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Abstract

Crackling noise arises when a system responds to external conditions through discrete, im-
pulsive releases of energy. Various locations in the Advanced LIGO setup have been identified
over the years as suspected to produce crackling noise. Of specific interest is the crackling
noise arising in maraging steel blades that are used to suspend end mirrors of the Michel-
son Interferometer in a quadruple pendulum stage, where vertical displacement noise due to
crackle events couples to horizontal displacement noise along the arm of the interferometer.

In order to study this noise experimentally, a setup was designed a couple of years ago: a
Michelson Interferometer configuration to measure vertical displacement noise at the tip of the
maraging steel blade. One of the major difficulties in measuring crackle noise using this setup
has been the high sensitivity required [1], and having a good seismic isolation system with a
good control over the motion of the interferometer is essential.

What I describe in this paper focuses on my work towards establishing a feedback damp-
ing control loop around the suspended optics breadboard which houses the interferometer. I
describe the whole process of my control system design, starting from sensing to actuation and
control. I also discuss certain miscellaneous things I have worked on to improve speed and
efficiency for further rounds of implementing the control system, upon any possible modifica-
tions to the setup. I conclude by talking about the improvement in seismic isolation this control
system has brought about.

1 Introduction

In metals, dislocations are ’pinned’ by obstacles like grain boundaries or other surfaces. (Dis-
locations are dis-junctions in the periodic lattice structure.) Under small oscillatory stress, these
dislocation lines bow in and out, but the response of the complex network on the whole is known
to act nonlinearly through long-range interactions between dislocations. This nonlinear behav-
ior, among a broad class of other nonlinear phenomena, is known to be the cause of ”crackling”.
”Crackling” here refers to impulsive releases of energy, acoustic emissions, or changes in the ge-
ometry of attachments between suspension elements. It has been suspected that this ”crackling
noise” in various components and suspensions might produce excess noise in aLIGO. [1]

Many possible locations of crackle have been identified, some of which are:

• The maraging steel blades used for vertical isolation

• The silica fibers which suspend the test masses from the penultimate masses

• The welds which attach the fibers to the ears

• The clamps which hold the suspension wires to the steel blades

Figure 1 shows the test mass suspension scheme in Advanced LIGO.
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Figure 1: Suspension scheme in Advanced LIGO

The maraging steel blades have been under investigation in the first crackle experiments, as they
present a mechanical system which can be driven and stressed easily. In addition, mechanical
crackling noise is sufficiently generic that an experiment capable of measuring this noise in marag-
ing steel blade springs will be well suited for investigating crackling in other components used in
aLIGO as well.

As crackling noise is inherently nonlinear, there is the potential for noise to be upconverted. Specif-
ically, motion of the suspension at sub-Hz microseismic frequencies may induce blade motion,
causing the blades internal stresses to fluctuate, resulting in an avalanche of crackle events with
high-frequency content. As we do not currently possess a reliable analytical model to predict the
magnitude, or frequency dependence, of the these events, we hope to do so experimentally directly
at the frequencies of interest. [1]

2 Where I started

This section describes the work that was already done before my arrival. I picked up one part
of the Crackle2 experiment - suspension damping of the breadboard - and I started off in direction
of establishing a feedback damping control loop for it.

2.1 Measurement strategy

With reference to figure 1, below the upper intermediate mass (UIM) in the quadruple suspension
system, there is no more spring blade isolation, thus any crackling noise in the UIM maraging steel
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blades will propagate directly to the test mass. Therefore, one would want to ensure low enough
crackling noise at the UIM blade tip itself.

A direct measurement of crackling noise is very difficult. However, one can make measurements
of the blade displacements directly using a Michelson interferometer with end mirrors mounted to
loaded blade springs which are driven with a low frequency, common-mode force. Since crackling
noise occurs incoherently in each blade, it will show up in the Michelson’s displacement signal. In
order to ensure repeatability and applicability of results, the setup has been made to be similar to
the existing aLIGO configuration.

2.2 Experimental design

The setup consists of a Michelson interferometer using blade-suspended masses as end mirrors. A
crackle event will change the differential displacement of the mirrors, and hence be reflected in the
interferometer output. The events are excited by a low frequency, common-mode, drive on the two
blades. [1] The apparatus is going to be housed in a vacuum chamber to mitigate acoustic noise.

Figure 2 is a picture of the full setup.

Figure 2: Complete setup
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2.2.1 Optical layout

The optical layout schematic in figure 3 below.

OptoCad (v 0.93k), 24 Feb 2015, crackle_v4.ps
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Figure 3: Optical layout

Light from the laser comes in from the bottom left corner through a viewport. Two folding mirrors
then redirect the beam to the beam splitter. The two arms of the Michelson interferometer are
folded in such a way that the beams impinging on the end mirrors are almost vertical, but tilted
enough so that the beams propagating in opposite directions (before and after reflection from the
mirror) are separate. The end mirrors of the Michelson arms are horizontal.
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2.2.2 Seismic isolation system

Earlier versions of the setup used a stack of two steel plates resting on blocks made of rubber to
provide isolation of the Michelson from the ground motion. Ideally, seismic motion of the optical
setup wouldn’t couple to the Michelson signal because the motion would be common to both
mirrors. However, any differential motion of the blades would result in a spurious signal.

Lately, a suspension system has been employed for the breadboard with the Michelson interferom-
eter. A basic control of the breadboard has already been established, and a more detailed modeling
of the system and damping in all six d.o.f. is to be implemented.

Figure 4 below shows a simplified scheme of the suspension system. Vertical isolation has been
achieved using maraging steel spring blades. A two stage system has been designed. The up-
per stage is composed of four such blades, each one supporting a wire which is attached to an
intermediate stage.

Figure 4: Scheme of the suspension system

3 Progress

The problem statement for my project, to put it in very simple words, is to implement a damping
feedback control loop for the suspended optical breadboard. The following subsections are written
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in an order so as to build up to the said aim.

3.1 Sensing motion of breadboard using OSEM

This subsection talks about using the suspension OSEM to track the motion of the breadboard in
physical degrees of freedom.

3.1.1 Analytical model

Figure 5 shows the mounting scheme of the six OSEMs.

Figure 5: Scheme of OSEMs

It is possible to use the outputs of these shadow sensors to sense motion of the suspended bread-
board. Here, I build an analytical model for the same.

I start with the basic relation that gives the velocity vp at a point P whose position vector is rp on a
rigid body whose center of mass (CM) moves with a velocity vcm. The angular velocity is ω. The
relation can be written as:

vp = vcm +ω× rp (1)

In an infinitesimal time interval, the equation can be rewritten as:

sp = scm +dθ× rp (2)
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where now, sp is the infinitesimal displacement vector of the point P, scm is the infinitesimal dis-
placement vector of the center of mass and dθ represents infinitesimal rotation of the position
vector of point P, rp, about the center of mass.

Equation (2) can be written in the matrix form as:

sp,x
sp,y
sp,z

=

1 0 0 0 −rp,z rp,y
0 1 0 rp,z 0 −rp,x
0 0 1 −rp,y rp,x 0




scm,x
scm,y
scm,z
dθx
dθy
dθz

 (3)

Here, sp,x corresponds to displacement of point P in the x direction.

Now, in the case of interest here, each of the 6 sensors has one such matrix equation. However,
note that by construction, each OSEM can measure displacement for only motion along its
axis. Coupling this with the fact that each of the six sensors are mounted such that their axis is
along one of the principal axes (as can be seen in figure 5), it is clear that only one of the three
linear equations represented in equation (3) becomes relevant.

Let us see this for an example: sensor A. The equation corresponding to sa,x alone becomes relevant
because the axis of sensor A is along the absolute (w.r.t ground) x-axis. Therefore, the exact linear
equation governing sa,x can be written down by finding out the values of ra,z and ra,y. The same
can be repeated for all the 6 sensors to obtain a set of 6 linear equations. Notice that the terms on
the left hand side of these equations correspond to displacements along sensor axes, and those on
the right hand side to motion of the center of mass and rotation about the absolute (w.r.t. ground)
axes: roll, pitch and yaw. The desired matrix transformation equation can, then, be established
from these six equations, and is the following:


sa
sb
sc
sd
se
s f

=


1 0 0 0 −zcm,A ycm,A
0 −1 0 zcm,B 0 −xcm,B
0 −1 0 zcm,C 0 −xcm,C
0 0 1 −ycm,D xcm,D 0
0 0 1 −ycm,E xcm,E 0
0 −1 0 zcm,F 0 −xcm,F




scm,x
scm,y
scm,z
dθx
dθy
dθz

 (4)

Here, as usual, xcm,A refers to the x-coordinate of A in the CM frame. Also recall that these values
can be negative too, since the center of mass is close to the geometric center of the breadboard and
OSEMs are placed on either side.
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3.1.2 Constructing the transformation: Sensing matrix

As mentioned above, the sensing transformation matrix can be arrived at using the set of 6 linear
equations. The positions of the sensors w.r.t the CM fix the constants of the matrix.

1. Finding coordinates of the center of mass (CM)
First, we find out the coordinates of the CM. The origin is as shown in figures 3 and 5. The
suspension is as shown in figure 4. The axis convention is shown in figure 5.

The y-coordinate can be simply found to be -27 (in mm) by noticing the position of the
suspension wires from the center plane of the breadboard.

For the x and z coordinates, I have estimated the mass and position of various components
of the setup. Table 1 summarizes the same.

Table 1: Calculation of CM coordinates of the setup

Item(s) Mass (kg) Absolute coor-
dinates (in xz
plane, origin as
shown in figure
5) (mm)

Comments

Optical posts and
components

12 x 0.4 = 4.8 (217.83, 177.75) 0.2kg is the weight of each post, and
0.2kg accounts for the mass of the com-
ponent placed on it. Figure 2 shows the
positions of these posts/components. The
coordinates posted here correspond to the
CM of the system of posts and compo-
nents

Suspended block 1 2.2 (356, 210)
Suspended block 2 2.2 (44, 210)
Fixed block 1.45 (200, 400) This is the block to which steel blades are

clamped
Breadboard 5.9 (200, 225)
Reinforcement 1 1.97 (380, 225) Mass calculated from material and di-

mensions
Reinforcement 2 1.97 (20, 225) Mass calculated from material and di-

mensions

Upon calculation, the center of mass of the system comes out to be: 20.49kg at (204, -27,
223) (in mm).

2. Calculation of positions of sensors w.r.t CM The next thing I did was to find out the
positions of each of the sensors in the absolute (w.r.t. ground) reference frame, and then find
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their coordinates in the center of mass frame. Refer to table 2. ’X’ means that we don’t care
about that particular coordinate since it is along the axis of the sensor.

Table 2: Positions of sensors
Sensor Absolute coordinates (in xz plane, ori-

gin as shown in figure 5) (mm)
Coordinates in CM frame (mm)

A (X, 0, 62.5) (X, 27, -160.6)
B (24, X, 62.5) (-180.16, X, -160.6)
C (376, X, 62.5) (171.82, X, -160.6)
D (316, 25.7, X) (111.82, 52.7, X)
E (84, 25.7, X) (-120.18, 52.7, X)
F (24, X, 397) (-180.18, X, 173.91)

The matrix transformation equation can, after converting the length units to meter (so that angles
are in micro-rad), then be written as:


sa
sb
sc
sd
se
s f

=


1 0 0 0 0.1606 0.027
0 −1 0 0.1606 0 −0.18018
0 −1 0 0.1606 0 0.17182
0 0 1 −0.0527 0.11182 0
0 0 1 −0.0527 −0.12018 0
0 −1 0 −0.17391 0 −0.18018




scm,x
scm,y
scm,z
dθx
dθy
dθz

 (5)

On multiplying the above equation on both sides by the inverse of the matrix, we get:
scm,x
scm,y
scm,z
dθx
dθy
dθz

=


1 0.0774 −0.0767 −0.6922 0.6922 −6.88×10−4

0 −0.0034 −0.5119 0 0 −0.4847
0 0.1575 0 0.5180 0.4820 −0.1575
0 2.989 0 0 0 −2.989
0 0 0 4.31 −4.31 0
0 −2.87 2.84 0 0 2.5478×10−2




sa
sb
sc
sd
se
s f

 (6)

Once again, recall that the angles are in micro-rad and displacements in micron.

3.2 Reconstruction of breadboard motion in 6D

Having constructed the sensing matrix, the next thing I did was to try it out on some real data.
The sensor data was exported to struct files using the ligoDV interface. (The MATLAB ligoDV
interface can be used to acquire sensor data, from a specified period of time, from the relevant
server. In this report, I will not delve into any technical details of the interface or the settings.)
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I wrote a MATLAB script that extracted sensor data arrays in double format from the struct files.
Since we are interested in infinitesimal displacements around the equilibrium point, I subtracted
from each sensor data array the mean of the data. Then, I inverted the transformation matrix from
equation 5 to reconstruct motion in the ground frame.

Figure 6 shows plots of motion in 6 d.o.f.
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Figure 6: Plot of motion in 6 d.o.f

Notice that the order of magnitude of motion is only a fraction of a micron. These plots cannot
really reveal any interesting information. What can be more interesting is the spectra of these
motions: one can see the modes and resonance frequencies.

3.3 Spectral analysis

I have used the pwelch function in MATLAB to find the power spectral density (PSD) of the
collected motion data. The following points summarize the process.

• [ Pxx , f ] = pwelch ( da t a , hann ing ( n f f t ) , n f f t / 2 , n f f t , f s )

on MATLAB gives the PSD Pxx and the corresponding frequency array f
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• nfft was chosen to be 1/6th of the total number of points, so as to guarantee about 10 averages
through hanning windowing.

• fs represents the sampling frequency, it is equal to 2048Hz.

• The square root of the PSD, amplitude, was used in the plots.

Figure 7 shows the spectra corresponding to motion shown in figure 6.
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Figure 7: Spectra of motion in 6 d.o.f

From the plots in figure 7, one can infer that:

1. The breadboard is suspended, and the OSEMs are fixed relative to the ground. Most of
what is seen in the spectrum is due to motion of the ground (seismic activity); this seems
to be concentrated in the <10Hz region. This is what forms the region of interest for us:
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the aim would be to damp motion at resonant frequencies of the suspension. Seismic
isolation has been achieved by using a suspension, but the modes of the suspension
are in the 0.1-10Hz region. At these frequencies, the breadboard moves more than the
ground, and so motion must be damped.

2. All the plots peaks at a particular (common) frequency just below 1Hz – one of the mode
frequencies of the system. A few more peaks can be seen for a few frequencies in between
1Hz and 10Hz.

Note: As we later realized, the magnets might have been, in the past, touching the OSEMs. The
spectra or data, hence, is not completely reliable.

The idea is to damp motion of the breadboard at resonant frequencies. This would require us to
have an idea of the mechanical response of the system for damping using OSEM coils at positions
A through F. This forms the next part of my work.

3.4 Characterization of mechanical response of the suspension

Six OSEMs, A through F, are mounted at different positions in the cage in which the breadboard is
suspended. The scheme has been depicted in figure 5. It is important to understand how OSEMs
function in order to get a feel for these measurements.

3.4.1 Detour: A brief about sensing and actuation using OSEM

Optical Shadow Sensor and ElectroMagetic Actuator (OSEM) consists of a shadow sensor part
and an electromagnetic actuator part. The former consists of an LED and a photodetector mounted
opposite to each other, as shown in figure 8. Insertion of an object through the hole would block
the light from the LED reaching the photodetector, and this change can be used to quantify the
extent to which the object has come inside the hole. The actuator part consists of a coil which can
generate magnetic field upon driving current through it.
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Figure 8: Optical Shadow Sensor and Electromagnetic Actuator

Upon thought, one can easily see that both sensing and actuation can be done by the same unit by
simply using a magnetic material for the object whose displacement is to be sensed; and this is
precisely what is done: magnets are attached to the points on the breadboard indicated by points A
through F. The OSEM modules are mounted outside the suspension, and they are at rest w.r.t the
ground.

Then, motion of the magnet can be sensed as usual, and it can even be driven by varying the current
through the coil. This is what is used as an actuation for the breadboard.

3.4.2 Measurement of transfer functions

Characterization of the mechanical response of the system consists of exciting one of the coils and
recording response in all other sensors or in motion in physical d.o.f. Both are equivalent and are
related by the same transformation as the displacements are. I have adopted the first method: that
is, record sensor signals and reconstruct the physical d.o.f. motion offline. The following will
explain the same in detail and discuss some results.

As I discussed above, by using magnets, it becomes possible for one to modify as well as sense
motion of a point on the suspended optical breadboard. Transfer function measurement, then,
becomes a matter of exciting coils and measuring sensor displacements; the LIGO DTT provides
a pretty convenient way of doing this. Before I talk about the results, it is important to note the
following about the DTT configuration used for the measurements.

• The DTT is operated in a swept-sine mode in order to perform the desired measurements.
The choice is obvious: we wish to study the behavior of sensor displacement for various
frequencies of excitation.
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• I have, in the measurements that I describe below, swept the excitation frequency from 0.5
Hz to 15 Hz.

• It is important to realize that the number of counts output to the coil under excitation depends
on the frequency of excitation. This is because of the presence of whitening and de-whitening
filters. Given the filter shapes, this means that at lower frequencies, due to lower gain from
whitening and de-whitening filters, the output counts are lower as compared to that at higher
frequencies for the same input amplitude. It is also known that a higher amplitude of
excitation gives higher coherence. Combining both of the above facts, it is interesting to see
that one can improve coherence at lower frequencies by exciting the coil at higher amplitudes
than those at higher frequencies for a similar number of counts output to the coil. As long
as the number of counts output to the coil is below a saturation limit (which is about 16000),
this is perfectly safe.

This was exploited, and the excitation amplitude profile was modified as follows:

Table 3: Excitation amplitude profile
Frequency Excitation amplitude (uN) No. of counts output to coil

15 400 10000
10 600 10000
5 1200 10000
2 2800 10000
1 4700 10000

0.5 6300 10000

It is possible to command DTT to build an envelope around the above points and then use
that profile to define amplitudes for other frequencies in the range of measurement; this is
what I have done for the measurements whose results are shown below.

As mentioned earlier, I have first measured transfer functions of coil excitation to sensor displace-
ment and then transformed them to coil excitation to physical d.o.f. motion transfer functions. The
transformation matrix remains the same as the sensing transformation matrix in (6). Here are the
results.
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Figure 9: Bode plots for translational d.o.f. for coil A excitation
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Figure 10: Bode plots for rotational d.o.f. for coil A excitation
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Figure 11: Bode plots for translational d.o.f. for coil B excitation
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Figure 12: Bode plots for rotational d.o.f. for coil B excitation
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Figure 13: Bode plots for translational d.o.f. for coil C excitation
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Figure 14: Bode plots for rotational d.o.f. for coil C excitation
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Figure 15: Bode plots for translational d.o.f. for coil D excitation
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Figure 16: Bode plots for rotational d.o.f. for coil D excitation
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Figure 17: Bode plots for translational d.o.f. for coil E excitation
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Figure 18: Bode plots for rotational d.o.f. for coil E excitation
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Figure 19: Bode plots for translational d.o.f. for coil F excitation
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Figure 20: Bode plots for rotational d.o.f. for coil F excitation
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Figures 9 through 20 show magnitude and phase response of motion along physical d.o.f. (that
is, after reconstruction) for various excitation of coils A through F. There was no kind of damping
turned on while these measurements were performed. One can clearly see peaks around the 0.7Hz
- 1.0Hz region. This represents a resonance frequency of the system.

Since the system is like a double pendulum, one would expect two resonance peaks. However,
these plots show only one. The reason might be that there were certain problems with the mechan-
ical setup, such as some part of the suspension setup touching the cage, or some magnets touching
the OSEMs. This is also supported by the fact that the Q of the poles are not as high as we had
expected.

The legs of the optics table were changed from rigid, longer ones to shorter ones that have the
capability of ”floating” the table in air. (More about this in the next subsection.) As I realized, the
problem was solved when we did another round of realignment after the legs of the breadboard
were changed. Some of these results as well can be found in the next subsection.

3.4.3 Changing legs of the optics table

As mentioned above, the legs of the (horizontal) optics table were changed from the longer, rigid
legs to new shorter ones which can ”float” the table on pumping air. The idea was to provide better
isolation from seismic motion, especially for vertical displacement - which is of much interest.
Acoustic noise can be reduced, too, significantly by installing a vacuum system. The vacuum
system is yet to be fully commissioned, as of today. In this subsection, I describe the effects of the
change in table legs alone.

Effect on motion spectra

Seismometer spectra
The first thing that we observed was how the motion of the optics table itself has changed at various
frequencies, and how the resonance peak has shifted thanks to the new legs. For this purpose, we
used a seismometer (a PZT accelerometer coupled with a voltage preamplifier (SR560)).
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Figure 21: Seismic spectra for vertical displacement on horizontal table for Crackle2. Of
primary importance here are the traces in red and blue, where the former case corresponds to the
older legs, and the latter corresponds to the case with new legs and the vacuum chamber. Notice

the difference in noise levels in the 10s of Hz region in both the cases.

Clearly, the huge bump in the 20-100Hz region is now gone, upon changing the legs. The new
table, which can also be ”floated” in air, has certainly improved seismic isolation for the whole
setup. It is now much more likely to get less noisy transfer function measurements. With this
motivation, I started another round of transfer function measurements.

3.4.4 Transfer function measurements - again

After shifting to the newer legs, I performed transfer function measurements again. This time, I
could clearly observe two peaks: something that one would expect in a double suspension system
and was not seen in earlier measurements. The reason why this wasn’t observed earlier, as said
above, is not very clearly known, and it is not of interest at this stage either.

Since the setup is not fully in shape yet for a series of measurements and has been undergoing a
changes, modifications and realignment, I haven’t recorded all transfer functions of interest yet.
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Figure 22: Bode plots for translational d.o.f. for coil A excitation (after shifting to shorter
legs)
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Figure 23: Bode plots for rotational d.o.f. for coil A excitation (after shifting to shorter legs)

Figures 21 and 22 show bode plots of transfer functions for coil A excitation to physical d.o.f.
motion. However, the coherence shown is still that of coil-A-excitation to sensor-reading, for
sensors A through F. In other words, I haven’t done any transformation on the coherence values.

One can see that coherences in responses of sensors other than A are a little poor, and this can
be attributed to the fact that there is less coupling between orthogonal motions. But then, it does
make sense: when A is excited, I expect to see some translation along X-axis along with some
roll; and roll is measured by D and E. It is this coupling that gives better coherence in D and E
measurements, as can be clearly seen in figure 23.
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3.4.5 Driving motion along physical d.o.f.: Driving matrix

Using the sensing matrix in (6), it is possible to sense motion along physical d.o.f. So far, driving
has been only along each OSEM axis. We would, however, like to drive the suspended breadboard
along physical d.o.f.: these are the d.o.f.’s that will be relevant in the control system I hope to
establish.

For this purpose, I have constructed a transformation equation, simply based on Newton’s 2nd law
along various d.o.f.’s.

Figure 24: Scheme of OSEM’s with force sign convention shown

Figure 24 shows OSEM scheme along with the sign convention of driving force for each OSEM.
The convention is that for a positive drive, the magnet moves OUT of the OSEM.

One can, by looking at figure 24, easily write down the following equations:

Fx = FA (7)

Fy =−FB−FC−FF (8)
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Fz = FD +FE (9)

Similarly for the net torque:

τnet =
F

∑
i=A

~ri×~Fi (10)

where~ri and ~Fi are position and force vectors of OSEM ’i’.

Equation (10) can be expanded as below:

τnet = ~rA×(FAêx)+~rB×(FB(−êy))+~rC×(FC(−êy))+ ~rD×(FDêz)+~rE×(FE êz)+~rF×(FF(−êy))
(11)

Fi corresponds to force by each OSEM; the negative sign in some terms is because of the orientation
of the OSEM’s. (For example, positive force – which we defined as when the magnet moves out –
along B would mean a displacement in negative y direction.)

The x, y, z components of torque can be separated and a matrix transformation equation can be
written from linear equations 6 through 10 as follows:


Fx
Fy
Fz
τx
τy
τz

=


1 0 0 0 0 0
0 −1 −1 0 0 −1
0 0 0 1 1 0
0 zcm,B zcm,C ycm,D ycm,E zcm,F

zcm,A 0 0 −xcm,D −xcm,E 0
−ycm,A −xcm,B −xcm,C 0 0 −xcm,F




FA
FB
FC
FD
FE
FF

 (12)

Recall: xcm,A, for instance, is the x-coordinate of OSEM A in the CM frame.

On plugging in values of the necessary coordinates from table 2 in meter, the equation can be
written down as:


Fx
Fy
Fz
τx
τy
τz

=


1 0 0 0 0 0
0 −1 −1 0 0 −1
0 0 0 1 1 0
0 −0.1606 −0.1636 0.0527 0.0527 0.17391

−0.1606 0 0 −0.11182 0.12018 0
−0.0270 0.18018 −0.17182 0 0 0.18018




FA
FB
FC
FD
FE
FF

 (13)

Therefore, the Driving Matrix equation is:
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FA
FB
FC
FD
FE
FF

=


1 0 0 0 0 0

0.0774 −0.0034 0.1575 −2.9894 0 2.8664
−0.0767 −0.5119 0 0 0 −2.8409
−0.6922 0 0.5180 0 −4.3103 0
0.6922 0 0.4820 0 4.3103 0
−0.00068 −0.4847 −0.1575 2.9894 0 −0.0255




Fx
Fy
Fz
τx
τy
τz

 (14)

Here, forces are in µN and Torque in µNm. I have not yet started using the driving matrix in
transfer function measurements, I will start doing so only in the next set of measurements.

3.4.6 Automation of (multiple) simultaneous transfer function measurements

All of the above discussed transfer function plots were arrived at after running measurements in
series: that is, one coil excitation after another. Each measurement took about 6-8hrs, and 6 such
measurements meant a week’s time. It is then required to bring this time down by adjusting the
parameters of DTT measurements, such as number of averages, number of cycles of measurements
etc. I will not go into more details about those here, refer to Appendix A.

One can then say, it would be even more efficient if all measurements could be taken in parallel in,
say, a night.

Turns out that, in principle, it is possible with our system for the simple reason that it is a linear
system. Why is it a linear system? Because Newton’s laws – which govern its behavior – are linear.

As long as the system is not excited by the same frequency through different coils at the
same instant of time, due to linearity, the measurements should be as good as they were taken
independently. The difficult part, however, is to implement it.

It is certainly not possible for one to do it manually each time by opening 6 parallel sessions of
DTT. Automation is needed. To automate parallel sessions of transfer functions, the following are
some possible methods:

1. Use the Diagnostic Tool (”diag”) through the workstation computer along with a python
script

2. Use Python and MATLAB to run DTT measurements

Both of these methods have been tried out before at LLO/LHO. I have initially attempted to work
on the second solution. However, I faced some issues with getting the Python-MATLAB inter-
face working. (To be specific, the problem was with Python XML parsing and its interface with
MATLAB.) The problem didn’t even make much sense, and so I switched to the first method.
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In this method, a DTT template for the measurement of interest is first prepared and saved as an
XML file. The desired parameters are set; ’Start time’ set as ’Now’.

A measurement based on this DTT template can be run by using a short ’diag’ script. The script
itself is simple, and goes as follows:

open
r e s t o r e PATH−TO−DIRECTORY / IN FILE NAME . xml
run −w
save PATH−TO−DIRECTORY / OUT FILE NAME . xml
e x i t

Here, path to directory and file names are to be set appropriately. Appendix B explains the
codes in more detail.

The above script is for the Diagnostic Tools ”diag”. In order to automate this for all 6 coil excita-
tions, I have written a short Python script based on the ’subprocess’ module. In short, the whole
process can be summarized as:

1. Input DTT templates are saved in directory

2. ’diag’ scripts are prepared appropriately and saved in the same directory

3. A python script to execute all the 6 ’diag’ scripts in parallel terminal sessions is then executed

3.4.7 Fitting multiple transfer functions with common set of poles

The way the collected transfer function data is used is in the zpk (zero-pole- gain) form. It then
becomes necessary to fit these transfer functions; and not just fit them, but to fit them with common
poles. Why common poles? Because it is the same system, and we expect resonances (peaks) seen
in different measurements to coincide.

For this, I have used the vectfit3 function in MATLAB. [3][4][5] The function works for both
single transfer function as well as a vector of transfer functions. However, given the way I have
been using coherence data of transfer function measurements, it was not straightforward.

The problem is subtle: For the vectfit3 function to work, data for each transfer function in the
transfer function array must have the same length. In general, I measure 36 transfer functions as
groups of 6 each, 1 group for each coil excitation. Each of these groups have a set of finite points
for which the coherence of all the 6 measurements in the group is above a set threshold (say 0.7),
and the points of which all coherence values are above the threshold are different for each group.
Put in simple terms, the frequency axes were different for each group. Clearly, simply inputting
this to the vectfit3 function won’t work.
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How I solved this was to identify points on the frequency axis, for each group, where all coherences
were above the set threshold; and then find the intersection of such collected points for all groups.
This set the common frequency axis for the measurements. I extracted transfer function values
corresponding to these and then made use of the vectfit3 function.

A more elegant way, where the problem wouldn’t even arise, is to directly measure and use the
coherence of coil excitation to physical d.o.f.; and this is what I would be implementing in further
measurements.

In either case, the MATLAB code for fitting multiple TF’s can be a bit messy, because it has
a number of parameters to be set. I have written a wrapper function for convenient use. See
Appendix C for more.

For the purpose of illustration, I have shown in figure 25 an example fit, where I tried to fit 12
transfer functions with a common set of poles. Though the order of the fit was on the higher side:
16.
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Figure 25(a): Simultaneous vector fitting of 12 transfer functions: Magnitude plot
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Figure 25(b): Simultaneous vector fitting of 12 transfer functions: Phase plot

The exact locations of the poles and other details are not of much interest to us here. These plots
were for a purely representational purpose.

3.4.8 Comparison of experimental data with analytical predictions

One other purpose of fitting poles and zeros to experimentally obtained data is to compare against
analytical predictions. Having an analytical model - one based on Newton’s Laws - often helps in
ensuring the credibility of the experimental results obtained; this is something that’s true for any
experiment in Physics.

I have spent about a couple of weeks working on analytical modeling of Crackle2. I started off
with an existing model (which I will refer to as Model 1 from now on) built on Mathematica, and
obtained some results. However, the results weren’t satisfactory. I then started building a new
model from scratch. (I will refer to the model as ’Model 2’ from now on, in this paper.) Here,
I discuss the results I have obtained in Model 1 and talk a bit about the progress I have made in
Model 2.

1. Model 1
This one was developed about an year ago and was used to compute a few transfer functions
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of interest in the past. I will not talk about the full details of the Mathematica code here.
Refer to Appendix D for the same.

In summary, the Mathematica simulation (as detailed in Appendix D) saves state-space ma-
trices A, B and F , in a format that MATLAB can understand, on running a ’ToMatlab.m’
script. A represents dynamics, B is the input coupling matrix and F represents external dis-
turbances. These matrices can be used to compute the required transfer functions.

In the current case of interest, the state equation can be written as:

~̈x = A~x+F~x0 +B~τ (15)

where~x is the state vector, ~x0 corresponds to exogenous inputs from the environment and~τ
corresponds to the driving vector. The use of the letter ’x’ in ~x0 suggests that these exoge-
nous inputs are state vectors, or so they may be regarded; ~x0 corresponds to the state of the
environment. (This is consistent with the notation in [6].)

In Laplace domain,
s2I~x(s) = A~x(s)+F~x0(s)+B~τ(s) (16)

This gives,
~x(s)/τ(s) = (s2I−A)−1B (17)

~x(s)/τ(s)is a 12×12 matrix of transfer functions. (12×12 because the Crackle2 mechanical
system has 12 degrees of freedom: 6 in the intermediate mass stage and 6 in the suspended
breadboard (lower mass, in aLIGO jargon) stage. Of interest to me is the last 6, and so I have
made use of the corresponding 6×6 sub-matrix to compare with experimental data.

Like I said before, the output of the Mathematica simulation is a set of three matrices in
symbolic representation, and in order to be able to plot transfer functions, appropriate
parameters must be plugged in. Table 4 talks about some of the parameters that I have used
in the simulation. I have, in fact, played around with these values and varied them in a range
where they still made physical sense. However, as will be seen in the result plot below, the
results are not satisfactory.

Where necessary and possible, I have given enough description of what each parameter
means. Refer to Appendix D for further details.

Figure 25 shows the analytical prediction of Coil A excitation to Sensing along X transfer
function against experimentally obtained data.
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Table 4: Parameters used in Model 1
Parameter Description Value
M1 Mass of intermediate mass stage 20 kg
M2 Mass of lower mass stage 20kg
I1,xx Moment of Inertia of intermediate

mass stage about x-axis
0.406 kgm2

I1,yy Moment of Inertia of intermediate
mass stage about y-axis

0.399 kgm2

I1,zz Moment of Inertia of intermediate
mass stage about z-axis

0.643 kgm2

I2,xx Moment of Inertia of lower mass
stage about x-axis

0.338 kgm2

I2,yy Moment of Inertia of lower mass
stage about y-axis

0.604 kgm2

I2,zz Moment of Inertia of lower mass
stage about y-axis

0.267 kgm2

L1, L4 Lengths of suspension wires joining
the intermediate mass stage to the
cage

0.16 m

L2, L3 Lengths of suspension wires joining
the intermediate mass stage to the
cage

0.16 m

L5, L6 Lengths of suspension wires joining
the lower mass stage to the interme-
diate mass stage

0.20 m

k1, k2, k3, k4, k5,
k6

Spring constants corresponding to
all suspension blades

1500 Nm−1

R1,x, R1,y 0.34 m
d 0.07 m
g Acceleration due to gravity 9.8 ms−2
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Figure 25: Analytical prediction vs experimental data for Coil A excitation to Sensing
along X transfer function

It can be clearly seen that the two plots don’t fit well: the position of the first zero and
second pole do not match at all. The shape, too, is not very similar. What’s more, the
analytical result does not show the second pole as expected; it only shows it as a minor local
peak. Clearly, this needs more working: it was concluded that Model 1 is ”insufficient” in
explaining full motion and all modes of the system. Therefore, I have started working on
building another model of Crackle2 from scratch, this time on a Mathematica-based platform
that was developed by personnel who have worked at Advanced LIGO and KAGRA.

2. Model 2
This platform was built specially to simulate suspension systems in gravitational wave de-
tectors. It is convenient to add mass stages, define suspension spring and string parameters,
and compute the necessary transfer functions. Work on this part is still underway, and so
far, I haven’t produced any results. Only the next (and final) report will contain results
corresponding to this part.

4 Timeline

4.1 How am I doing on time?

Things didn’t go as (optimistically) planned while I made my first progress report. A lot of time
went into getting the setup up and running each time there was a modification. While this did
contribute considerably to my learning and gave me an opportunity to know the Crackle2 setup in
and out, it did eat into some time that I had earlier planned for other things. Roughly speaking, I
am lagging behind the earlier planned timeline by 3-5 days. Though it does look a little tough now
to catch up and finish things as I wanted to earlier, I think it is still possible, with some extra effort,
to at least implement the control system before leaving.

4.2 Up next

Given the way Crackle2 is going at the moment, we expect to pump down vacuum in about a
couple of weeks from now. Till then, while other work is on, I will attempt to finish design (and
perhaps implementation) of the suspension damping system. I have about 3 weeks left, which
includes Caltech Gravitational Wave Astrophysics School (CGWAS) and a field trip to the LIGO
Livingston Observatory (LLO). On taking these into account, I think here is how I will spend my
time.
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Table 5: Timeline
Week Plan
1 - 5 July Finish acquisition of transfer function data; Attempt

to produce first transfer function plots from analytical
model

6 - 10 July CGWAS 2015; Finish comparison of analytical model
results with experimental data; Groundwork towards
implementing feedback control

12 - 18 July Design and implement digital feedback control; Final
presentation

20 - 22 July LLO Visit
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