spin, mass ratio, source dis-
tance, etc. Additionally, one should investigate the de-
generacies that arise by introducing a generic modifica-
tion to the standard waveform. For example, a value
of αnGR = 0.1 applied to modify the ringdown fre-
quency could shift the waveform in the frequency do-
main such that although we know a priori, the total mass
M = 20 M�, the deviation causes the recovered total
mass to be larger e.g. M = 20 ± 2 M�. The method
should also be extended to allow generic modifications
to arbitrary waveform parameters found in other tem-
plates such as TaylorF2, IMRPhenomD, SpinTaylorT4
etc. Lastly, a rigorous framework should then be im-
plemented with the GW analysis package lalsuite to
allow for further study and robust parameter estimation
studies beyond GR.
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