Advanced LIGO: Output Mode Cleaner

Koji Arai (Caltech)

Detchar call: aLIGO Subsystems Talks Jul 20, 2015 LIGO-G1500940

What is the OMC?

Advanced LIGO Output Mode Cleaner (OMC)

- ... is an optical cavity built on a fused silica plate. This optical breadboard is suspended by OMCS on HAM6 ISI
- ... is the last optical interface where the light from the interferometer light is converted to GW signals
- ... is designed and configured to transmit the signal field on the carrier light as much as possible, while removing any other field like carrier higher-order modes and any RF modulation sidebands

Where is the OMC?

LIGO-G1500940 P3

Where is it placed?

LIGO-G1500940 P4

Where is the OMC?

HAM6 Optical layout

- Septum window

- OM1 Tip-Tilt Suspension (HTTS) (Mode matching mirror)
- OM2 Tip-Tilt Suspension (HTTS) (Mode matching mirror)
- OM3 Tip-Tilt Suspension (HTTS)
- OMC Suspension (OMCS)
- OMC optical breadboard

Why do we need the OMC?

DC Readout

DC Readout: G030460 T0900023 P1000009 G1101153

aLIGO employs "DC readout" scheme for sensing of GW signals

DC Readout is good:

- removes nonstationary shot noise
- mitigates technical noises associated with the RF modulation

Why do we need the OMC?

Enemies of the DC Readout

- Carrier higher-order modes (HOMs)
- RF modulation sidebands (any spatial modes)
- => No contribution to the signal and increase the shot noise

eLIGO AS port beam

Output mode cleaner

A short (~1m) optical cavity for the filtering of these optical fields

Finesse of our OMC: ~400, aiming for ~98% transmission (in reality, 93~97%)

Signal transmittance

OMC Design: T1000276

How was it designed ~ Filtering Performance

Important parameter: Transverse Mode Spacing (TMS)

An optical cavity has a repetitive resonant structure

If TMS/FSR is a rational number (m/n), n-th order HOMs get transmitted

TMS/FSR is dependent on the cavity geometry =>Careful adjustment of TMS/FSR is the key to avoid HOMs

The OMCs have been built so as to have the first coincident resonance of 32nd carrier higher order mode

OMC Design, Characterization: T1000276 G1300952 G1301001 T1500060

LIGO-G1500940

What's on the OMC?

LIGO-G1500940 P8

OMC Breadboard "Bottom" side

2 x DCPDs (GW signal!)

OMC Suspension (OMCS)

Double pendulum suspension

The OMC cavity is at the bottom side!

OMCS: D0900295 T080117

LIGO-G1500940 P9

The middle stage has

BOSEM sensor/actuators

OMC control screen

Control / Noise: G1301007 RCG Codes & MEDM Screens: E1500161

OMC cavity length control

- Cavity length needs to be adjusted for the carrier TEM₀₀ mode

- => Failing this induces **linear** coupling between the OMC length fluctuation to DARM
- => Otherwise it is **bilinear**
- Dither cavity length at f>1kHz
 - => Demodulate the transmitted light at the modulation freq
 - => Do not distinguish the modes: mode id necessary

Sensitive to the noise at the modulation frequency (e.g. LHO ALOG 18034)

OMC cavity length noise coupling to DARM (e.g. LHO ALOG 19212 by Dan Hoak)

OMC angular control

- Input beam alignment (4 dofs)

=> Failing this induces **linear** coupling between the OMC beam alignment fluctuation to DARM

160-61500940

- Option1: Control with onboard OMC QPDs
 - => Robust, better S/N
 - => Difficult to determine the operating point?
 (How to do it if mode shape is constantly changing?)
- Input beam dither (above 1kHz) / transmission demodulation
 - => Maximize the transmission
 - => Low S/N & Slow

OMC angular control

 The beam on the OM1 is pinned by an ASC servo (AS_C QPD -> SR2 & SRM)

- Error signals in HAM6 (AS WFS A/B pointing 4dof, OMC ASC 4dof)

1GO-G1500940

- Actuator in HAM6 (OM1-3 Pitch&Yaw = 6dof)
 - => 2 actuator dofs missing!

LLO can operate without one of the WFS => ignore this pointing

LHO needs both WFS for operation

=> Use OMCS as an actuator

=> Causes scattered light noise depending on the OMCS motion (OMs also cause this noise)

How is the DARM signal obtained P15

DC Readout

Normalization: T0900023 RCG Codes & MEDM Screens: E1500161 RCG Code: modification: LHO ALOG 18437

- The DARM signal: obtained from the sum of the two DCPD outputs.

- The DCPDs have in-vacuum preamplifiers and whitening (Characterization T1300552)

Input Filters

 The transfer functions of the in-vacuum amps have to be compensated by the input filters.
 (This is a calibration matter, LHO ALOG 17647, LLO ALOG 18223)

Scattered light noise

Back scatter from/via the OMC

- Back propagates the optical path and couple to the arm field
- Scattering from or at the OMC: The first fringe wrapping shelf
- Scattering from the OMC reflection path: The second fringe wrapping shelf which has the twice fringe velocity.

Scattered light noise

LIGO-G1500940 P17

OMC Shroud

- Black glass beam baffles: The scattering that happens around the OMC breadboard will be attenuated.

Mode matching

LIGO-G1500940 P18

OMC Mode mismatch

- Loss of the signal degrades the shot noise level: This would particularly become a problem when an input squeezing is used

OMC mode scan & OMC beacon scan LHO ALOG 17782

Low loss squeezing T1400715

LIGO-G1500940 P19

Spare slides

OMC cavity design

LIGO-G1500940 P20

Basically eLIGO OMC design was followed

Bowtie 4-mirror ring cavity
 even mirrors => simpler HOM structure
 ring cavity => less back scattering

Finesse: ~400 (for ~98% transmission)
 Roundtrip length ~1m (the breadboard size)
 Curved mirror radius ~2.5m

Filtering Performance

Estimation of the filtering performance

- Total transmitted power
- = \sum (power in each mode) x (transmission of each mode)
- Modeling of the interferometer output beam (details in G1201111) power laws based on the eLIGO performance of the IFO optics

This wouldn't be a prediction, but have some usefulness, anyway

Filtering Performance

Estimated filtering performance

- Expected junk light power at the dark port (100W input = 4kW @BS)
 ~12W leakage => filtered down to 1mW. <u>Well within the PD capability.</u> This could become better thanks to mode healing and better optics in aLIGO
- Cavity length tolerance: L=1.132 +/- 0.005 [m]
- Mirror RoC tolerance: R=2.575 +/- 0.015 [m]

Power Budget			
Estimated from the input power, transmitted power,			
sibility, and cavity finesse		Specfication	
Cavity transmission for TEM00: 97.8 %		98.4 %	
Curved mirror transmission:	42 ppm	50	ppm
Loss per bounce:	22.3 ppm	10	ppm
Loss per roundtrip:	173 ppm	140	ppm
PD Q.E.	92%		
Total thruput of TEM00	90%	(PD Q.	E. = 92%)

About 20% total loss allowed for 6dB squeezing.

A half of the budget already eaten up by the OMC. (**not nice**) These PDs were previously (eLIGO) reported to have Q.E.>95% Need further investigation (or replacement)