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0. Outline of this talk

• 1. Introduction: higher order modes and 
data analysis.

• 2. Previous studies.

• 3. Analysis set up.

• 4. Effect on detection.

• 5. Parameter Bias.
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1.Gravitational Wave 
Search: very basics

A GW is emitted  It reaches a detector(we hope to model it well)

and modifies the data stream: 
noise+GW

1st step:   Signal-to-noise Ratio     (SNR)
2nd step: Distinguish from glitches (vetoes)

Ranking statistic: newSNR...
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1.2 Data analysis basics

Signal-to-noise ratio

Overlap

Fitting Factor

Horizon Distance

Inner product

ρ(s|h) = 2
�s|h��
�h|h�

�h|g� = 4

� ∞

f0

h̃(f)g̃∗(f)

Sn(f)
df

O(h|g) =
�h|g��

�h|h��g|g�

FF (h|B) = maxg∈BO(h|g)

hD(h|g) ∼ ρ(h|h)×O(h|g)

Overlap

Signal-to-noise ratio
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1.2 Higher order modes
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1.2 Higher order modes
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1.2 Higher order modes
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Interesting situations
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2. Previous studies 7

FIG. 6: Overlaps in source-centric coordinates, φ horizontally
and ι vertically, between the complete waveform and the (2, 2)
mode for Top: the non-spinning q = 1 and q = 4, Middle

the precessing P01 and P02 and Bottom: the precessing P03
signals from tab.(I). The general features of the non-spinning
images are representative of all mass ratios and (anti-) aligned
spin systems; overlaps are 1.0 at ι = 0,π where the full signal
reduces to the (2,2) mode, and are lowest at ι = π/2. There
is more interesting structure in the precessing cases.

signals, but how far away can a single detector see these
cases? We quantify how important the modes will be in
terms of SNR and volume reach in the next section.

V. SNR AND VOLUME

As noted at the end of § II, the overlap is equal to
the fractional loss in distance to which a signal can be
detected, but this value should be viewed in light of the
maximum possible distance. This maximum distance de-
pends on three factors: (1) the total energy radiated by
the source, (2) the ability of the template to extract en-
ergy of the signal from the background noise and (3) the
location of the source in the sky of the detector. For
example, in the plane of the detector along the lines 45
degrees to the arms, the response goes to zero. Along
these lines the loss in range implied by a low overlap is
irrelevant for a single detector. In this section we con-
sider the accessible distances, noting the influence of all
three factors.

We start with fig.(9), which shows the radiated energy
and distances accessible using the hideal templates, as

ID q a % of area Average Median Minimum

≥ 0.97

H01 1 0 100 0.997 0.998 0.995

H03 3 0 51 0.955 0.951 0.918

H04 4 0 43 0.937 0.931 0.885

H05 5 0 40 0.927 0.920 0.868

H06 6 0 37 0.916 0.907 0.847

H07 7 0 36 0.907 0.898 0.840

H08 10 0 36 0.903 0.892 0.826

H09 15 0 35 0.897 0.886 0.817

S01 1 -0.4 100 0.997 0.997 0.993

S02 1 0.4 100 0.997 0.997 0.994

S03 1 0.8 100 0.997 0.997 0.994

P01 4 0.6 (90◦) 13 0.883 0.889 0.741

P02 4 0.6 (150◦) 41 0.938 0.939 0.852

P03 4 0.6 (210◦) 28 0.933 0.942 0.816

TABLE II: Summary values of the overlaps between the (2,2)
mode and the full template as a function of the orientation
angles (ι,φ). Names in parenthesis refer to tab.(I). Note that
the P01 precessing system has lower overlaps, and a smaller
fraction of overlaps greater than 0.97, then the other systems.

FIG. 7: Overlaps between the complete waveform and the
(2, 2) mode for non-spinning waveforms with mass ratios from
1 to 15, with all angles and total mass chosen randomly. At
higher mass ratio more of the total power is distributed into
the higher modes and the match drops accordingly.

a function of the source orientation. As expected, the
range tends to be lowest where the least power is ra-
diated, although the energy and distance plots are not
identical due to weighting by the noise curve. The en-
ergy, and hence distance, plots have the same general
shape as those corresponding in fig.(6), indicating that
the overlaps between the signal and h22 are lowest at
orientations where the energy and distance reach of the
ideal template are also lowest. This is due to the fact that

Pekowsky et. al.:PhysRevD.87.084008
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(a) q = 1, M = 100M⊙ (b) q = 8, M = 100M⊙

FIG. 4: Optimal SNR averaged over polarization angle ψ for binaries located at 1 Gpc. The y-axis shows the inclination angle ι in radians and
the x-axis shows the initial phase of the binary ϕ0 in radians. The left (right) corresponds to binaries with mass ratio q = 1 (q = 8) and total
mass M = 100M⊙.

(a) q = 1, M = 100M⊙ (b) q = 8, M = 100M⊙

FIG. 5: Fitting factor of quadrupole templates for different orientation angles, averaged over polarization angle ψ. The y-axis shows the
inclination angle ι in radians and the x-axis shows the initial phase of the binary ϕ0 in radians. The left (right) panel correspond to binaries with
mass ratio q = 1 (q = 8) and M = 100M⊙. It may be noted that the fitting factor is smallest (largest) at ι = π/2 (ι = 0, π) where contribution
from the non-quadrupolar modes is the largest (smallest).

D. Choice of template waveforms

We use the quadrupole modes (� = 2,m = ±2 modes) of
the EOBNRv2 [5] waveform family as detection templates for
this study. These waveforms have very good agreement with
the quadrupole modes of the hybrid waveforms discussed in
the previous section. Note the EOBNRv2 also includes the
effect of non-quadrupole modes. However, since this study
aims to understand the effect of neglecting the non-quadrupole
modes, we take only the quadrupole modes of EOBNRv2 as
templates. The waveforms are generated in time-domain using
the LALSimulation [63] software package.

E. Detector model, computation of the fitting factor

In our study we use the “zero-detuned, high-power” design
noise PSD [64] of Advanced LIGO with a low frequency cut-
off of 20 Hz. To compute the fitting factor [see Eq. (2.8)], the
maximization of the inner product over the two template pa-
rameters ϕ0 and t0 is performed using the standard techniques
– by taking the absolute value of the inner product defined
in Eq. (2.5) and by maximizing the correlation function by
means of a Fast Fourier Transform. Maximization of the in-
ner product over the mass parameters is performed using the

Nelder-Mead down-hill simplex maximization algorithm as
implemented in SciPy [65]. We choose to do this maximiza-
tion in the two dimensional space of chirp massM ≡ Mη

3
5

and symmetric mass ratio η ≡ m1m2/M2.

IV. RESULTS AND DISCUSSION

A. Effectualness of quadrupole-mode templates

In this section, we evaluate the effectualness of the
quadrupole-mode templates by computing the fitting factor of
a quadrupole-mode-only inspiral-merger-ringdown template
family, EOBNRv2 against the hybrid waveforms described in
Section III C.

It is evident from Eqs. (2.1) and (2.2) that the observed GW
signal h(t) depends on angles ι, ϕ0, ψ, θ and φ. However, the
dependence of h(t) on θ and φ comes as an amplitude scaling
and a constant phase shift (see, e.g., [17]). While the observed
SNR has a strong dependence on θ and φ, since the match
between the signal and template is computed using normal-
ized waveforms, the match has only very weak dependence
on these angles. Hence we set θ = φ = 0 in this study. The
error introduced by this restriction is very small (∼ 0.1%) due
the weak dependence of the matches on θ, φ and the strong se-
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templates. The waveforms are generated in time-domain using
the LALSimulation [63] software package.
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ner product over the mass parameters is performed using the

Nelder-Mead down-hill simplex maximization algorithm as
implemented in SciPy [65]. We choose to do this maximiza-
tion in the two dimensional space of chirp massM ≡ Mη

3
5

and symmetric mass ratio η ≡ m1m2/M2.

IV. RESULTS AND DISCUSSION

A. Effectualness of quadrupole-mode templates

In this section, we evaluate the effectualness of the
quadrupole-mode templates by computing the fitting factor of
a quadrupole-mode-only inspiral-merger-ringdown template
family, EOBNRv2 against the hybrid waveforms described in
Section III C.

It is evident from Eqs. (2.1) and (2.2) that the observed GW
signal h(t) depends on angles ι, ϕ0, ψ, θ and φ. However, the
dependence of h(t) on θ and φ comes as an amplitude scaling
and a constant phase shift (see, e.g., [17]). While the observed
SNR has a strong dependence on θ and φ, since the match
between the signal and template is computed using normal-
ized waveforms, the match has only very weak dependence
on these angles. Hence we set θ = φ = 0 in this study. The
error introduced by this restriction is very small (∼ 0.1%) due
the weak dependence of the matches on θ, φ and the strong se-

Varma et. al.:PhysRevD.90.124004
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find that the match (that was not maximized over the masses
of the templates) can be lower than 0.97 for up to 65% of
source orientations. However, orientations that correspond to
the least matches also correspond to those with least intrinsic
luminosity, therefore the effect of sub-dominant modes is sup-
pressed. While Pekowsky et al calculated matches using the
same parameters for the target and template waveforms, actual
GW searches employ a template bank over which the match
is maximized. Brown et al [18] studied the same problem
using a template bank of quadrupole-mode-only effective-one-
body waveforms calibrated to numerical relativity simulations
(EOBNRv2) [5]. This study, which employed EOBNRv2
waveforms that include sub-dominant modes as the “target
signals”, concluded that for non-spinning BBHs with compo-
nent masses 3M⊙ ≤ m1,m2 ≤ 25M⊙, the maximum loss in the
detection rate for a binary with given mass parameters (after
averaging over other parameters) is less than ∼ 10%. While
Brown et al’s investigation considered only binaries with
m1,m2 ≤ 25M⊙, non-quadrupole modes are expected to be
more important for binaries with even higher masses. Capano
et al [19] recently extended this study to m1,m2 ≤ 200M⊙.
While the study by Brown et al characterized only the loss
of SNR of the quadrupole-mode template bank, Capano et
al studied, in addition to this, the effect of non-quadrupole
modes on the “χ2” signal-based veto. They also compared the
efficiency of a search employing “full-mode” templates with a
search using only quadrupole-mode templates after consider-
ing the increased false alarm probability (due to the increase
in the number of templates). They conclude that, a search
employing a full-mode template bank will actually result in a
worse sensitivity than one employing a quadrupole-mode-only
bank for q � 4 due to the increase in threshold SNR required
to keep the false alarm probability fixed. For binaries with
q > 4, inclusion of higher modes in the waveform templates
can produce a moderate improvement in the detection volume.

While the studies mentioned above investigated the effect
of non-quadrupole modes on the detection of GWs, Litten-
berg et al [20] studied the systematic errors in the estimated
parameters and compared them against the expected statisti-
cal errors using a parameter estimation algorithm employing
Markov-Chain Monte-Carlo (MCMC) technique. Because of
the computational cost of the MCMC algorithm, the study had
to be restricted to a few sample points in the parameter space.
They concluded that, for binaries in the range 1 ≤ q ≤ 6 and
M < 60M⊙ with a fixed inclination angle ι = π/3, the system-
atic errors introduced by neglecting non-quadrupole modes
are smaller than the expected statistical errors at SNR � 12.
However, for larger masses (M = 120M⊙, q = 6, ι = π/3), they
have found that neglecting higher modes will cause systematic
biases larger than the statistical errors at SNR � 12.

B. Summary of this study

While the study by Pekowsky et al uses NR waveforms
as target signals, it was rather incomplete in taking into ac-
count all the relevant aspects of the GW searches. The studies
by Brown et al and Capano et al, while being exhaustive in
considering the relevant aspects of the GW searches, use a
semi-analytical waveform family (EOBNRv2, which models
only 4 sub-dominant modes) to describe the target signals.
Here we supplement the earlier work by revisiting this prob-
lem: As our target signals, we use “hybrid waveforms” con-
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FIG. 1: This plot summarizes the region in the parameter space
of non-spinning black-hole binaries where contributions from non-
quadrupole modes are important for GW detection and parameter
estimation. The bottom horizontal axis reports the symmetric mass
ratio of the binary while the top horizontal axis shows the mass
ratio. The vertical axis reports the total mass. Shaded areas show
the regions in the parameter space where the loss of detection rate
due to neglecting non-quadrupole modes is larger than 10% and/or
the systematic bias in the estimated parameters is larger than the
expected statistical errors for a sky-averaged SNR of 8.

taining all the relevant modes (with � <= 4). The hybrid
waveforms are constructed by matching NR simulations de-
scribing the late inspiral, merger and ringdown of the binary
with PN/EOB waveforms describing the early inspiral. We
consider the effective volume of a search (1 −loss of detection
rate) using quadrupole-mode template banks after averaging
over all the relative inclinations of the binary with respect to
the detector. Our results are broadly in agreement with those
obtained by Capano et al. In addition to the detection aspect,
we also study the effect of sub-dominant modes in parameter
estimation by characterizing the systematic errors in estimat-
ing the binary parameters using a quadrupole-only template
family. While Littenberg et al studied the systematic and sta-
tistical errors at a handful of points in the parameter space
(assuming fixed orientation for target binaries), we compare
the systematic biases averaged over all angles describing the
relative orientation of the binary and compare them against
the sky-averaged statistical errors. While Littenberg et al used
an MCMC algorithm to compute statistical and systematic
errors, we compute the systematic errors by maximizing the
match of the quadrupole-only template bank with the target
signals including all modes. Statistical errors are computed
using the Fisher matrix formalism employing quadrupole-only
templates. Wherever comparisons are possible, our results are
broadly in agreement with those of Littenberg et al.

We consider non-spinning BBHs with total masses 20M⊙ ≤
M ≤ 250M⊙ and mass ratios 1 ≤ q ≤ 18. Hybrid waveforms
with q ≤ 8 are constructed by matching NR waveforms com-
puted by the SpEC code [21–33], kindly made public by the
SXS collaboration [34], with PN/EOB waveforms describing

-Match lower than 0.97 for most orientations. 
These produce however the lowest SNR.
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for switching between dominant-mode and sub-dominant mode templates.

(tiles above the black-dashed line) are one to four orders
of magnitude smaller than equal mass-ratio systems with
equivalent total masses. Using the split-bank is therefore
unlikely to substantially increase the probability of mak-
ing a gravitational-wave detection over a dominant-mode
bank unless there is a large population of high-mass ratio
IMRIs in the universe.

In order to use a split bank more investigation is
required to establish how exactly to use sub-dominant
modes in a real search. Open questions include how to
search over θ and φ,15 and how to apply a coincidence test
between multiple detectors. Given that using a split bank
has negligible impact on the overall probability of making
a gravitational-wave detection in advanced LIGO, simply
using a dominant-mode bank everywhere may be more
desirable.

We did not try to predict advanced LIGO BBH detec-
tion rates, as doing so would require a choice of astro-
physical rates. However, Fig. 10 can be used to predict
detection rates if a particular astrophysical rate is as-
sumed. The volumes given in Fig. 10 are for a split
bank; dividing the sensitive volumes by the net gains

15 One possibility is to simply place templates in θ and φ using the

stochastic method described in Ref. [53] In that case, the SNR

of each template would be found using Eq. (A20).

given in Fig. 9 yields the sensitive volumes if a dominant-
mode bank is used everywhere instead. For example, if a
dominant-mode bank is used, the sensitive volume of the
largest-mass ratio tile is ∼ 0.2Gpc3 instead of 0.43Gpc3.
The sensitive volumes we report were calculated using a
single detector. Since real searches use a network of de-
tectors, actual sensitive volumes may vary depending on
the relative sensitivities of each detector.

We emphasize that in this study we only considered
non-spinning signals. Sub-dominant modes are likely to
play a more important role when one or both of the com-
ponent masses are spinning. Currently, there are no spin-
ning waveform models available with merger and ring-
down that include sub-dominant modes. Once such wave-
forms become available, creating a sub-dominant mode
search may be more advantageous. Since our analytic
maximization over κ in Appendix A is still valid if the
component masses are spinning, the result therein [specif-
ically Eq. (A20)] can be used in such a search.

A dominant-mode EOB model calibrated to numeri-
cal relativity that incorporates spins aligned with the or-
bital angular momentum does currently exist [54], as well
as spinning “phenomological” models derived from nu-
merical relativity [55, 56]. Past BBH searches have only
used non-spinning templates, but there is much work cur-
rently on-going to extend template banks into the spin-
ning regime [53, 57]. Doing so brings up many of the

-Reduction of sensitivity
due to the larger number 

of templates.

-Worth to include higher 
modes for certain part of

the parameter space

Capano et.al.:Phys. Rev. D 89, 102003 (2014)

-All considered the design Advanced LIGO curve (f0=10Hz).
-Restricted to non-spinning targets and template banks.

-We extend to aligned-spin searches and early Advanced LIGO (f0=30Hz).
-We also consider a non-spinning search for initial LIGO (f0=30Hz).15



3. Target waveforms

• Hybrid PN/NR waveforms including higher modes. [jcb et.al. arXiv:1501.00918]

• PN Taylor T1 to 3.5PN order phase and 3PN order amplitude. Higher modes amplitudes up to 2PN.

• Numerical Relativity from SXS catalogue [www.black-holes.org]. Data extrapolated to null infinity to order N=2.

• Templates belong to the SEOBNRv1_ROM family [Pürrer.  2014 Class. Quantum Grav. 31 ]. 
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• Hybrid PN/NR waveforms including higher modes. [jcb et.al. arXiv:1501.00918]

• PN Taylor T1 to 3.5PN order phase and 3PN order amplitude. Higher modes amplitudes up to 2PN.

• Numerical Relativity from SXS catalogue [www.black-holes.org]. Data extrapolated to null infinity to order N=2.

• Templates belong to the SEOBNRv1_ROM family [Pürrer.  2014 Class. Quantum Grav. 31 ]. 
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The overlap of h and g is then defined as

O =
�h|g��

�h|h��g|g�
. (3)

The signal-to-noise-ratio (SNR) of a signal s when filtered
with a template h is then given by

ρ = 2
�s|h��
�h|h�

. (4)

An incoming signal s is in general a combination of a
GW signal g and background noise n. If one assumes the
background noise to be Gaussian and with zero-mean, as
we will do in this paper, the SNR is directly related to
the probability that h is buried in s and to the distance
at which it can be detected. Let us denote (θ,ϕ,ψ) ≡ Λ.
We then define the match Mhg as the overlap O(h|g)
maximized over relative time-shifts and the extrinsic pa-
rameters of g, Λg. The fitting factor (or effectualness)
F of a bank B containing waveforms hB

i with intrinsic
parameters ΞB

i to a waveform h is then defined as [9]

FBh = max
i

Mhh
B
i (Ξ

B
i ) (5)

and represents the fraction of SNR that the bank B can
recover from the waveform h at the cost, in general, of a
bias δΞ in the estimation of the intrinsic parameters Ξ of
h. This is, if hB is the waveform of B which has the best
overlap with h, then in general, ΞB = Ξ+ δΞ.

IV. ANALYSIS SET UP

We used as target signals hybrid PN/NR waveforms
containing HM as built in [18] using PN TaylorT1 data
and NR waveforms extrapolated to null infinity to poly-
nomial order N = 2. The latter were obtained from
the publicly available SXS catalogue [23][24] [25] [26].
The (2, 2) mode of all the waveforms starts at 10Hz for
M = 45M⊙. The cases q �= 1 included the {2 ± 1, 2 ±

2, 3±2, 3±3, 4±3, 4±4}modes while q = 1 cases included
the {2±2, 3±2, 4±4} modes. For each hybrid waveform
h in Table we constructed all the signals hi,j(Ξi,Λj) for
all the values of M and Λ in Table. II The described
grid suffices for describing all the possible (θ,ϕ,ψ) since
in the non-precessing case it holds

h(π − θ,ϕ,ψ) = h(θ,ϕ,π − ψ)

h(θ,ϕ,π + ψ) = −h(θ,ϕ,ψ).
(6)

As bank templates we employed waveforms belong-
ing to SEOBNRv1-ROM family [27], which ranges in
q ∈ (1, 80). χ ∈ (−1, 0.6). For each target waveform
hi,j(Ξi,Λj) we computed Fi,j = FBhi,j , the correspond-
ing recovered intrinsic parameters ΞB

i,j and the optimal

SNR ρi,j =
�
�hi,j |hi,j�. Maximization of the fitting fac-

tor over Ξ, was performed running several Nelder Mead
Simplex algorithms as implemented in [28]. We let each

SIM ID q χ PN Mω0

SXS:BBH:0168 3 0 T1 0.043

SXS:BBH:0167 4 0 T1 0.045

SXS:BBH:0166 6 0 T1 0.045

SXS:BBH:0063 8 0 T1 0.043

SXS:BBH:0150 1 +0.2 T1 0.035

SXS:BBH:0149 1 -0.2 T1 0.043

SXS:BBH:0046 3 +0.5 T1 0.038

SXS:BBH:0047 3 -0.5 T1 0.043

TABLE I. Summary of hybrid waveforms used as target wave-

forms. If one expresses h2,2 = A2,2e
iφ2,2 , A2,2 being real,

Mω0 = Mdφ2,2/dt indicates the hybridization frequency of

the (2, 2) mode.

Magnitude M cosθ ϕ ψ
Range [50,218]M⊙ [0, 1] [0, 2π) [0,π)
Step 12M⊙ 0.05 π/20 π/6

TABLE II. Grid in Mass and angles Λ used for our studies.

of the runs start at different initial regions of the param-
eter space and the highest result was chosen as the true
fitting factor Fi,j . We then computed the fraction of the
optimal and suboptimal volumes in which a system hi

with parameters Ξi can be detected as

∆V [%] = 100×Ri = 100×
��

j F
3
i,jρ

3
i,j�

j ρ
3
i,j

�
(7)

and the effective fitting factor F
eff
i = R1/3

i . The mean
recovered parameters over the observable volume were
obtained as

ΞB
i =

��
j Ξ

B
i,jF

3
i,jρ

3
i,j�

j F
3
i,jρ

3
i,j

�
(8)

and the corresponding averaged parameter bias as

∆Ξi = Ξi,0 − ΞB
i (9)

where Ξi,0 are the recovered parameters for the case that
the target waveform does only contain the (2, 2) mode.
This accounts for intrinsic biases of the template bank
towards our targets and allows to isolate the effect of
HM. In order to asses the significance of these biases,
we compared it to the corresponding statistical uncer-
tainty that searches are affected by due to the presence
of Gaussian noise in the data. In order to evaluate this,
we employ the indistinguishability criterion for two wave-
forms with mismatch � = 1 − O given by [29] and used
in [30]. Two waveforms are indistinguishable at a given
SNR ρ if � < 1/2ρ2. We will thus consider that param-
eter estimation[31] is not compromised due to system-
atic biases produced by the presence of HM in the target
waveform if the best matching template hB(ΞB

i ) and the
one best matching the injection with no HM hB(Ξi,0)
are insdistinguishable. This does not provide a complete
parameter estimation study, as, for instance, a bayesian
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• Compute fitting factor and SNR for all orientations and averaged fitting factor.

• Compute averaged parameter biases subtracting biases of the SEOBNRv1-ROM model to our 
quadrupolar hybrids

• Compare to statistical uncertainties due to presence of Gaussian noise in the data.
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bias δΞ in the estimation of the intrinsic parameters Ξ of
h. This is, if hB is the waveform of B which has the best
overlap with h, then in general, ΞB = Ξ+ δΞ.
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containing HM as built in [18] using PN TaylorT1 data
and NR waveforms extrapolated to null infinity to poly-
nomial order N = 2. The latter were obtained from
the publicly available SXS catalogue [23][24] [25] [26].
The (2, 2) mode of all the waveforms starts at 10Hz for
M = 45M⊙. The cases q �= 1 included the {2 ± 1, 2 ±

2, 3±2, 3±3, 4±3, 4±4}modes while q = 1 cases included
the {2±2, 3±2, 4±4} modes. For each hybrid waveform
h in Table we constructed all the signals hi,j(Ξi,Λj) for
all the values of M and Λ in Table. II The described
grid suffices for describing all the possible (θ,ϕ,ψ) since
in the non-precessing case it holds

h(π − θ,ϕ,ψ) = h(θ,ϕ,π − ψ)

h(θ,ϕ,π + ψ) = −h(θ,ϕ,ψ).
(6)

As bank templates we employed waveforms belong-
ing to SEOBNRv1-ROM family [27], which ranges in
q ∈ (1, 80). χ ∈ (−1, 0.6). For each target waveform
hi,j(Ξi,Λj) we computed Fi,j = FBhi,j , the correspond-
ing recovered intrinsic parameters ΞB

i,j and the optimal

SNR ρi,j =
�
�hi,j |hi,j�. Maximization of the fitting fac-

tor over Ξ, was performed running several Nelder Mead
Simplex algorithms as implemented in [28]. We let each
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SXS:BBH:0167 4 0 T1 0.045
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TABLE II. Grid in Mass and angles Λ used for our studies.

of the runs start at different initial regions of the param-
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and the corresponding averaged parameter bias as

∆Ξi = Ξi,0 − ΞB
i (9)

where Ξi,0 are the recovered parameters for the case that
the target waveform does only contain the (2, 2) mode.
This accounts for intrinsic biases of the template bank
towards our targets and allows to isolate the effect of
HM. In order to asses the significance of these biases,
we compared it to the corresponding statistical uncer-
tainty that searches are affected by due to the presence
of Gaussian noise in the data. In order to evaluate this,
we employ the indistinguishability criterion for two wave-
forms with mismatch � = 1 − O given by [29] and used
in [30]. Two waveforms are indistinguishable at a given
SNR ρ if � < 1/2ρ2. We will thus consider that param-
eter estimation[31] is not compromised due to system-
atic biases produced by the presence of HM in the target
waveform if the best matching template hB(ΞB

i ) and the
one best matching the injection with no HM hB(Ξi,0)
are insdistinguishable. This does not provide a complete
parameter estimation study, as, for instance, a bayesian
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FIG. 2. Top: M , Mc, and χ systematic bias for the q = (4, 6, 8) non-spinning cases. We use the same source and noise

curve code as in Fig.2. Bottom: Same for the (q;χ) = (3; 0,±0.5) in red. We use (dashed,dotted) for (“+”,“-”) spin and add

(q,χ) = (1,±0.2) case in green for eaLIGO.

atic biases. We note that, unlike the volume loss Ri, the
quantity ρ0 =

�
1/2� is extremely sensitive to tiny vari-

ations in the parameters recovered by the Nelder-Mead
algorithm, which has the risk of settling in a local maxi-
mum. In particular, for an error ∆� in the estimation of
�, one gets a variation for ρ0 of ∆ρ0 ∼ �−3/2∆�. This will
specially affect regions of the parameter space where sys-
tematic biases are lower and where the parameter space
is denser [35]: so for low mass, large mass ratio, posi-
tive spin and aLIGO. Due to this, although we run up
to 15 times some of the Nelder-Meads, Fig. 3 shows sev-
eral peaks that do only allow us to give a rough estimate
of ρ0. Also, for the same reason, for aLIGO we only
show results for M ≥ 120M⊙. Results suggest that for
aLIGO, PE at SNR ρ � 8 would be affected by HM for
M ≥ 170M⊙ and for the highest q which is consistent
with [12]. However, for the case of eaLIGO, this limit
gets reduced to M ≤ 80M⊙ due to the larger systematic
biases.

VII. CONCLUSIONS

In this paper we have addressed the impact of the ne-
glection of HOM in GW searches for binary black holes.
We have extended previous studies, which focused in non-
spinning searches, non-spinning target signals and Ad-
vLIGO to the case of single-aligned spin searches and
targets and to the case of AdvLIGO and the up com-
ing eaLIGO. We have also considered the case of a non-
spinning search and targets for the case of iLIGO. Note
that for non-spinning targets, the inclusion a spin pa-
rameter in the template bank should mitigate the effect
of neglection of HOM obtained in previous studies like

[12] and [8]. We have shown that including a effective
spin parameter in the template bank, neglection of HM
in CBC searches is likely to generate losses > 10% for
the q ≥ 6,M ≥ 100M⊙ regions of the explored param-
eter space in the case of aLIGO. This region is tinier
than that obtained in [12] (q ≥ 4), due to the fact that
they used a non-spinning template bank. However, for
the case of eaLIGO (and a nS search for iLIGO) we have
found potential losses of up to 26% (39)% due to such
a neglection. Losses of 10% happen for eaLIGO for the
q ≥ 4, M ≥ 150M⊙ and M > 50⊙ for q ≥ 6. Fur-
thermore, for the eaLIGO case, averaged systematic bi-
ases affecting parameter estimation are normally above
(∆M,∆χ,∆M) = (−5%,−10%,−0.1) for the most part
of the explored parameter space and reach values of
(−15%,−25%,−0.5) for the highest (q,M) cases. We
compared the systematic biases to the corresponding sta-
tistical uncertainties. Results for eaLIGO suggest that
measurements with SNR� 8 would be affected by the
presence of HM at M ≥ 80M⊙ for the largest q consid-
ered. In the case of aLIGO, we estimate that PE is likely
to be affected at ρ ∼ 8 for M ≥ 170M⊙ for the largest q
studied, which is consistent with [12]. The study of the
FAR of a GW search including higher modes is out of the
scope of this work. This is however is a crucial instrument
for assessing the real significance of the losses we find and
for assessing the need of such a search. Capano et al., [8]
demonstrated that the threshold SNR needed for claim-
ing a trigger would have to be raised by roughly a 10%
due to the larger number of templates needed for such
a search, which roughly means that the event losses of a
search non-including HOM w.r.t., a one including them
would be a 90% of those obtained in this paper. Also, this
paper has not considered the effect of signal-base vetoes
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FIG. 1. Left: Fractional volume loss in % for non-spinning q = (4, 6, 8) systems (in dotted, dashed, solid). Rigth: same for
(q;χ) = (3; 0,±0.5)

MCMC study [13, 32] would do, but provides a fast first
estimation of the significance of the systematic parameter
bias we recover.

V. EFFECT ON DETECTION

As a general trend, as q and M increase, the contribu-
tion from HM makes Feff decay, as expected from PN
theory. For aLIGO losses do never reach 20% for any
of the studied cases and 10% is reached for high mass
q ≥ 6 M > 100M⊙ systems. In contrast, mainly due
to their higher f0, for both eaLIGO (and iLIGO) losses
reach values of ∼ 25% (∼ 35%) for the highest q stud-
ied. Losses of 10% are achieved for all the cases except
for q = 1 (not shown in any plot) and losses of 20% are
present for iLIGO for q ≥ 4, as can be seen in Fig.1.
Furthermore, 10% losses happen for M > 50⊙ q ≥ 6 for
eaLIGO. The fact that the seismic wall determines the
different behavior of eaLIGO and aLIGO is clear from the
fact that both detectors have similar losses up to masses
of M ∼ 110M⊙, when the (2, 2) mode of the target wave-
form dominates the full signal content in the band of both
detectors and can be well filtered by a bank that only con-
tains quadrupolar modes. However, after that point, the
(2, 2) mode starts to get out of band for eaLIGO while it
remains in for aLIGO. We note that our predicted losses
for aLIGO are a a bit lower than those shown in [12]
due to the inclusion of the effective spin parameter χ in
our template waveforms. This provides an extra degree of
freedom that can be exploited by quadrupolar waveforms
to filter signals containing HM. In fact, Fig.2 shows that
large spin biases are obtained for very massive systems.
This is also the main reason for the different results ob-
tained for iLIGO and eaLIGO. Regarding the effect of
spin, no q = 1 case reached 10% losses. However for the
(q,χ) = (3,±0.5) case, losses are very similar to the ones
for (q,χ) = (3, 0) (see Fig.1, right panel). Note that in
general, losses are larger for the aligned-spin case than for
the anti-aligned one for low mass. This could be however

due to the fact that χ = +0.5 lies in the limit of valid-
ity of the SEOBNRv1-ROMmodel. For high mass results
show that contributions from HM become equally impor-
tant in terms of Feff . Furthermore, the losses observed
for χ = 0 seem a good guess of those observed for the
spinning cases, particularly for the highest masses. We
note that it would have been interesting to study cases
with spins closer to ±1 and higher mass ratios. However,
the only case with reasonably high spins and mass ratio
available in the SXS catalogue was the q = 3,χ = ±0.5
used here.

VI. PARAMETER BIAS

Due to its importance in GW data analysis, we will
express results not for (q,M) but for the so called chirp
mass Mc[33] and M . Before discussing the averaged sys-
tematic errors measured due to the neglection of HOM,
we want to note that the intrinsic parameter bias χi, 0 of
the SEOBNRv1-ROM model towards our hybrids con-
taining only the quadrupolar modes were never larger
than (|∆M |, |∆Mc|, |∆χ|) = (2%, 2%, 0.04), except for
the (q,χ) = (3,+0.5) case, for which these reached max-
imum values of (4%, 6%, 0.05)[34]. Fig. 2 shows the av-
eraged parameter bias over the observable volume (9)
for the studied systems. As a general trend, neglection
of HM causes biases towards lower (χ, M , Mc) which
increase as M and q do. As expected, biases are much
larger for iLIGO and eaLIGO than for Adv.LIGO. In par-
ticular, note that the lower f0 of Adv.LIGO allows for an
excellent recovery of Mc for most of the M range. This
is due to the larger weight of the PN inspiral in the de-
tector band. Regarding spinning cases, systematic biases
are larger for anti-aligned spin cases than for aligned spin.
For q = 1 we only show the eaLIGO cases, which were
the only ones having comparable systematic biases. We
now compare these biases to the statistical uncertainty
we expect for each detector via computing the minimum
SNR ρ0 at which PE would be dominated by the system-
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5.2 Parameter Biases (Spin)
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FIG. 2. Top: M , Mc, and χ systematic bias for the q = (4, 6, 8) non-spinning cases. We use the same source and noise

curve code as in Fig.2. Bottom: Same for the (q;χ) = (3; 0,±0.5) in red. We use (dashed,dotted) for (“+”,“-”) spin and add

(q,χ) = (1,±0.2) case in green for eaLIGO.

atic biases. We note that, unlike the volume loss Ri, the
quantity ρ0 =

�
1/2� is extremely sensitive to tiny vari-

ations in the parameters recovered by the Nelder-Mead
algorithm, which has the risk of settling in a local maxi-
mum. In particular, for an error ∆� in the estimation of
�, one gets a variation for ρ0 of ∆ρ0 ∼ �−3/2∆�. This will
specially affect regions of the parameter space where sys-
tematic biases are lower and where the parameter space
is denser [35]: so for low mass, large mass ratio, posi-
tive spin and aLIGO. Due to this, although we run up
to 15 times some of the Nelder-Meads, Fig. 3 shows sev-
eral peaks that do only allow us to give a rough estimate
of ρ0. Also, for the same reason, for aLIGO we only
show results for M ≥ 120M⊙. Results suggest that for
aLIGO, PE at SNR ρ � 8 would be affected by HM for
M ≥ 170M⊙ and for the highest q which is consistent
with [12]. However, for the case of eaLIGO, this limit
gets reduced to M ≤ 80M⊙ due to the larger systematic
biases.

VII. CONCLUSIONS

In this paper we have addressed the impact of the ne-
glection of HOM in GW searches for binary black holes.
We have extended previous studies, which focused in non-
spinning searches, non-spinning target signals and Ad-
vLIGO to the case of single-aligned spin searches and
targets and to the case of AdvLIGO and the up com-
ing eaLIGO. We have also considered the case of a non-
spinning search and targets for the case of iLIGO. Note
that for non-spinning targets, the inclusion a spin pa-
rameter in the template bank should mitigate the effect
of neglection of HOM obtained in previous studies like

[12] and [8]. We have shown that including a effective
spin parameter in the template bank, neglection of HM
in CBC searches is likely to generate losses > 10% for
the q ≥ 6,M ≥ 100M⊙ regions of the explored param-
eter space in the case of aLIGO. This region is tinier
than that obtained in [12] (q ≥ 4), due to the fact that
they used a non-spinning template bank. However, for
the case of eaLIGO (and a nS search for iLIGO) we have
found potential losses of up to 26% (39)% due to such
a neglection. Losses of 10% happen for eaLIGO for the
q ≥ 4, M ≥ 150M⊙ and M > 50⊙ for q ≥ 6. Fur-
thermore, for the eaLIGO case, averaged systematic bi-
ases affecting parameter estimation are normally above
(∆M,∆χ,∆M) = (−5%,−10%,−0.1) for the most part
of the explored parameter space and reach values of
(−15%,−25%,−0.5) for the highest (q,M) cases. We
compared the systematic biases to the corresponding sta-
tistical uncertainties. Results for eaLIGO suggest that
measurements with SNR� 8 would be affected by the
presence of HM at M ≥ 80M⊙ for the largest q consid-
ered. In the case of aLIGO, we estimate that PE is likely
to be affected at ρ ∼ 8 for M ≥ 170M⊙ for the largest q
studied, which is consistent with [12]. The study of the
FAR of a GW search including higher modes is out of the
scope of this work. This is however is a crucial instrument
for assessing the real significance of the losses we find and
for assessing the need of such a search. Capano et al., [8]
demonstrated that the threshold SNR needed for claim-
ing a trigger would have to be raised by roughly a 10%
due to the larger number of templates needed for such
a search, which roughly means that the event losses of a
search non-including HOM w.r.t., a one including them
would be a 90% of those obtained in this paper. Also, this
paper has not considered the effect of signal-base vetoes
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Systematic Biases vs.
Statistical Uncertainty
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FIG. 3. Comparison between systematic errors and statistical uncertainties. We show the minimum SNR ρ0 at which systematic
biases due to the neglection of HM dominate those due to statistical uncertainties for the studied sources.

as the χ2 [10], used in GW searches [11] for discrimi-
nating real signals from background noise. This would
especially punish signals for which we found poor fitting
factors, translating this into larger event losses. We end
pointing that an interesting extension of this work would
be to consider the case of precessing targets, for which
the contribution of HM is stronger.
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Summary
• Higher modes relevant for large mass ratio, large 

total mass and edge-on systems.

• Impact highly detector - dependent.

Impact of gravitational radiation higher order modes on single aligned-spin
gravitational wave searches for binary black holes.

Juan Calderón Bustillo1, Sascha Husa1, Alicia M. Sintes Olives 1, and Michael Pürrer2

1Departament de F́ısica, Universitat de les Illes Balears and Institut d’Estudis Espacials de Catalunya,
Cra. Valldemossa km. 7.5, E-07122 Palma de Mallorca, Spain

2School of Physics and Astronomy, Cardiff University,
Queens Building, CF24 3AA Cardiff, United Kingdom

Current gravitational wave searches for Compact Binary Coalescences (CBC) use waveform mod-
els that neglect the higher order modes content of the gravitational radiation emitted, considering
only the quadrupolar (�, |m|) = (2, 2) modes. We study the effect of such a neglection for the case of
single-aligned-spin CBC searches in the context of two versions of Advanced LIGO: the upcoming
2015 version, known as early Advanced LIGO and its Zero-Detuned High Energy Power version,
that we will refer to as Advanced LIGO. In addition, we study the case of a non-spinning search
for initial LIGO. We do this via computing the effectualness of the SEOBNRv1 ROM waveform
family, which only considers the quadrupolar modes, towards hybrid post-Newtonian/Numerical
Relativity waveforms which contain higher order modes. We find that for all LIGO versions, losses
of more than 10% of events occur for q ≥ 4 due to the neglection of higher modes. Morover, for
initial LIGO and early Advanced LIGO, losses notably increase up to (39, 26)% respectively for the
highest mass (218M⊙) and mass ratio (q = 8) studied. Regarding parameter estimation, systematic
parameter biases due to neglection of higher order modes typically dominate those due to statistical
uncertainty at SNR ρ ∼ 8 for cases of total mass M ≥ 80M⊙ in the case of early Advanced LIGO
and M ≥ 170M⊙ for the case of Advanced LIGO.

I. INTRODUCTION

Compact Binary Coalescences (CBC) are the most
promising candidates for a first direct detection of
gravitational waves (GW). Soon, the next generation
of detectors, Advanced LIGO [? ], Advanced Virgo[?
] and KAGRA[? ] will come online with sensitivities
∼ 10 times higher than the previous one, increasing by
a factor of ∼ 103 the volume to which they are sensitive
and generating high expectations for inminent first GW
detection[? ]. The core of searches for CBC’s is the so
called match filter (MF)[? ].The MF technique allows
signals to be extracted from background noise provided
that a correct model (waveform in our case) of the
expected signal is used as a filter. Otherwise the filter
will be suboptimal and the signal could be lost or its
parameters misidentified. Up to now, GW searches for
CBCs have used waveforms that only consider the dom-
inant (�, |m|) = (2, 2) modes (or quadrupolar modes) of
the emitted radiation. The remaining modes are known
as higher order modes (HM). The reason for this is that
in the non-precessing case quadrupolar modes carry the
vast majority of the emitted power. Recent work [? ]

Detector 10% Max Loss SysDom
AdvLIGO (q,M) ≥ (6, 100M⊙) 15% M > 170M⊙

eaLIGO
(q,M) ≥ (4, 100M⊙)
(q,M) ≥ (6, 50M⊙)

26% M > 80M⊙

iLIGO ”” 36% 3

employing hybrid post-Newtonian/Numerical Relativity
(PN/NR) non-spinning (nS) target waveforms and a
nS template bank, showed that neglection of HM can
generate event losses ≥ 10% for q ≥ 4 systems. In addi-

tion they found that parameter estimation (PE) would
be affected for q ≥ 4, M ≥ 150M⊙. Their predicted
event losses are in good agreement with [? ] (and [? ]),
who respectively explored the m1,m2 ≤ 25(200)M⊙. In
addition, [? ] studied the sensitivity of a hypothetical
search including full mode templates. They shown
that such a search would have a larger False Alarm
Rate (FAR) than current ones so that it would only be
worthwile for regions of the parameter space where losses
due to neglection of HM are large. Regarding parameter
estimation [? ] studied the presence of systematic
biases in the estimated parameters of the CBC and
compared them against the expected statistical errors
using Markov-Chain Monte-Carlo (MCMC) techniques.
The large computational cost of this study made it to
have to be restricted to a few points of the parameter
space. In contrast, [? ] were able to make the same
study over many points of the parameter space due
to the usage of the Fischer information matrix for
estimating the statistical errors.

While the previous work has considered non-spinning
searches and the design Zero-Detuned High Energy
Power Advanced LIGO sensitivity curve (aLIGO) [? ],
we extend the study to the case of single aligned spin
searches [? ] for early 2015 Advanced LIGO (eaLIGO)
[? ] and aLIGO. We also revisit the case of the initial
LIGO (iLIGO) [? ] sensitivity curve using nS template
bank and targets. We restrict to the study of binary
black holes (BBH) of total mass 50M⊙ < M < 218M⊙
for the mass q ratios and effective spins χ specified in
Table ??.

• Parameter Biases towards lower spin, total mass and 
chirp mass.

• Large parameter biases for edge-on systems.
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To Do List

• Inject our target waveforms in real noise and run a 
full search. (Ongoing in collaboration with AEI 
Hannover).

• Study of precessing systems, for which higher modes 
are stronger.

Thanks for your attention
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Degrees of freedom when constructing a 
hybrid waveform

φ → φ+ φ0

ψ → ψ + ψ0

�

l,m

|Y −2
l,m(θ,φ)|e−imφhl,m(Π; t)

φ0

hl,−m = (−1)lh∗
l,m

ψ0 ∈ {0,π}

t → t+ τ

∆ψl,m = ψ0 +mφ0

ψ0
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6.6 Higher order modes and binary black hole kicks

At the end of a coalescence, after both BHmerge, it is known that the resulting perturbed

Kerr BH acquires a characteristic velocity �vK , known also as recoil velocity or BH kick.

Several studies [155–157] have computed this characteristic velocity to be of the order

of ∼ 10− 100km/s for non-spinning binaries and ∼ 1000km/s for highly spinning ones.

In particular, [155] shows that a maximum kick happens for q ∼ 3 in the case of non-

spinning systems. Also, [158] studied which modes dominate the resulting kick for equal

mass binaries with opposite spins. In this section we will extend this last study to the

case of the binaries used in the previous part of this chapter. In the non-precessing

case, the reason behind the BH kick is the non-axisymmetry of the GW radiation, due

to the different interaction of the GW modes at different angles ϕ. The corresponding

momentum �P can be computed as a function of the ψ4 scalar as

dPi

dt
= lim

r→∞

�
r2

16π

�

Ω
li

�� t

−∞
ψ4dt̄

�2

dΩ

�
, (6.8)

where �l = (sin θ cosϕ, sin θ sinϕ, cos θ). Note, as we will show later, that this velocity

would be exactly zero if one considers only the quadrupolar (�, |m|) = (2, 2) modes of

the GW radiation. Also, the symmetry with respect of the equatorial plane imposed in

the non-precessing case by (4.4) makes Pz to be zero. Hence, the kick of the resultant

BH will keep it within the original orbital plane. In this section we will investigate which

modes of the GW radiation dominate the value of the kick �vK .

Mode hierarchy in black hole kicks

Equation (6.8) can be expressed as a sum over products of modes as

viK = lim
r→∞

�
r2

16πM

�

�� ,m�

�

�,m

�

Ω
liY�,m(θ,ϕ)Y ∗

�� ,m� (θ,ϕ)dΩ×
�� t

−∞

�
dh�,m
dt̄

��
dh�,m
dt̄

�∗
dt̄

��
,

(6.9)

which we might re-express as

viK = lim
r→∞

�
r2

16πM

�

�� ,m�

�

�,m

Ψi
�,m,�� ,m�

�
. (6.10)

The previous quantity can be regarded as the final velocity that the BH acquires when

only the (�,m) and (�
�
,m

�
) modes are considered. Due to the symmetry of the system,

all m = m
�
terms give a zero contribution to the final kick. This should not be surprising

since given that the radiation described by these doublets of modes is axisymmetric, thus
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that alleviates them, may be another source of error for this calculation. These sources

of error are however not likely to affect the statement that the kick dominated by the

interference of (2, 2) and (2, 1) modes followed by that of the (2, 2) and (3, 3) modes

and the one corresponding to the (3, 3) and (4, 4) modes. This qualitative behavior was

observed for all the systems studied in this chapter although the exact values depended

on their particular parameters. In order to get a clear image of the contribution of each

(�,m) (�
�
,m

�
) (q,χ) = (8, 0) (3,+0.5)

(2, 1) (2, 2) 1 1

(2, 2) (3, 3) 0.4611 0.5536

(3, 3) (4, 4) 0.1961 0.2163

(3, 2) (3, 3) 0.0904 0.0473

(2, 1) (3, 2) 0.0169 0.0404

(2, 2) (4, 3) 0.0066 0.0126

(3, 2) (4, 3) 0.0126 0.0126

(4, 4) (4, 3) 0.0158 0.0065

Total Kick 90.69 84.06

Total Kick (SXS) [km/s] 88.10 80.01

Table 6.3: Hierarchy of the different modes regarding their contribution to the final

black hole kick. The upper rows show the value of R�,m,�� ,m� two of the studied systems.

In the lower ones, “Total Kick” denotes the value obtained for the kick using our

finite set of modes and “Total Kick (SXS)” is the value obtained in the original NR

simulations, which consider all possible modes.

couple of modes, Fig.6.10 shows the components of the partial kicks generated by each

mode-doublet and the total kick for a non-spinning q = 8 binary black hole. In the left

panel the dominancy of the (2, 1, 2, 2), (2, 2, 3, 3) and (3, 3, 4, 4) modes is clear while the

right one shows in detail the contribution of the subdominant ones.
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Figure 6.10: Left: Components in km/s of the partial kicks due to each couple of

modes (in color) and total kick (in black) for a non-spinning q = 8 binary black hole.

Right: Detail of the contribution of the subdominant doublets.

Finally, it is worth to note the close relation between the individual kicks of the modes

which dominate the radiation as seen by the detector and the dipolar structure of the

parameter bias plots in Figs. 6.7, 6.6 and 6.11. For masses such that the (3, 3) and

(4, 4) contribute enough to the signal, this structure appears to get aligned with the
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that alleviates them, may be another source of error for this calculation. These sources

of error are however not likely to affect the statement that the kick dominated by the

interference of (2, 2) and (2, 1) modes followed by that of the (2, 2) and (3, 3) modes

and the one corresponding to the (3, 3) and (4, 4) modes. This qualitative behavior was

observed for all the systems studied in this chapter although the exact values depended

on their particular parameters. In order to get a clear image of the contribution of each

(�,m) (�
�
,m

�
) (q,χ) = (8, 0) (3,+0.5)

(2, 1) (2, 2) 1 1

(2, 2) (3, 3) 0.4611 0.5536

(3, 3) (4, 4) 0.1961 0.2163

(3, 2) (3, 3) 0.0904 0.0473

(2, 1) (3, 2) 0.0169 0.0404

(2, 2) (4, 3) 0.0066 0.0126

(3, 2) (4, 3) 0.0126 0.0126

(4, 4) (4, 3) 0.0158 0.0065

Total Kick 90.69 84.06

Total Kick (SXS) [km/s] 88.10 80.01

Table 6.3: Hierarchy of the different modes regarding their contribution to the final

black hole kick. The upper rows show the value of R�,m,�� ,m� two of the studied systems.

In the lower ones, “Total Kick” denotes the value obtained for the kick using our

finite set of modes and “Total Kick (SXS)” is the value obtained in the original NR

simulations, which consider all possible modes.

couple of modes, Fig.6.10 shows the components of the partial kicks generated by each

mode-doublet and the total kick for a non-spinning q = 8 binary black hole. In the left

panel the dominancy of the (2, 1, 2, 2), (2, 2, 3, 3) and (3, 3, 4, 4) modes is clear while the

right one shows in detail the contribution of the subdominant ones.
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Figure 6.10: Left: Components in km/s of the partial kicks due to each couple of

modes (in color) and total kick (in black) for a non-spinning q = 8 binary black hole.

Right: Detail of the contribution of the subdominant doublets.

Finally, it is worth to note the close relation between the individual kicks of the modes

which dominate the radiation as seen by the detector and the dipolar structure of the

parameter bias plots in Figs. 6.7, 6.6 and 6.11. For masses such that the (3, 3) and

(4, 4) contribute enough to the signal, this structure appears to get aligned with the
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kicks due to the interaction of the (2, 2) and (3, 3) modes and that of the (3, 3) and

(4, 4). In particular, biases to large masses and positive spins happen for the direction

opposite to these two kicks. Note that since the (2, 1) mode is largely dominated by

the (2, 2) when it is in band, it has a negligible effect both in terms of event losses and

parameter bias and no structure appears at low masses. The evolution of the mentioned

pattern with the total mass is visible looking at the q = 8 plots in the figures mentioned

and clear in the plot series of Fig.6.11. Note that since the effect of HOM in AdvLIGO

gets shifted to larger masses due to its lower frequency cutoff, the dipolar structure

appears at larger masses than in the case of eaLIGO, for which this structure starts

to appear at M ∼ 100M⊙. This is precisely the region where the event loss curves of

eaLIGO in Fig.6.5 start to separate from those corresponding to AdvLIGO, thus where

the contribution of HOM (mainly the (3, 3) mode) starts to be important.
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Figure 6.11: Evolution of the dipolar pattern observed in the parameter bias for χ
and M as a function of the total mass M of a non-spinning q = 8 binary. The two upper
rows show results for eaLIGO while the two lower ones show results for AdvLIGO. Note

how the dipolar pattern forms at larger masses for the case of the AdvLIGO.
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