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COMPACT BINARY SOURCES

I Compact binary systems are
important sources for LIGO.

I These systems are a natural
place to search:

I We know that they exist
I They have large mass

quadrupole moments
I The waveforms are relatively

well-understood
I They allow for tests of GR in

a very dynamic regime
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PROJECT GOALS

I This project seeks to optimize the gstlal pipeline used in
compact binary coalescence (CBC) searches

I I will discuss optimizations in both the speed and sensitivity of
the search pipeline

I Specifically, I will discuss:
1. A faster stochastic template bank algorithm
2. Attempts to optimize the autocorrelation χ2 test
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SEARCH PIPELINES

I CBC searches utilize data
analysis pipelines

I I will talk specifically about the
gstlal pipeline

I Generally, the pipeline flow is:
1. Calibration of data
2. Matched filtering
3. Signal discriminator tests (χ2)
4. Detector network coincidence
5. Signal significance, false

alarm rate

I Noise triggers are suppressed
I Events which survive all these

steps are candidates
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TEMPLATE BANKS

I Data must be filtered using a
discrete template bank

I For low-dimensional parameter
spaces, metric methods can be
used to construct banks [1]

I For inspiral-only templates in
the 2D mass space, an optimal
method exists [2]

I For more complicated cases,
analytical methods don’t exist

I In these cases, stochastic
methods are necessary [3]
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STOCHASTIC TEMPLATE BANKS
I The standard stochastic template bank algorithm has two main

drawbacks:
1. The match between templates is not Cartesian in standard

coordinate systems (i.e. the masses).
2. There is a bottleneck when placing the last few templates.
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STOCHASTIC TEMPLATE BANKS

I The standard stochastic template bank algorithm has two main
drawbacks:

1. The match between templates is not Cartesian in standard
coordinate systems (i.e. the masses).

2. There is a bottleneck when placing the last few templates.

I The first problem has a simple solution: choose a better
coordinate system.

I Typically the chirp time coordinates τ0, τ3 are used because the
metric is almost flat in them [4].

I The chirp time coordinates are contributions at different PN
orders to the amount of time for the binary to coalesce.
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STOCHASTIC TEMPLATE BANKS

I The standard stochastic template bank algorithm has two main
drawbacks:

1. The match between templates is not Cartesian in standard
coordinate systems (i.e. the masses).

2. There is a bottleneck when placing the last few templates.

I This second problem is inherent to the algorithm used.
I Without knowledge of where templates were previously

placed, it is impossible to avoid this bottleneck.
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NEW STOCHASTIC ALGORITHM

I The new algorithm keeps track
of where templates have been
placed

I The parameter space is gridded
and in each cell, two numbers
are tracked:

I The number of accepted
templates Ai

I The number of rejected
templates Ri

I The probability of placing a
template in a cell is:

Pi =
Ai

Ai + Ri
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PERFORMANCE OF NEW ALGORITHM

The new algorithm requires far fewer
match calculations and produces

banks of equal quality.

830 840 850 860 870 880 890 900 910 920

Number of Templates

0.5

1.0

1.5

2.0

2.5

N
u

m
b

er
of

M
at

ch
C

al
cu

la
ti

on
s

×106

Old Algorithm

New Algorithm

Old (top) vs. New (bottom)

Johnathon Lowery (Indiana University) Caltech 7



Introduction Stochastic Template Banks Autocorrelation χ2 Conclusion

χ2 TESTS

I Non-gaussian noise (glitches) is
a constant problem

I Signal consistency tests (χ2

tests) are used to reject glitches
I Many such tests have been

developed [5, 6]
I I will describe changes to the

autocorrelation χ2 given by:

χ2 =

∫ Tmax

0
|ρ(τ)− ρpeakα(τ)|2dτ
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WINDOWING IN AUTOCORRELATION POWER

Results for the autocorrelation χ2 computed in a window of
90% autocorrelation power.

Old χ2 Modified χ2
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WINDOWING IN AUTOCORRELATION POWER

Results for the autocorrelation χ2 computed in a window of
90% autocorrelation power.

Old χ2 Modified χ2

This method contaminates the signal population with
background events and thus cannot be used.
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WINDOWING IN TEMPLATE POWER
Another option is to compute the autocorrelation χ2 in a
window determined by the region of highest template power.
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WINDOWING IN TEMPLATE POWER

Results for the autocorrelation χ2 computed in a window of
90% template power.

Old χ2 Modified χ2
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WINDOWING IN TEMPLATE POWER
Results for the autocorrelation χ2 computed in a window of
90% template power.

Old χ2 Modified χ2

This method elevates the χ2 of contaminating background
events, but not to a significant degree.
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CONCLUSIONS

I It is possible to construct a computationally efficient stochastic
template bank algorithm using acceptance-rejection methods.

I This new algorithm produces banks of equal quality to
standard methods.

I A framework for making the autocorrelation length adaptive
was developed and can be used to alter pipeline performance.

I Making the autocorrelation length adaptive can yield small
changes to the signal-background separation.

Johnathon Lowery (Indiana University) Caltech 12



Introduction Stochastic Template Banks Autocorrelation χ2 Conclusion

FUTURE WORK
I In the future, work could be done to:

1. Analytically compute the τ0, τ3 boundaries to make the
acceptance-rejection sampling faster.

2. Tune the power intervals for the autocorrelation χ2 so that better
performance can be achieved.
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τ0, τ3 COORDINATES

τ0 and τ3 are the contributions to the chirp time at Newtonian
and 3PN order respectively. They are given by:

τ0 =
5

256πfLη
(πMfL)−5/3

τ3 =
1

8fLη
(πMfL)−2/3

where η = m1m2/M2 is the symmetric mass ratio, M = m1 + m2
is the total mass, and fL is the lower bound on the frequency of
the waveform.

They give a nice, flat coordinate system for template placement.
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FULL STOCHASTIC ALGORITHM

LetM be a signal manifold of dimension D with a positive-
definite distance d(x, y) where x, y ∈M. A template bank T is a
set of n points {x1, . . . , xn | xi ∈M}. T covers the signal manifold
Mwith radius ∆ if ∀ y ∈M, ∃ xi ∈ T such that d(xi, y) < ∆. Then
the algorithm proceeds as follows:

1. CoverMwith kD equally sized bins Bi, i = 1, . . . , kD where k is the
number of divisions per dimension. To construct the bins:

1.1 Suppose the binary source parameters are given by
θi, i = 1, . . . ,D and that each parameter takes values in the
interval [θi,min, θi,max] onM. Divide this interval into k equal
length sub-intervals θi,α where α = 1, . . . , k.

1.2 Each bin is then given by the Cartesian product
θ1,α × θ2,β × . . .× θD,ω where all the greek indices go from 1 to k.
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FULL STOCHASTIC ALGORITHM (CONT.)

2. For each bin Bi, assign two values: the number of accepted templates
Ai and the number of rejected templates Ri. Initially these values are
set to Ai = 1,Ri = 0 although other choices are possible.

3. Choose a proposal template y uniformly from the signal manifold
and determine which bin, Bi it falls into. Then compute the rejection
probability Pi for that bin given by:

Pi =
Ri

Ri + Ai

4. Choose a random number r uniformly from [0, 1]. If r < Pi, discard y
and return to step 3.

5. If d(y, xi) > ∆ ∀ xi ∈ T, add y to T. Otherwise, discard y and return to
step 3.

6. Continue 3-5 until Pi > P∗ ∀ i where P∗ is a cutoff probability that can
be varied to change the performance of the algorithm.
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AUTOCORRELATION χ2

Suppose that the detector output is of the form
x(t) = n(t) + Ah(t) where A is some amplitude and h is
unit-normalized so that (h|h) = 1. Then, the SNR time series is:

ρ(τ) = (n|he2πifτ ) + A(h|he2πifτ )

= (n|he2πifτ ) + α(τ)

where α(τ) is the autocorrelation of the template. Maximizing
in time and taking an ensemble average so that the noise term
disappears gives 〈ρmax〉 ≈ A. The quantity (n|he2πifτ ) will be
Gaussian distributed when the noise is Gaussian. Thus, it is
possible to compute a χ2 of the form

χ2 =

∫ Tmax

0
|ρ(τ)− ρmaxα(τ)|2dτ.
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χ2 VS. χ2 PLOTS

Comparing the χ2 between the standard calculation and the
two modifications gives a sense of their performance.

Autocorrelation Power Template Power
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