Impact of higher order modes in gravitational wave searches for binary black holes

Juan Calderon Bustillo University of the Balearic Islands

5th Iberian Gravitational Waves Meeting Barcelona 13th June 2015

0. Outline of this talk

- I. Introduction: higher order modes and data analysis.
- 2. Previous studies.
- 3. Analysis set up.
- 4. Effect on detection.
- 5. Parameter Bias.

I.Gravitational Wave Search: very basics

A GW is emitted

(we hope to model it well)

It reaches a detector

Ist step: Signal-to-noise Ratio (SNR) 2nd step: Distinguish from glitches (vetoes)

Ranking statistic: newSNR...

I.2 Data analysis basics

1.2 Higher order modes

1.2 Higher order modes

I.2 Higher order modes

Waveforms used in current searches only include $(\ell, |m|) = (2, 2)$ modes

Total Mass & Noise Curve

Large Mass & high frequency cutoff

2. Previous studies

2.2 Previous studies II

-Reduction of sensitivity due to the larger number of templates.

-Worth to include higher modes for certain part of the parameter space

Capano et.al.: Phys. Rev. D 89, 102003 (2014)

-All considered the design Advanced LIGO curve (f0=10Hz). -Restricted to non-spinning targets and template banks. -We extend to aligned-spin searches and early Advanced LIGO (f0=30Hz). -We also consider a non-spinning search for initial LIGO (f0=30Hz).

3. Target waveforms

- Hybrid PN/NR waveforms including higher modes. [jcb et.al. arXiv:1501.00918]
- PN Taylor T1 to 3.5PN order phase and 3PN order amplitude. Higher modes amplitudes up to 2PN.
- Numerical Relativity from SXS catalogue [www.black-holes.org]. Data extrapolated to null infinity to order N=2.
- Templates belong to the SEOBNRvI_ROM family [Pürrer. 2014 Class. Quantum Grav. 31].

3. Target waveforms

- Hybrid PN/NR waveforms including higher modes. [jcb et.al. arXiv:1501.00918]
- PN Taylor T1 to 3.5PN order phase and 3PN order amplitude. Higher modes amplitudes up to 2PN.
- Numerical Relativity from SXS catalogue [www.black-holes.org]. Data extrapolated to null infinity to order N=2.
- Templates belong to the SEOBNRvI_ROM family [Pürrer. 2014 Class. Quantum Grav. 31].

SIM ID	q	χ	PN	$M\omega_0$
SXS:BBH:0168	3	0	T1	0.043
SXS:BBH:0167	4	0	T1	0.045
SXS:BBH:0166	6	0	T1	0.045
SXS:BBH:0063	8	0	T1	0.043
SXS:BBH:0150	1	+0.2	T1	0.035
SXS:BBH:0149	1	-0.2	T1	0.043
SXS:BBH:0046	3	+0.5	T1	0.038
SXS:BBH:0047	3	-0.5	T1	0.043

quadrupolar hybrids

$$\Xi_i^{\mathcal{B}} = \left(\frac{\sum_j \Xi_{i,j}^{\mathcal{B}} \mathcal{F}_{i,j}^3 \rho_{i,j}^3}{\sum_j \mathcal{F}_{i,j}^3 \rho_{i,j}^3}\right) \qquad \Delta \Xi_i = \Xi_{i,0} - \Xi_i^{\mathcal{B}}$$

• Compare to statistical uncertainties due to presence of Gaussian noise in the data. $\epsilon < 1/2\rho^2$ $\rho_0 = \sqrt{1/2\epsilon}$ $h^{\mathcal{B}}(\Xi_0^{\mathcal{B}})$ $h^{\mathcal{B}}(\Xi_0^{\mathcal{B}})$

4. Effect on detection

Effect on detection

5.1 Parameter Biases (Mass)

5.2 Parameter Biases (Spin)

Parameter Bias II

Systematic Biases vs. Statistical Uncertainty

Very sensitive to tiny errors in the estimation of the best matching template

 $\Delta \rho_0 \sim \epsilon^{3/2} \Delta \epsilon$

Summary

- Higher modes relevant for large mass ratio, large total mass and edge-on systems.
- Impact highly detector dependent.

Detector	10%	Max Loss	SysDom
AdvLIGO	$(q,M) \ge (6,100M_{\odot})$	15%	$M > 170 M_{\odot}$
eaLIGO	$(q, M) \ge (4, 100M_{\odot})$ $(q, M) \ge (6, 50M_{\odot})$	26%	$M > 80 M_{\odot}$
iLIGO))))	36%	3

- Parameter Biases towards lower spin, total mass and chirp mass.
- Large parameter biases for edge-on systems.

To Do List

- Inject our target waveforms in real noise and run a full search. (Ongoing in collaboration with AEI Hannover).
- Study of precessing systems, for which higher modes are stronger.

Thanks for your attention

Degrees of freedom when constructing a hybrid waveform

BH Kicks

$$\frac{dP_i}{dt} = \lim_{r \to \infty} \left[\frac{r^2}{16\pi} \int_{\Omega} l_i \left(\int_{-\infty}^t \psi_4 d\bar{t} \right)^2 d\Omega \right]$$

