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Linear systems
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What is a “system”?

A “system”
A physical instance that has internal DOFs (states)
Here we are interested in

l.e. excitation -> response

A i

u(t) > H > y(?)

Because...

- we can develop a better understanding of the system (i.e. modeling)
- it has a lot of applications

Particularly, we are interested in Linear Time Invariant (LTI) systems
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Why do we need to learn about LTI systems?

Raw detector output # GW waveforms
We need to consider:

- interferometer / sensor [ actuator responses

- signal conditioning filters

- effect of feedback controls

Understanding the dynamics of various systems
- mechanics, electronics, thermodynamics, optics, ...

Designing feedback/feedforward control system

Signal processing: calibration / signal filtering
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Example of systems

“Filters” and “Transducers”
If the input and output have:

a same unit, the system is categorized as a “filter”
- electrical filter (V->V, A->A),

- mechanical filter (m->m), optical filter (E->E),

- digital filter (number -> number)

different units, the system is categorized as a “transducer”
- force-to-displacement actuator (m/s”2->m),

- electro-magnetic actuator (V->m/s"2),

- displacement sensors (m->V)

- electrostatic transducer (C (charge) -> N/m”2 (sound))

- transimpedance amplifier (A->V), current driver (V->A)

- gravitational wave detector (“gravito-optic modulator”)
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LTI: Linearity and Time Invariance

LTI systems fullfil the following two conditions

System Input System Output
oty 2 H >0

Linearity (super position)
y1(t) = H {u1(t)}
y2(t) = H {uz(t)}
— ay1(t) + By2(t) = H {auq(t) + Bua(t)}

Time Invariance

y(t) = H{u(t)}

==yt —7) = Hu(t —7)}



Why LTI?

Why do we limit the discussion within LTI systems?

They are simple,
but still gives a lot of characteristics about them

Nonlinear systems can be reduced to a linear system
at a local region of the state space (cf. a pendulum)

If change of the system states is slow,
most of the LTI arguments are still applicable
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Impulse response

Impulse response: A way to characterize the system H:
u(t) = o(t)
— y(t) = H{u(t)} = h(t)

Constructing an arbitrary response:

u(t) = /_OO u(7)0(t — 7)dr
— y(t) = H {u(t)}
= /_ u(T)h(t — 7)dr

(Convolution)
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Frequency response

Arbitrary response:
O

y(t) = /_ u(T)h(t — 7)dr

What is the system response to a sinusoidal excitation?

u(t) = e™?
y(t) = / TRt — 7)dr
= / e = h(o)do (1 =t —0)

([ ]

“) Fourier Transform of h(t)
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Frequency response

u(t) = et = y(t) = H(w)e™*

Important consequences for LTI systems

Sinusoidal excitation induces sinusoidal response
at the same frequency

The frequency response H(w) is, in fact,
the fourier transform of the impulse response h(t)
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Transfer functions

Impulse response:
P P h(t)

Frequency response: (aka transfer function in freq domain)

H(w) = /OO e "Wrh(t)dt

— OO

Transfer function in Laplace domain

H(s) = /OO e *Th(t)dt

— OO

s is a natural extension of “frequency” in a complex plane
for most of the applications, we can just use

s =iw(=1i2nf)
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Time domain vs Laplace (or Fourier) domain

Time domain / Impulse response
‘_

x(t) —»| h(t) pF—» y(t) = h(t)*x(1)

| | !

Inverse

1 aplace ‘Z aplace ,.Zap/ace

I ' |
X(8) —»| H(s) —» Y(s)= H(s)-X(s)

« 
transfer function

Frequency domain http://en.wikipedia.org/wiki/Linear system
http://en.wikipedia.org/wiki/LT| system theory
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Deriving a transfer function from a t-domain Diff Eq.

In many cases, an LTI system can be described
by a linear ODE
It is easy to convert from an ODE to a transfer function

d
g Laplace Transform

dt

— jw =27 f Fourier Transform

e.g. Forced oscillation of a damped oscillator
m(t) = —kx(t) — ya(t) + F(t)
ms*X(s) = —kX(s) —vsX(s) + F(s)
X(s) 1
F(s) ms24+vs+k

H(s) =
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Transfer function of a mechanical system

e.g. Forced oscillation of a damped oscillator

1
H(s) —
(5) ms? + vs + k
3
H(s)= ~—— &
m s* + G's +wj g
1 1 =
H(w) = 2 | ;%0 ; &
m —w* + 175w+ Wy
wo = Vk/m, v=mwy/Q

Phase [deg]

Bode diagram 180l

10 10° 10’
Frequency [HZz]
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Transfer function of an electrical system

cut-off freq
e.g. RC filter f=1/(2*pi*R*(C)
— W
| . o l log-log |
Vin J— ou V> S
@ sine ¢ v t{? E
% A% g
=
Vout = q/C 1072
q= (Vm — Vout)/R 107 1(|)° 10°
. 180 . :
=i szVout(w) — (‘/1 (W) — Vout(w))/R g’ 1(238 IOg-Iln
Vout(w) _ 1 g -68- T~
Vin 1 +iwRC & ool |
1072 10° 102

Frequency [Hz]
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Zeros, Poles, and Gain decomposition

The transfer function of a system with an ODEcan be
expressed as:
b b bys® + ... + b, s™
H(S): o+ 018+ 0o 2‘|‘ +
ap+ais+ assc + ... +a,s"
The roots of the numerator are called as “zeros”
and the roots of the denominator are called as “poles”
b T 1y (5 — Sy
H(S) _ H;L_l( )
an ] ] ;21 (s — sp;)
Zeros (s,;) and poles (s ;) are
real numbers (single zeros/poles)
or pairs of complex conjugates (complex zeros/poles)

(fundamental theorem of algebra)
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Linear systems and their stability

Poles rule the stability of the system!
H(s) can be rewritten as

.:ﬂ_(s‘_'spj)
(partial fraction decomposition)
Each term imposes exponential time impulse response

1

<« LR.: h;(t) = e®»!
S+ Spj

Therefore, if there is ANY pole with Re(s,;) > 0
the response of the system diverges
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Linear systems and their stability

Poles rule the stability of the system!

Location of the pole (pair) and the impulse response
Im(s)

WAG INARY

Unstable
response

Figure 12: Root locus for different arrangements of the eigen values

http://nupet.daelt.ct.utfpr.edu.br/ ontomos/paginas/AMESim4.2.0/demo/Misc/la/SecondOrder/SecondOrder.htm
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System identification

Modeling of the system: usually done in the freq. domain
Preamp #008 / LISO empirical ZPK fit (2015/05/16)

#LISO SOURCE
= zero 7.7035143792 ### fitted (name = zero0)
zero 7.7035143792 ### fitted (name = zero1)
zero 134.5024181647k ### fitted (name = zero2)
10 2 - pole 84.5723492984 ### fitted (name = pole0)
E pole 84.5723492984 ### fitted (name = pole1)
; [ pole 22.3835023628k ### fitted (name = pole2)
< [ pole 11.9020537576k ### fitted (name = pole3)
S L
— r factor 1.9914251238 ### fitted
c
9 param zeroO:f 1 10
k3 | sparam zero1:f
c param zero2:f 1 1M
=}
": param pole0:f .1 1M
O 1 01 L sparam pole1:f
_— F param pole2:f .1 1M
2 N param pole3:f .1 1M
o L
A F param factor 1p 1M
-
fit Preamp008.bod absdeg rel
gnuterm pdf
O measured
LISO empirical fit rewrite samebetter
0 freq log 0.01 100k 1000 ### from data file
10 1 1 1 1 1
-1 0 1 2 3 4 5
10 10 10 10 10 10 10
Frequency [Hz] =
180 T T T T T
#Parameter Estimation
>
[0} #Best parameter estimates:
E #zero0:f = 7.7035143791999995955 +- 33.87m (0.44%)
#-->zero1:f = 7.7035143792 +- 33.87m (0.44%)
% #zero2:f = 134502.41816470012418 +- 46.44k (34.5%)
] #poleO:f = 84.572349298399998929 +- 355.9m (0.421%)
o #--> pole1:f = 84.5723492984 +- 355.9m (0.421%)
o #pole2:f = 22383.502362800008996 +- 3.336k (14.9%)
#pole3:f = 11902.053757599991513 +- 809.9 (6.8%)
1 80 | | | | | #factor = 1.9914251238000000299 +- 10.8m (0.542%)
-1 0 1 2 3 4 5
10 10 10 10 10 10 10
Residual
S st — e 1
=)
(0]
1.01 40.5 e}
=) =
§ 1 40 A
(0]
(2]
0.99 4-0.5 ©
=
o
0.98 MR | MR | M A Lol M vl
-1 0 1 2 3 4 5
10 10 10 10 10 10 10

Frequency [Hz]

System Identification Tools: e.g. LISO, Vectfit
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Zero, Pole, Gain representation

Building blocks (“zpk” representation)

Single pole
H(s) = - ipsp (sp €R, s, > 0)
Single zero
H(s) = ST (s, € R, s, > 0)
A pair of complex poSIZS .
H(s) = i (s, € C, R(s,) > 0)

(5'+'Sp)(3'+'3;)
A pair of complex zeros
H(s) = (8 +52)(5 + 57) (s, € C, R(s,) > 0)

S.S%

Gain
H(s)=K (K €R)
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Linear systems

Summary

LTI systems

Description of the LTI system:
Impulse response <==> transfer function

Zero, Pole, Gain representation of transfer functions

Pole locations determine the stability of the system

System identification



G1500817 21

Zero, Pole, K representation

Relationship between pole/zero locations and wo&Q

SpSp

H(s) =

T 24 2R(sp)s + |sp|?
To be compared with
2
Wo

—w? + iwew/Q + w?

‘Sp‘

2R(s,)

H(w) =

— wo = |Sp|, @ =




G1500817 22

Zero, Pole, K representation
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