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Solutions to Einstein’s field equations predict gravitational waves: disturbances in space-time
that propagate at the speed of light. Detecting gravitational waves is challenging because the
signals are very weak and so a very sensitive instrument is required. The Laser Interferometric
Gravitational-Wave Observatory (LIGO) is a pair of detectors that search for these disturbances
by looking for small length changes caused by passing gravitational waves. One promising class
of sources of gravitational waves is binary black holes. Signals from such sources are searched for
in the data from the detectors with an analysis pipeline called gstlal using an advanced form of
matched filtering which helps to pull out small signals from a background of noise. This report
details steps taken toward optimizing the gstlal pipeline for Advanced LIGO in the context of
binary black hole detection. Specifically, I describe a novel method for the generation of stochastic
template banks which is significantly faster than the traditional method and discuss attempts to
improve the autocorrelation χ2 used to veto glitches in the LIGO data.

I. BACKGROUND

A. Gravitational Waves and Their Sources

Gravitational waves (GWs) were first predicted by
Einstein in a 1916 paper [1] where he solved the field
equations of general relativity (GR) using the weak-field
approximation and predicted that accelerating bodies
would produce ripples in space-time that would propa-
gate at the speed of light. Gravitational waves offer an-
other way to test general relativity, but as of yet they
have not been directly detected.

Strong evidence for the existence of gravitational waves
was provided by Hulse and Taylor who noticed that
the energy loss of a binary system containing a pulsar
matched the predictions of general relativity [2]. A plot
showing the curve from the quadrupole formula of GR
against the pulsar observations is shown in Fig. 1. While
the Hulse-Taylor system gives compelling indirect evi-
dence for the existence of gravitational waves, physicists
are eager to make a direct detection (i.e. an observation
of the effects on spacetime from a passing gravitational
wave) of gravitational waves to provide further support
for GR and to use GWs to study the energetic astro-
physical systems that emit them, such as neutron star
and black hole binaries.

The production of gravitational waves requires a
quadrupole source in contrast to electromagnetic waves
which only require a non-zero dipole moment. This is
because mass only comes in one variety as opposed to
charge which can be positive and negative. Unlike the ex-
change of two charges, the exchange of two masses leaves
the gravitational field the same. This means that binary
systems are a natural place to begin searches for gravita-
tional waves because they have a large mass quadrupole

FIG. 1. Accumulated shift in the orbital phase relative to
an assumed orbit with constant period caused by energy loss
to gravitational waves. The straight line represents the pre-
diction with no losses and the curve is the prediction from
general relativity. Plot taken from [3].

moment and we know that they exist. Binary systems
containing neutron stars (NS) and black holes (BH) are
important examples that have been studied extensively
[4].

Binary systems evolve through 3 phases: an inspiral
phase where the orbital dynamics are driven by the re-
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lease of energy through gravitational waves, a merger
phase where the binary companions combine into a sin-
gle highly-perturbed black hole, and a final phase where
the resulting black hole rings down [5]. During this en-
tire process, called compact binary coalescence (CBC),
the binary system is emitting gravitational waves. While
the three phases of a binary inspiral are treated equally
by nature, the computation of the waveform is normally
divided into these distinct regimes which are handled us-
ing separate techniques. As an example, consider Fig. 2
which shows a gravitational waveform for the inspiral of
a pair of 50 M� black holes at a distance of 1 Mpc from
the detectors.

If the binary companions are spinning, the gravita-
tional waveforms become even more complicated. In the
simpler case of aligned spins (spins pointing in the same
direction as the orbital angular momentum), the phase
evolution of the waveforms change slightly. In the more
general case, the spins precess leading to modulation of
the phase and amplitude of the gravitational waves.

The form of gravitational waves generated in compact
binary coalescence depends at least 15 parameters of the
system although many of them only enter into the over-
all amplitude of the signal (the sky position angles, bi-
nary plane orientation angles, and luminosity distance)
[6]. Even more parameters are involved when consider-
ing the nuclear equation of state for neutron stars and
extensions to general relativity. Table I lists these pa-
rameters and gives descriptions and the plots in Fig. 3
show how varying different parameters of the binary sys-
tem impacts the waveform.

B. LIGO

The Laser Interferometric Gravitational-Wave Obser-
vatory (LIGO) is a part of a global effort to make the first
direct detection of gravitational waves. The two LIGO
detectors (shown in Fig. 4) are 4 km Michelson interfer-
ometers that search for small strains in their arms that
result from passing gravitational waves. A GW detection
would open the door to a new technique in astrophysics
based on studying gravitational waves and would offer a
test of general relativity in the most extreme and highly-
dynamical regime of gravity that has ever been studied
[4].

Advanced LIGO (aLIGO), an upgraded version of the
initial LIGO detectors, is poised to begin a run with
unprecedented sensitivity and bandwidth. It is possi-
ble that these upgrades will enable a detection in the
near future. Compared to the initial LIGO detectors,
Advanced LIGO will be 10 times more sensitive and will
push the frequency band for gravitational wave searches
down to 10 Hz compared to the previous 40 Hz [7]. These
increases in sensitivity and bandwidth offer the possibil-
ity of hundreds of detections (see Table II for rates and
detectable distances in Advanced LIGO).

The Advanced LIGO detectors (along with the Ad-
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FIG. 2. A time domain waveform (top) and a frequency do-
main waveform (bottom) generated using the quadrupole and
stationary phase approximations for the inspiral of a pair of
non-spinning 50 M� black holes at a distance of 1 Mpc from
the detectors. Full waveforms showing the inspiral, merger,
and ringdown are shown in Fig. 15.

vanced Virgo detector which will come online in ∼2017)
will be used to look for gravitational waves created by
the coalescence of binary systems. For smaller mass sys-
tems like binary neutron stars, only the inspiral phase is
in a frequency range detectable by LIGO. On the other
hand, for large mass binary black hole systems the entire
process of coalescence is detectable including the inspiral,
merger, and ringdown phases [8]. Many example wave-
forms in the frequency domain for compact binary sys-
tems are shown against the early Advanced LIGO noise
curve in Fig. 3 [? ]. It is expected that Advanced LIGO
will detect 40 neutron star mergers per year and between
30 and 100 black hole mergers [9].

Current limits on the rate of binary black hole merg-
ers are set by combined searches from the LIGO and
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TABLE I. 15 of the parameters specifying a compact binary system. The sky position angles, orientation relative to the line of
sight (if the spins are aligned), and luminosity distance only enter into the overall amplitude of the signal and the coalescence
phase and time can be efficiently determined external to the parameter search. The remaining parameters (the masses and
spins) are intrinsic and must be determined using parameter estimation. Parameter list taken from [6].

Component masses m1, m2

Component spin vectors ~S1, ~S2

Sky position angles right ascension α, declination δ

Orientation relative to line of sight inclination ι, polarization angle ψ

Luminosity distance D

Coalescence phase ϕcoal

Coalescence time tcoal

102 103

Frequency (Hz)

10−24

10−23

10−22

10−21

10−20

h(
f)
√

f

m1 = 5.0, m2 = 5.0

m1 = 10.0, m2 = 10.0

m1 = 50.0, m2 = 50.0

m1 = 20.0, m2 = 5.0

m1 = 50.0, m2 = 5.0

Expected ASD
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Aligned Waveform, s1z = 0.1, s2z = 0.4

Precessing Waveform, s1i = s2i = 0.4, i = x, y, z

Expected ASD

FIG. 3. Frequency domain waveforms for compact binary systems generated by varying the binary companions’ masses (top
left), distances from the detectors (top right), and spins in the aligned (z) direction (bottom left). The bottom right plot shows
the effect of adding non-zero spins in the x- and y-directions to create a precessing waveform. Both binary companions have
masses of 5 solar masses in the top right and bottom plots. The expected ASD is the amplitude spectral density of the detector
noise for the early Advanced LIGO detector.

VIRGO scientific collaborations. By using large sets of
data, these collaborations have looked for the occurrence
of binary black hole coalescences for systems with to-
tal mass between 2 and 25 M� [10], systems with total
mass between 25 and 100 M� [11], and systems with to-
tal mass between 100 and 450 M� [12]. No detections
have been made yet, but the upgraded Advanced LIGO
detectors may find the first definitive gravitational wave

signal from these sources.

II. THE gstlal PIPELINE

When the LIGO detectors are in operation, there is
a near-constant stream of data that must be analyzed
to look for gravitational wave signals. The general flow
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FIG. 4. Images showing the two LIGO sites in Livingston,
Lousiana (top) and Hanford, Washington (bottom). The in-
terferometer arms in each detector are 4 km long and contain
vacuum pipes along the whole optical path.

TABLE II. Maximum detection distances, D, and rates,R, for
various binary systems for Advanced LIGO. The masses are
taken to be ∼1.4 M� for NS and ∼10 M� for BH. Distances
and rates taken from [9].

NS/NS NS/BH BH/BH

D 445 Mpc 927 Mpc 2187 Mpc

R, yr−1 40 10 20

of the search pipelines used by LIGO are shown in Fig.
5. In an ideal case, the search pipelines used by LIGO
would be able to identify candidate signals in the data
in real time. This would allow for prompt follow-up by
telescopes around the world that could detect an electro-
magnetic counterpart to the gravitational wave signal. In
reality, some latency is incurred although the low-latency
pipeline gstlal currently lags behind the incoming data
on the order of 30 seconds making it close to real time
[13]. This fast separation of signal and noise is accom-

plished through an advanced form of matched filtering
[14]. In what follows, matched filtering will first be dis-
cussed followed by a description of some of the many
additional techniques LIGO must use.
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FIG. 5. A diagram showing the flow of data through the
search pipelines. The output from each detector is initially
filtered independently before being combined to look for co-
incidence.

A. Matched Filtering

Basic matched filtering correlates a template signal
(which is known a priori) with detector output to search
for a potential signal. This means that if the gravita-
tional wave signal is known ahead of time, it is possible
to use matched filtering to look for it in the data. This
technique forms the basis of the LIGO CBC searches and
so it is an important starting point. In this section, the
matched filter will be described and I will show that it is
optimal in the presence of stationary, Gaussian noise.

Let’s start by assuming that the data coming from the
detectors x(t) can be written as a sum of some signal
s(t) and some noise n(t). The noise is assumed to be
stationary and Gaussian meaning the amplitude follows
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a Gaussian probability distribution that is independent
of time. Written out, the detector output takes the form

x(t) = s(t) + n(t). (1)

Given a filter template h(t), the correlation with the
signal is defined to be

c(τ) ≡
∫ ∞

−∞
x(t)h(t+ τ)dt (2)

where τ is the time that the filter lags the detector out-
put. This equation can be rewritten in the frequency
domain as

c(τ) =

∫ ∞

−∞
x̃(f)h̃∗(f)e−2πifτdf (3)

where the tilde denotes the Fourier transform given by

x̃(f) =

∫ ∞

−∞
x(t)e−2πiftdt. (4)

Since the noise is assumed to be zero-mean, then the
mean of c, called S, is given by

〈c〉 ≡ S =

∫ ∞

−∞
s̃(f)h̃∗(f)e−2πifτdf (5)

where 〈 〉 denotes an average over an ensemble of noise re-
alizations. S characterizes the signal response generated
by a filter h(t) to an input signal which contains s(t).
Another quantity of interest is the variance of c which is
given by

〈
(c− 〈c〉)2

〉
≡ N2 =

∫ ∞

−∞
Sn(f)|h̃(f)|2df (6)

where Sn(f) = 2〈|ñ(f)|2〉 is the one-sided noise power
spectral density (PSD). This is the square of the noise
amplitude spectral density (ASD) which is idealized as
the red curve in the plots in Fig. 3. A plot showing
the expected noise ASD for Advanced LIGO and all the
contributions to it is shown in Fig. 6. The quantity we
are interested in is the signal to noise ratio (SNR) which
is given by

ρ = S/N. (7)

This can be written in a more illuminating way if we
first define the scalar product of two functions a(t) and
b(t) to be

(a|b) = 2

∫ ∞

0

df

Sn(f)

[
ã(f)b̃(f)∗ + ã(f)∗b̃(f)

]
. (8)

Now, taking advantage of the fact that the Fourier
transform of a real function y(t) obeys ỹ(−f) = ỹ∗(f),
we can rewrite S and N in terms of inner products to
give

ρ(τ) =
(xe2πifτ |Snh)√

(Snh|Snh)
. (9)

In practice, ρ is a function of τ and so the filtering
process involves maximizing ρ over τ . From Eq. (8) it
follows that ρ is maximized when the filter h takes the
form

h̃(f) = γ
s̃(f)e2πifτ

Sn(f)
(10)

where γ is an arbitary constant that I will simply set
to 1. The form of the filter we have derived is called
the matched filter and is the unique linear filter which
maximizes SNR.

Using the expression for h given in (10) one can com-
pute the optimal SNR and find that it is

ρopt = 2

(∫ ∞

0

|s̃|2
Sn

df

)1/2

= (s|s)1/2. (11)

Again, in practice one must also maximize over the
time and phase at coalescence along with the intrinsic
source parameters to arrive at the optimal SNR.

FIG. 6. The Advanced LIGO noise ASD with the different
noise contributions shown. Plot taken from [15].

The SNR is an important quantity to distinguish signal
from noise for LIGO and is used to identify candidate
events. The process of matched filtering produces an
SNR time series and peaks in the time series indicate
possible GW signals. Those peaks that exceed a certain
threshold (taken to be 4 in current gstlal analyses) are
analyzed further and are called triggers.
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While matched filtering forms the basis of LIGO data
analysis, more advanced techniques must be employed
in the LIGO searches because (i) the exact form of the
signal is not known because the waveform shape de-
pends on parameters such as the masses and (ii) the data
contains non-stationary, non-Gaussian noise which can-
not be accounted for in the standard matched filtering
method. Below I will discuss some of the techniques used
by gstlal to overcome these problems.

B. Template Banks

The discussion of matched filtering above assumed that
the signal was known ahead of time, but in practice this
is not the case. In order to account for the fact that the
exact form of the gravitational wave signal is unknown,
it is necessary to construct large template banks which
span the compact binary parameter space. The intrinsic
parameters (the masses and spins of the binaries) are the
important parameters for determining the shape of the
waveform and so in practice template banks are created
by discretely sampling some subset of the mass and spin
parameter spaces. Fig. 7 shows an example of a template
bank spanning the parameter space of masses and the
effective spin parameter χeff which is given by

χeff =
m1s1z +m2s2z

m1 +m2
. (12)

Since the parameter values are continuous, it is never
possible to perfectly match a signal to a template, but
template banks can be constructed to give arbitrarily
small losses in detection rates and SNR. Typically, a min-
imal match between any signal and the nearest template
of somewhere between 95% and 97% is chosen to give
banks of manageable size which still represent the pa-
rameter space well.

The procedure of constructing an optimal template
bank has been extensively studied and several methods
have emerged. In the case of searches using inspiral-only
templates over just the mass parameters (not as relevant
now that spin is considered important in these searches),
it has been shown that metric-based hexagonal template
placement is optimal [16]. For higher-dimensional param-
eter spaces (e.g. those including spin), a stochastic place-
ment algorithm is used which attempts to place random
templates and discards those that have a sufficient min-
imal match with the templates around them [17]. This
method has the advantage that it is scalable and does
not require knowledge of the metric for the parameter
space. In section IV, I discuss a novel method of gen-
erating stochastic template banks which is significantly
faster than the traditional algorithm.

Substantial work has also gone into finding ways to use
banks which have fewer templates. One method uses a
modification of the Gram-Schmidt process to construct
an optimal basis of templates [18]. Below I will discuss
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FIG. 7. An example of the parameter values used in a tem-
plate bank where the color of the dots indicates the value of
the effective spin parameter χeff . The dashed lines indicate
the boundaries of the parameter space set by limits on the
total mass and mass ratio.

how singular value decomposition is used by the Ad-
vanced LIGO pipelines to compress the template banks
to make the search procedure faster.

1. Singular Value Decomposition

In order to make the gstlal pipeline run faster, it
would be ideal if a smaller set of templates could be used
to cover the same parameter space. This can be accom-
plished using a truncated singular value decomposition
(SVD) which identifies a set of basis templates which can
be used to reconstruct the entire template space with al-
most no losses [19]. In what follows, some of the details
of this technique along with the computational benefits
are discussed.

To begin, we construct the N × M template matrix
H. The rows of H are the templates (technically every
two rows are a template where one is the real part and
one is the imaginary part) and the columns are slices in
time. Fig. 8 shows how this is done for an example set
of templates.

In general, H will not be a square matrix, but it is
possible to factor it into a product of three useful matri-
ces. This is called the singular value decomposition and
is written:

H = UΣVT (13)

where U is an m × m unitary matrix whose rows are
orthonormal basis vectors, V is an n × n unitary recon-
struction matrix, and Σ is an m × n diagonal matrix
whose diagonal values σi are called the singular values of
H. This decomposition can be rewritten as
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FIG. 8. Top: a series of templates in the time domain. Bot-
tom: a template matrix H whose rows are templates and the
columns are time samples. Fig. taken from [19].

Hµj =

N∑

ν=1

vµνσνuνj . (14)

In order to reduce the computational cost of filtering,
only the basis vectors corresponding to the largest sin-
gular values are kept. These are the basis vectors that
are most important to the reconstruction of H. As a
common convention, the σi are listed in descending or-
der so that choosing the largest N ′ of the N values of σi
is equivalent to choosing the first N ′. This truncation
produces an approximate reconstruction of H given by

Hµj ≈ H ′µj =

N ′∑

ν=1

vµjσνuνj (15)

where N ′ < N . This reduces the number of basis tem-
plates from N to N ′ and allows for a reconstruction of the
original bank from a smaller basis. It is possible to show
that performing this truncation produces a fractional loss
of SNR given by

〈
δρ

ρ

〉
=

1

2N

N∑

ν=N ′+1

σ2
ν . (16)

In practice, the value of N ′ is chosen so that the frac-
tional loss in SNR is less than .001. In the case of a small
template bank considered in [19], the number of tem-
plates was reduced from N = 912 to N ′ = 118 under this
condition. This represents almost an order of magnitude
reduction in the number of templates and corresponds
to huge reduction in computing costs. SVD is typically
applied to small sub-banks which are close in parameter
space so that most of the waveforms are similar and thus
a smaller number of basis templates can be used.

C. Multibanding

Another way that the gstlal pipeline improves the
filtering speed is by taking advantage of the form of com-
pact binary coalescence signals. These signals, known as
chirps, monotonically increase in frequency throughout
the inspiral phase. In addition, a binary system spends
most of the time during inspiral at low frequencies and
the merger phase is relatively short compared to the in-
spiral. It is possible to take advantage of this predictable
pattern in the signal by using different sampling rates.
Dividing the signal into different pieces that are sampled
at different rates is called multibanding and is a technique
used to efficiently analyze LIGO data [20].

The Nyquist-Shannon Theorem states that if a func-
tion is band-limited so that the frequencies that comprise
it satisfy |f | < B, then it can be completely determined
by taking samples at a rate of 2B Hz. This rate is called
the Nyquist rate and it represents the minimum sam-
pling rate that can be used to determine a signal without
aliasing.

This theorem can be applied to LIGO waveforms by
dividing each waveform into a series of time slices which
are all sampled at different rates. Since the binary spends
most of the inspiral at low frequencies, a small sampling
frequency can be used. It is only during the more dy-
namic high-frequency portion of the waveform that a
high sampling frequency is necessary. This greatly re-
duces the amount of data that must be processed in the
the pipeline.
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Since the discreteness of the signals is important in this
discussion, I will represent templates as discrete functions
and I will reserve the letter k to indicate a time index. If
the original signal was sampled at a rate f0 and is divided
into S non-overlapping (and thus orthogonal) time slices,
it can be written as a sum of those slices:

h[k] =

S−1∑

s=0

{
hs[k] if ts ≤ k/f0 < ts+1

0 otherwise
(17)

for the S integers {f0ts} such that 0 = f0t0 < ... < f0tS .
For gstlal , the time slice boundaries are chosen such
that each interval [ts, ts+1) is sub-critically sampled by a
power-of-two sample rate fs. Once the time slice bound-
aries are selected, the templates can be downsampled
without aliasing. The resulting downsampled signal is
made up of time slices given by:

hs[k] =

{
h[k f

0

fs ] if ts ≤ k/fs < ts+1

0 otherwise
. (18)

An image showing how this downsampling is typically
done for a chirp signal is shown in Fig. 9. As with
SVD, time slicing is typically performed over sub-banks
which contain many templates that are close in parame-
ter space. Since the waveforms in the sub-banks are all
quite similar, the time-slicing can be performed identi-
cally for all of them.

FIG. 9. A time domain chirp waveform with time slices cho-
sen. The sampling frequency of each time slice is indicated
by the shading. Fig. taken from [20].

D. χ2 Test

Once the peaks in the SNR are found and counted as
triggers, there is still a possibility that they correspond
to very loud noise in the detector. These short-duration,

high-amplitude noise events are called glitches and un-
fortunately they can create responses in many templates
at once. Glitches represent non-Gaussian noise in the de-
tector that is very hard to deal with. One method that
has been developed to handle glitches is the use of a χ2

test. Many different types of χ2 tests have been devel-
oped [21, 22]) and below I will describe two of them and
how they help to veto glitches.

1. Traditional χ2

In the traditional χ2 test, the interval [0,∞) is divided
into p disjoint sub-intervals ∆f1, ...,∆fp. The intervals
are chosen so that the expected signal contributions from
a chirp in each interval are equal. This condition can
be written more succinctly by first defining a set of p
Hermitian inner products

(a(f)|b(f))p =

∫

−∆fp∪∆fp

a∗(f)b(f)

Sn(f)
df. (19)

Then the frequency bands are chosen so that for a nor-
malized template, h,

(h̃|h̃)p =
1

p
(20)

Now, suppose the signal takes the form

s(t) = h(t− t0) (21)

where t0 is the coalescence time. This is the basic form of
a chirp signal where the phase is known. Then, as shown
above, the signal to noise ratio in the optimal case is

ρ = (s|s)1/2 = (h|h)1/2 = 1 (22)

Now define the contribution to the SNR from a specific
frequency interval as ρj . One can show that

〈ρj〉 =
1

p
, 〈ρ2

j 〉 =
1

p
+

1

p2
(23)

where here 〈 〉 corresponds to an average over many noise
ensembles. In the absence of signal (d → ∞) we have
〈ρj〉 = 0, and 〈ρ2

j 〉 = 1
p . Now define

∆ρj ≡ ρj −
ρ

p
. (24)

Then the χ2 is defined to be [23]:

χ2 ≡ p
p∑

j=0

(∆ρj)
2 (25)
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In the case of stationary, Gaussian noise, this quantity
is a classical χ2 distribution with p−1 degrees of freedom,
hence the name χ2. Low values of χ2 indicate potential
signal while high values indicate probable glitches. A plot
demonstrating how the χ2 can be used to separate signal
from noise is shown in Fig. 10. The long tail of back-
ground events into the high SNR region is non-Gaussian
and makes rejection of noise much harder without the χ2.

FIG. 10. A plot showing signal (simulated) and background
events with different SNR and χ2 values. It is clear that a
simple SNR threshold is not enough to separate signal from
background and so a combined cut on ρ and χ2 such as an
“effective SNR statistic”, shown as dashed lines, is necessary.
Fig. taken from [6].

One can intuitively understand the way this test works
by looking at what it does. For each of the frequency
intervals the χ2 looks at the contribution to ρ and com-
pares the contribution to the expectation. For a glitch,
the contributions to the SNR will be dominant in a small
number of frequency intervals leading to a large χ2 value.
For a normal chirp signal, the contributions to the SNR
will be evenly spread out among the frequency intervals
and so the χ2 will be low. This allows for the rejection
of unwanted glitches.

2. Autocorrelation χ2

Another form of χ2 that one can use to reject glitches
is called the autocorrelation χ2 and is obtained by com-
paring the SNR time series to the auto-correlation of the
template. This statistic has the advantage that once the
SNR time series is computed, all of the necessary pieces
are already in memory and so it is extremely computa-
tionally efficient [6].

Suppose that the detector output is of the form x(t) =
n(t) + Ah(t) where A is some amplitude and h is unit-
normalized so that (h|h) = 1. Then, the SNR time series
is:

ρ(τ) = (n|he2πifτ ) +A(h|he2πifτ ) (26)

= (n|he2πifτ ) +Aα(τ) (27)

where α(τ) is the autocorrelation of the template. The
time τ = 0 is chosen to be the point when the SNR
is at a maximum. Maximizing in time and taking an
ensemble average so that the noise term disappears gives
〈ρmax〉 ≈ A. The quantities ρmax, ρ(τ), and α(τ) are
easily computable from the templates and data while the
quantity (n|he2πifτ ) will be Gaussian distributed when
the noise is Gaussian. Thus, it is possible to compute a
χ2 of the form

χ2 =

∫ Tmax

0

|ρ(τ)− ρpeakα(τ)|2dτ. (28)

Tmax is a tunable parameter called the autocorrelation
length and determines the number of degrees of freedom
in the χ2 distribution (e.g. if the SNR time series is com-
puted with a time interval ∆t, the number of degrees of
freedom is N = Tmax/∆t).

E. Non-stationary Noise

One final hurdle for the LIGO detectors is non-
stationary noise (i.e. noise that evolves over time). The
non-stationary nature of the LIGO noise can best be seen
by looking at the evolution of the noise ASD shown in
Fig. 11.

FIG. 11. Noise ASD curves for the H1 detector during S6
(May 9, 2010 - November 4, 2010). The ASD for the mode
(blue), mean (red), and best (green) operation are shown.
Plot taken from [24].

For forms of non-stationary noise that evolve slowly
over time (i.e. those due to changes to the detector hard-
ware), it is possible to simply filter the data over time in-
tervals that are small compared to the time scale of the



10

non-stationary noise. Non-stationary noise that evolves
on a shorter time-scale is more difficult to deal with (such
as anthropogenic noise) and impacts the detector sensi-
tivity.

An obvious way to reduce the backgrounds from non-
stationary glitches is the requirement of coincidence be-
tween detectors. Candidate gravitational wave events
with high enough signal-to-noise ratios for a specific tem-
plate waveform in one detector are counted as triggers.
Coincidence occurs when identical triggers (those corre-
sponding to the same template waveforms and close in
time) are found in multiple detectors [6]. It is unlikely
that glitches will occur at the same time in multiple de-
tectors and so the coincidence requirement makes the
LIGO searches more robust against them.

III. A NEW STOCHASTIC TEMPLATE BANK
ALGORITHM

A. Stochastic Template Banks

In early searches for gravitational waves from compact
binary coalescence (CBC), the only parameters under
consideration were the binary masses. Using this restric-
tion, it was possible to treat the parameter space as a
manifold with a metric that gave the separation between
points in terms of the match [25]. Methods using this
metric treatment of the parameter space were developed
which placed templates on a lattice that covered the pa-
rameter space [26]. In the case of the hexagonal lattice,
the template placement is actually optimal meaning that
the space is covered and a minimum number of templates
is used [16].

While optimal methods have been developed and im-
plemented for low-dimensional spaces, in the higher-
dimensional cases it is not known how to create optimal
template banks for curved spaces of dimension D > 2
because the metric is not known [27]. In fact, even in the
case of only two-dimensional template banks, the metric
is only known for inspiral waveforms and so the inclusion
of merger and ringdown is not possible.

As a result, we must instead use stochastic methods
which randomly place templates, check if they are cov-
ered by templates already in the bank, and keep them if
they are not covered [17]. Stochastic techniques have the
advantage that they do not require knowledge of the met-
ric and so they can be implemented for parameter spaces
of arbitrary dimension and in those without a metric.
These methods have found use in searches for compact
binary coalescence where the necessity of including spin
demands at least a 3-dimensional template bank [28, 29].

One problem with stochastic methods is that they are
not especially computationally efficient. Randomly gen-
erating the coordinates for templates uniformly in the
parameter space and checking the match with neighbor-
ing templates causes many extra expensive match cal-
culations to be performed. These extra calculations are

incurred because: (1) the parameter space is not flat and
so uniformly chosen coordinates are not uniformly sepa-
rated in match and (2) when the bank begins to become
full, a lot of time is spent placing the last few templates
to fill in the remaining holes in the bank. Metric methods
do not suffer from the same pitfalls because they exploit
knowledge of the metric to place templates optimally.

An obvious way to combat the issue of the curved pa-
rameter space is by choosing coordinates where the met-
ric is approximately flat. In the case of searches for com-
pact binary coalescence, the chirp time coordinates τ0, τ3
provide a nearly Cartesian metric that alleviates the dif-
ficulties due to the parameter space curvature [30]. In
terms of the masses, τ0, τ3 can be written

τ0 =
5

256πfLη
(πMfL)−5/3 (29)

τ3 =
1

8fLη
(πMfL)−2/3 (30)

where η = m1m2/M
2 is the symmetric mass ratio,

M = m1+m2 is the total mass, and fL is the lower bound
on the frequency of the waveform. Physically τ0, τ3 cor-
respond to the Newtonian and 3PN contributions to the
time it takes for the gravitational wave frequency to go
from fL to infinity. In Appendix A, the boundaries of
the τ0, τ3 space are computed and an efficient method to
sample from this space is described.

The problem of placing the last few templates is an
inherent difficulty in current stochastic placement algo-
rithms that stems from their lack of knowledge about
where previous templates were placed. In order to ad-
dress this issue, we propose a new stochastic template
bank creation algorithm which maintains a memory of
where templates have been placed to guide the placement
of proposal templates.

B. New Algorithm

Following the notation in [17], letM be a signal man-
ifold of dimension D with a positive-definite distance
d(x, y) where x, y ∈ M. A template bank T is a set
of n points {x1, . . . , xn | xi ∈M}. T covers the signal
manifold M with radius ∆ if ∀ y ∈ M, ∃ xi ∈ T such
that d(xi, y) < ∆.

In this paper, the following algorithm is proposed as an
improvement to the stochastic template placement algo-
rithm presented in [17] including the improvements from
[28]:

1. Cover M with kD equally sized bins Bi, i =
1, . . . , kD where k is the number of divisions per
dimension. To construct the bins:

(a) Suppose the binary source parameters are
given by θi, i = 1, . . . , D and that each param-
eter takes values in the interval [θi,min, θi,max]
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onM. Divide this interval into k equal length
sub-intervals θi,α where α = 1, . . . , k.

(b) Each bin is then given by the Cartesian prod-
uct θ1,α× θ2,β × . . .× θD,ω where all the greek
indices go from 1 to k. One could imagine
allowing each dimension to be binned differ-
ently (i.e. with more or less than k bins), but
for simplicity the case of k bins in each dimen-
sion is considered.

Note that using this construction, not all the bins
will necessarily intersect M. An example gridding
of two dimensions of a three-dimensional space is
shown in Fig. 12.

2. For each bin Bi, assign two values: the number of
accepted templates Ai and the number of rejected
templates Ri. Initially these values are set to Ai =
1, Ri = 0 although other choices are possible.

3. Choose a proposal template y uniformly from the
signal manifold and determine which bin, Bi it falls
into. Then compute the rejection probability Pi for
that bin given by:

Pi =
Ri

Ri +Ai
(31)

4. Choose a random number r uniformly from [0, 1].
If r < Pi, discard y and return to step 3.

5. If d(y, xi) > ∆ ∀ xi ∈ T , add y to T and increment
Ai. Otherwise, discard y, increment Ri, and return
to step 3.

6. Continue 3-5 until Pi > P ∗ ∀ i where P ∗ is a cutoff
probability that can be varied to change the per-
formance of the algorithm.

Currently the dominant contribution to the time re-
quired for template bank generation is the computation
of the match between the proposal template and tem-
plates already in the bank. This algorithm increases the
speed of template bank construction by keeping track
of where templates have already been placed and reduc-
ing the number of match calculations. As regions of the
signal manifold are covered and Pi increases for those
regions, it is less likely that proposal templates will be
placed there. In effect, this algorithm guides template
bank placement to regions of the bank that are not full
and eliminates match calculations in regions that are al-
ready sufficiently covered.

In practice some computational cost is introduced by
having to check if all the Pi > P ∗ for each new proposal.
This cost can be reduced by vectorizing the computation
so that the additional burden is negligible.
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FIG. 12. A 3-dimensional template bank with a grid overlaid
in the τ0 and τ3 directions. The values of τ0 and τ3 shown
correspond to systems with total mass between 20 and 30
solar masses and component masses between 10 and 15 solar
masses. The third dimension is χeff which is not gridded in
this case. Notice that some of the bins may not intersect the
signal manifold at all.

C. Results

Since the match calculations required to compare a
proposal template to the existing templates in the bank
is the most expensive part of stochastic template bank
generation, one way to benchmark the performance of
the new algorithm is to compare the number of match
calculations it requires to the traditional algorithm. A
plot of this comparison is shown for a specific template
bank in Fig. 13. It is clear that the new algorithm re-
quires far fewer match calculations to make a bank of the
same size and this is reflected in the amount of time is
required to generate the banks.

Perhaps more important than speed is the coverage
of the banks. It is crucial that a template bank have
no holes (i.e. that it covers all possible signals). To
ensure that the new algorithm is generating banks that
are robust, bank simulations were performed where 5000
injections were tested against the bank to see if they were
covered. The results of these bank simulations are shown
in Fig. 14.

As is clear from these figures, the new algorithm cre-
ates banks which cover the parameter space just as well
as the old algorithm. In contrast however, the new al-
gorithm requires less than half the number of match cal-
culations and consequently requires less than half of the
time. This is a substantial reduction that will allow for
new template banks to be generated more regularly.
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FIG. 13. A plot showing the number of match calculations
required to make a template bank of a certain size for both
the new and old stochastic template bank algorithms. The
number of match calculations in the new algorithm was fixed
to get a fair comparison between the algorithms.

IV. IMPROVING THE AUTOCORRELATION χ2

In Section IID, two different types of χ2 discriminator
tests were described. Below, I describe efforts to improve
the second of these tests: the autocorrelation χ2.

Recall from Eq. (28) that the autocorrelation χ2 test
compares the autocorrelation of the best-matching tem-
plate to the SNR time series. Fig. 15 shows an example
time domain waveform and the accompanying autocor-
relation.

When the detector output contains only Gaussian
noise, the SNR time series will be very similar to the
autocorrelation and so the χ2 will be small. In the pres-
ence of a glitch, however, the SNR time series is the same
as the template (or a time-reversed version of it depend-
ing on the order of the functions in the correlation) which
will not match the autocorrelation well. Fig. 16 shows
a glitch on top of a waveform and the correlation be-
tween the waveform and the glitch demonstrating that
the correlation is nothing like the autocorrelation of the
template.

The current autocorrelation χ2 test used in the gstlal
pipeline is computed on an interval centered on the au-
tocorrelation peak and only uses this region for the com-
putation of the autocorrelation χ2. The length of this
region is called the autocorrelation length and in current
analyses it is set to be the same for all templates. Below
I propose and discuss the results of using two different
methods to modify the calculation of the autocorrelation
χ2 so that it is adaptive to the templates being used to
filter the detector output.

FIG. 14. The number of injections in the bank simulation
with a given value of mismatch for the old (top) and new
(bottom) algorithms. The dashed line represents the maxi-
mum mismatch desired for a template bank.

A. Windowing in Autocorrelation Power

One way to modify the autocorrelation χ2 is to make
the window where it is computed depend on the region
where most of the autocorrelation power is. For each
template, the autocorrelation is computed and squared
to get the power and then the small region centered on
0 containing some chosen fraction of the autocorrelation
power is determined. This is the region used to compute
the autocorrelation χ2 for triggers corresponding to the
given template. Choosing to compute the autocorrela-
tion χ2 only over the region where the autocorrelation is
highest should lower all χ2 values since the region of in-
tegration is shrinking. If it lowers the χ2 values for signal
more than it does for background the detection efficiency
will improve.

This method of defining the autocorrelation length
takes into account differences in the templates. Very long
templates corresponding to low mass systems have very
tight autocorrelations and so only small autocorrelation
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FIG. 15. Time domain waveforms for a pair of 50 M� black
holes (top) and the autocorrelation of the ‘+’ polarization
(bottom). In both plots the region between the dashed lines
corresponds to the part of the waveforms (top) and autocor-
relation (bottom) where 90% of the power falls.

lengths are needed to capture most of the autocorrela-
tion power. In contrast, high mass systems produce short
waveforms that have wider autocorrelations and so larger
autocorrelation lengths are needed.

This method was implemented in the gstlal code and
tested using a 90% power interval. This interval is indi-
cated by the dashed blue lines in Fig. 15. The results of
filtering using an autocorrelation χ2 defined this way are
compared to the standard method in Fig. 17.

As described above, all the χ2 values were significantly
reduced by using a smaller autocorrelation length, but
the background χ2 values were reduced so much that the
high SNR signal population became contaminated with
background. Of the ∼180,000 total background triggers,
about 160,000 were in the signal region using the old
χ2 calculation and an additional 200 were added using
the new calculation. While this is only a small contam-
ination, this change has still made the separation of the
signal and background worse and so it is not viable.
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FIG. 16. A glitch (approximated as a very narrow Gaussian)
shown against the ‘+’ polarization of the waveform from Fig.
15 (top) and the correlation between the glitch and the wave-
form (bottom).

One could imagine trying this technique using a larger
portion of the autocorrelation (i.e. by using 99% of the
power to define the autocorrelation length), but improve-
ment does not seem likely except in the high mass region
where the relevant length scales of the autocorrelation
and template are similar. The failure of this method
seems to be due to the fact that for low mass systems,
the template is much longer than the autocorrelation
meaning that the relevant part of the correlation with
the glitch may not fall in the window specified by the
autocorrelation power.

B. Windowing in Template Power

An alternative approach to determining an appropriate
autocorrelation length for each template is to choose it
based on template itself rather than the autocorrelation.
In this case, the region of 90% power for the waveform
(indicated by the dashed black lines in Fig. 15) is used to



14

FIG. 17. Plots showing the SNR vs. the χ2 for the standard
method of computing the autocorrelation χ2 (top) and the
new method using a window defined by the autocorrelation
power (bottom). Signal injections are shown in red and back-
ground is shown in black. The difficult background events to
deal with are those that overlap with the signal region (i.e.
those with low ρ values). The signal injections were for sys-
tems with total mass between 4 M� and 10 M�.

define the autocorrelation length. This method has the
advantage that in the case of a glitch, most of the power
of the glitch will be picked up by the autocorrelation χ2

and so glitches will be assigned high χ2 values.
A comparison of this method to the one described

above is shown in Fig. 18. One can clearly see the trade-
offs between the two methods of choosing the autocorre-
lation length. When choosing the autocorrelation length
based on the autocorrelation power, a signal will have a
very low autocorrelation χ2, but background events will
as well. On the other hand, choosing the autocorrela-
tion length based on the template power will ensure that
glitches have very high χ2 values, but will also increase
the χ2 of signal events.

Results from choosing the autocorrelation length for
each template based on the template power are shown in
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FIG. 18. The autocorrelation from Fig. 15 shown with the
correlation of the signal with the glitch from Fig. 16. The
blue dashed lines indicate the region that would be used when
windowing on the autocorrelation power and the black dashed
lines indicate the region that would be used when windowing
on the template power.

Fig. 19 for the same background and signal populations
used to evaluate the previous technique. In this case,
of the ∼160,000 background triggers that overlapped the
signal region, about 200 were elevated out of this region.
It is unclear how large of an impact this elevation of
background events will have on the sensitivity of LIGO
searches. Further investigation with larger data sets will
be necessary.

FIG. 19. A plot showing the SNR vs. the χ2 for autocor-
relation χ2 values calculated by windowing on the template
power. This should be compared to the top plot on Fig. 17.
As above signal injections (total mass between 4 M� and 10
M�) are in red and background triggers are in black.

One could in principle use other percentages of the
template power to tune the autocorrelation χ2 in order to
determine if more than 200 events could be elevated out
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of the signal region. One must also be concerned with the
additional computational burden of using a larger auto-
correlation length. For long templates, a 90% power win-
dow corresponds to many time samples leading to very
long autocorrelation lengths (sometimes larger by 2 or-
ders of magnitude). This will increase the size of SVD
banks and possibly filtering time due to increased cost in
the χ2 calculation.

V. CONCLUSION

The gstlal pipeline is an elaborate search pipeline
with many optimizations for speed and sensitivity in
CBC searches. I have presented some methods which
seek to improve the performance and efficiency of CBC
searches by allowing for significant improvements in the
speed of template bank generation. In addition, a frame-
work for modifying and tuning the autocorrelation χ2

test has been developed which has the potential create
better separation of signal and background.

In the future, it is possible to expand on this work to
create even larger improvements to the performance of
gstlal . In its current incarnation, gstlal must con-
vert the τ0, τ3 coordinates to component masses to check
that they satisfy the given parameter space constraints
which is costly. An alternative would be to analytically
compute the boundaries of the τ0, τ3 space given con-
straints on the component masses so that the sampling
could be directly done in this coordinate system. Some
work on this issue is presented in Appendix A although
some subtleties still need to be worked out.

In addition, tuning still needs to be done to deter-
mine the optimal power windows for separating signal
and background in the gstlal pipeline using the auto-
correlation χ2 test. Once these windows are found, it
would also be prudent to determine the increases in com-
puting costs, if any, that are introduced by adding this
complexity to the search process.
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Appendix A: Boundaries of the τ0, τ3 Space

Below I show in detail the calculation of the bound-
aries of the τ0, τ3 space given some constraints on the
masses of the binary companions. In addition, I will show
how this knowledge can be used to efficiently sample the
τ0, τ3 space without many discarded trials. This deriva-
tion follows Appendix B of [16] with some corrections
and extensions.

Suppose that a parameter space of interest has
masses constrained by m1 ∈ [m1,min,m1,max], M ∈
[Mmin,Mmax], and q ∈ [qmin, qmax] where q = m1/m2

is the mass ratio. Notice that the conditions on m1 and
M are equivalent to putting constraints on m1 and m2.

It is useful to rewrite the expressions for τ0 and τ3 as

τ0 =
A0

η
M−5/3 (A1)

τ3 =
A3

η
M−2/3 (A2)

where fL is the lower cutoff frequency and A0, A3 are
constants given by

A0 =
5

256(πfL)8/3
, A3 =

π

8(πfL)5/3
. (A3)

Eliminating M from (A1) and (A2) yields

τ3 =
A3

η

(
ητ0
A0

)2/5

=
A3

A
2/5
0

τ
2/5
0

η3/5
. (A4)

Using the bounds on q it is possible to constrain η by
realizing that

η =
qm2

2

m2
2(q + 1)2

=
q

(q + 1)2
(A5)

meaning η takes values between ηmin and ηmax which are
given by

ηmax =
qmin

(qmin + 1)2
, ηmin =

qmax

(qmax + 1)2
. (A6)

Substituting these values into (A4) gives two boundary
curves for the space:

τ3 <
A3

A
2/5
0

τ
2/5
0

η
3/5
min

(A7)

τ3 >
A3

A
2/5
0

τ
2/5
0

η
3/5
max

. (A8)

These conditions on τ0, τ3 ensure that the original con-
ditions on the mass ratio are satisfied. Eliminating η from
(A1) and (A2) instead gives
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τ3 =
A3

A0
τ0M. (A9)

Applying the constraints on M gives two more bound-
ary curves:

τ3 >
A3

A0
τ0Mmin (A10)

τ3 <
A3

A0
τ0Mmax. (A11)

Finally, we need to apply the constraints on m1. Sup-
pose that m1 = me where me is one of the extreme values
of m1. In this case,

η =
m1m2

M2
=
me(M −me)

M2
⇒ τ0 =

A0M
1/3

me(M −me)
.

(A12)

Rearranging this equation gives

M − A0

τ0me
M1/3 −me = 0. (A13)

Letting M = x3, −A0/(τ0me) = p, and −me = q turns
this into an equation of the form

x3 + px+ q = 0. (A14)

The solution to this cubic equation can be obtained
from the more general cubic equation. The solutions for
x are:

x =

(
−q
2

+

√
q2

4
+
p3

27

)1/3

+

(
−q
2
−
√
q2

4
+
p3

27

)1/3

.

(A15)

Substituting for p, q in the above for both values of me

gives two different values of x. Each value of x can then
be used to give M = x3 and the two values of M can be
substituted into (A9) to give the final two boundaries:

τ3 >
A3

A0
τ0x

3

∣∣∣∣
me=m1,min

(A16)

τ3 <
A3

A0
τ0x

3

∣∣∣∣
me=m1,max

. (A17)

Fig. 20 shows an example τ0, τ3 parameter space with
the boundaries drawn in. Notice that not all of the
boundaries constrain the space at one time.

Now that we know the boundaries of the τ0, τ3 space, it
is possible to develop an efficient method to sample from
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FIG. 20. Points in a template bank with the boundary curves
in τ0, τ3 drawn in. Each of the curves corresponds to one of
the boundary equations above.

it. To start, notice from equations (1) and (2) that τ0, τ3
are maximized when η,M take their minimum values and
are minimized when η,M take their maximum values.
This gives a simple way to determine the extreme values
of τ0 and τ3.

To sample in τ0, τ3 space, start by pulling a value of τ0
uniformly from [τ0,min, τ0,max]. Then, compute all of the
constraints on τ3 using the equations above and choose
the most restrictive of them (i.e. the lowest maximum
and the highest minimum). Finally, pull a value of τ3
uniformly from the values allowed by the constraints.

Currently sampling in τ0, τ3 is done by choosing τ0, τ3
randomly in the calculated bounds and then converting
to m1,m2 to check if the conditions on the component
masses are satisfied. This method has the disadvantage
that it requires many trials because most of the points do
not satisfy the conditions on m1,m2. The method pro-
posed above eliminates these trials because it guarantees
that each point it generates satisfies the conditions on
m1,m2.
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