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1 Background

1.1 Noise in LIGO Interferometers

LIGO Interferometers send a laser beam through a beam splitter to be locked in Fabry-
Perot cavities and recombined so that the effects in the cavity can be observed [1] However,
many other factors aside from gravitational waves affect the resulting signal from the lasers.
These outside factors are noise that must be filtered out either through the construction
of a mathematical filter or physically building a filter to dampen the noise. Many kinds of
noise affect LIGO Interferometers, but Seismic noise and instrumental self-noise are most
problematic because they affect frequencies LIGO is trying to detect and are more difficult
to precisely control mechanically [1]. Mechanical filters, including stabilizing the concave
mirrors in each cavity through magnetic fields and using oscillators to dampen seismic noise,
are already in place but are always being improved.

1.2 Feedforward vs Feedback Filtering

Mathematical filters are just as important as physical filters. Feedforward techniques predict
what noise will be in the signal and adjust the detector so that this particular noise is not
part of the output. Feedback adjusts the detector after noise has propagated through the
system [2]. The differences between feedforward and feedback are depicted below (figure 1).
In a feedback loop, the disturbances and noise sources must pass through the system in order

Figure 1: The differences between a feedback loop and a feedforward loop [3]

to be detected, whereas with feedforward these noise sources are predicted and preemptively
filtered out. Thus, there is no time lag in feedforward filters that is present in feedback filters
[2]. Wiener filters in particular are desirable to use for feedforward techniques because they
determine the value of an unknown signal given known signals. Using feedback, one can
determine the noise of the system and then construct a Wiener filter based off of that [3]. A
feedforward Wiener filter can then be created. These filters will have an extensive impact,
minimizing seismic noise through multiple degrees of freedom [4]. Therefore, we will only
need to construct one Wiener filter to filter out noise from several sources.
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1.3 IIR Wiener Filters

In this case, IIR Wiener filters are ideal because they require fewer parameters than FIR
filters, which is important because Wiener filters have to create a very precise model of the
system, so the fewer parameters required means that there is less room for error. This also
drastically reduces computational time of the filters by using IIR instead of FIR coefficients
[4]. This is especially important for a feedforward system, which must predict how to filter
the signal prior to receiving it. Also, IIR filters are more likely to achieve the lowest mean-
square error because they are computed by integral, while a FIR filter is a summation [5].
Therefore, FIR filters can come close to achieving the results of IIR filters, but will never be
quite as good. However, IIR filters are difficult to calculate, and they also can introduce noise
into controls of the system because of how each control interacts with others [4]. Therefore,
it will be difficult to implement an IIR filter that also optimizes subtraction and introduces
minimal noise into other parts of the system.

2 Goals During the First Seven Weeks

2.1 June Goals

During the first several weeks of the summer, I compared various algorithms and techniques
of filtering noise from our sensors to determine self-noise. Self-noise is important to know
because it cannot be mechanically be filtered out and gives us a minimum goal. We use both
seismometers and piezoelectric accelerometers to detect seismic noise, so it is important to
know the self-noise of both. Piezoelectric accelerometers are solid state devices, consisting
of a crystal and a seismic mass. When a force is applied to the crystal by seismic motion, a
voltage is created across it which we then measure.[6]. A seismometer consists of a weight
on a spring, with the attached frame connected to the earth’s surface. Seismometers act
as a transducer between the input acceleration and the position of the mass [7]. They also
behave similarly to accelerometers at small frequencies. In either case, we can measure the
input and output of individual sensors, but have no way to physically isolate the noise from
a single sensor. As a result, we must use multiple sensors, which all measure the same signal,
and then use the differences in these results to determine the noise in an individual sensor.
I applied the Three-Cornered Hat Technique and Wiener filtering to accelerometers which
we had performed a huddle test on. Wiener filtering was applied to seismometers.

2.2 July Goals

After analyzing data using the Three-Cornered Hat Technique and FIR (Finite Impulse Re-
sponse) Wiener filters, I explored other options for noise reduction. While the first two
methods did filter out a significant amount of noise, the filtered noise curve was still signifi-
cantly higher than the predicted self-noise of the accelerometers. Pre-filtering the data and
then applying a Wiener filter is one way to further reduce data. Pre-filtering is important
as, if excess noise can be removed before running the data through a filter, the filter will be
more accurate and a greater overall reduction of noise will occur [8]. This month, I focused
on researching various forms of pre-filtering and ultimately used an elliptic bandpass filter.
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I also explored the IIR (Infinite Impulse Response) Wiener filter as another offline alterna-
tive to the FIR Wiener filter. The IIR filter will also be easier to implement in an online
subtraction.

3 Three-Cornered Hat Method

I used the Three-Cornered Hat method to determine the noise in accelerometers subject to
the huddle test. To perform a huddle test, the six accelerometers were grouped together
so that each measures the same quantity. They were also clamped to the table to reduce
differences in seismic noise between them. Given the results of the huddle test, I was able
to calculate the Power Spectral Density (PSD) line for each accelerometer and determine its
self-noise using the Three-Cornered Hat technique. Following the steps outlined in Section 3,
I made the plots in two sets of three, determining the noise of accelerometers 1-3 separately
from accelerometers 4-6. Figure 2 shows the noise levels for the first accelerometer using
the Three-Cornered Hat method. It can be seen here that at lower frequencies, especially

Figure 2: PSD plots for the noise in the first three accelerometers in the huddle test, made
by the Three-Cornered Hat method

between 1 and 10 Hz, the Amplitude Spectral Density (ASD) has been significantly lowered,
while at higher frequencies the Three-Cornered Hat method did not filter as much out.
Comparing this to the expected noise, which is the green line, it can be seen that what
has been filtered out by the Three-Cornered Hat method is still significantly higher than is
desired between 10 and 1000 Hz.

4 Constructing a Wiener Filter

Wiener filters are used to calculate noise by comparing multiple input signals to an output
signal. This is useful in determining the self-noise of accelerometers and seismometers, and
has the potential to filter noise better than the Three-Cornered Hat method can. The
coefficients of a Wiener filter come from solving this RMS minimization equation:

ξ =< d2 > −2~ωT~p+ ~ωTR~ω (1)
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where ξ is what we will minimize to calculate the Wiener coefficients, d is the signal we wish
to filter, ~ω is the Wiener filter we are solving for, ~p is the cross-correlation vector between
witness and target signals, and R is the matrix [9]. Given an array of vector sources and a
vector output, the Wiener filter determines coefficients that can be applied to the input data
to remove noise from it. The Block-Levinson method was used to calculate a SISO (Single
Input Single Output) filter, while a brute force method for matrix inversion was used when
calculating MISO (Multiple Input Single Output) Wiener filters.

5 MISO Filtering of Accelerometers

I first created a MISO Wiener filter and applied it to the accelerometers subject to the
huddle test. This way, I can later compare the Three-Cornered Hat method of determining
self-noise to the ability of the Wiener filter to do the same. To create a Wiener filter for
these accelerometers, I used a function that implemented the matrix algebra described in
the section above. Each accelerometer was a separate input. There was no specific output.
Instead, I used 2 accelerometers as input and a third as output to determine the self-noise
of that particular accelerometer. The results of this (figure 3) were successful. At low
frequencies, the Wiener filtered noise was still above the expected ASD, shown by the green
line below, but it filtered out much more than the Three-Cornered Hat method did at higher
frequencies. Comparing the Wiener filter of the accelerometers to the Three-Cornered Hat

Figure 3: MISO Wiener filtering of the first three accelerometers in the huddle test

method of determining self-noise of accelerometers, as is pictured below (figure 4), I found
that the Wiener filter worked much better, especially taking high frequencies into account.
In low frequency ranges both methods produce similar results, but the significantly lower
noise curve at high frequencies produced by the Wiener filter is promising. It motivates
further exploration into the Wiener filter, including adaptive as opposed to static filters. A
combination of Wiener filtering and the Three-Cornered Hat method also holds potential to
filter noise down to the manufacturer’s predicted level.
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(a) Three Cornered Hat method applied to the
first accelerometer in the huddle test

(b) MISO Wiener filtering of the first accelerom-
eter in the huddle test

Figure 4: Comparison between the Three-Cornered hat method (a) and MISO filtering (b)

6 MISO Filtering of Seismometers

I then used Matlab to apply MISO filtering to a seismometer having components in the
x, y, and z directions. The seismometer was measuring noise around the mode cleaner, so
all three components had an output corresponding to the mode cleaner. There are also
two accelerometers, each with three directional components, that are measuring noise at
different ends of the mode cleaner. I used the accelerometers and seismometers to find one
set of Wiener coefficients. Subtracting all of this from the output and then finding the PSD
resulted in the plot below (figure 5). This filter successfully reduced noise in the 3-10 Hz
range.

7 Pre-Filtering Methods

Pre-filtering data will improve the subtraction of the Wiener filter by emphasizing certain
frequencies more than others. Typical filters include Butterworth, Chebyshev I, Chebyshev
II, and Elliptic filters. These in turn can be bandpass, lowpass, or high-pass filters. Lowpass
filters remove high frequencies while high-pass filters filter out lower frequencies. Bandpass
filters allow a certain range of frequencies through to be emphasized, which is why that is the
ideal filter for the mode cleaner length, which has noise both above and below the frequencies
of interest.Once the filter type is chosen, there are specific parameters of the filter that must
be specified. Passband ripple and stop-band attenuation are two of these parameters that
determine the goodness of the filter. As can be seen in figure 6, the passband ripple is the
amount of variation allowed in the passband, or the region containing allowed frequencies.
The stop-band attenuation allows for fluctuation in the region of blocked frequencies [12].
A lower passband ripple and higher stop-band attenuation has proved to work best in the
data I have filtered so far. Each filter results in a transfer function of varying complexity.
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Figure 5: Filtering noise in seismometer and 2 accelerometers out of mode cleaner

Butterworth filters are the simplest filters, with a transfer function H(s) [10] of

H(s)H(−s) = 1 + (−s2)n (2)

This will result in a maximally flat passband, and is also simple enough that passband ripple
and stop-band attenuation are not taken into account. This transfer function, while simple,
also means that the transition between the passband and stop-band is very slow, so there
will be no sharp drop as is depicted in figure 6, but there will instead be a slope and excess
noise from the stop-band will be allowed through the filter [10]. Both Chebyshev filters are
more precise than the Butterworth filter. Chebyshev I filters allow for passband ripple only,
while Chebyshev II filters only allow ripple in the stop-band [11]. This makes each of them
more precise and complex than Butterworth filters. Elliptic filters are the most complex
filter, allowing both passband ripple and stop-band attenuation. This transfer function is
much more complex [10]

H(jw)2 = 1 + [εRn(
w

wB

, L)]2 (3)

By accounting for passband ripple and stop-band attenuation, elliptic filters are most precise
and will calculate a filter with a very low order that has the same result as a high ordered
Butterworth filter [10]. This makes elliptic filters computationally ideal, as Matlab will be
able to calculate a low-ordered elliptic filter much faster than a high ordered Butterworth
filter. With decreased run-time, implementing an online pre-filter will become much more
plausible.

8 Pre-Filtering of Mode Cleaner Length Data

To reduce noise in the data for the mode cleaner length, I implemented a third order elliptic
bandpass filter in Matlab. I focused on frequencies between 1 and 20 Hz. These frequencies
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Figure 6: Image of stop-band attenuation and passband ripple [12]

encompass the range that we want to focus on, so noise reduction is most important in this
range. So far, the results from this filter are a minimal improvement from Wiener filtering
alone. Figure 6 illustrates this, and that noise is injected in ranges outside of 1-20 Hz.
However, since there are no excessive noise injections outside this range, meaning that the
excess noise never rises far above the original signal, the filter is still good to have. To
calculate this filter, I used a passband ripple of 1 dB and a stop band attenuation of 20 dB.
As I did not derive a method to choose these numbers and just thought about ideal ranges
for passband ripple and stop band attenuation, the derivation of a method would be a good
thing to look into. I will also explore other methods of pre-filtering, to see if an elliptic
bandpass filter itself is not the most ideal filter.

9 IIR Wiener Filtering Using Vectfit

Once a working pre-filter had been calculated for the mode cleaner length, I ran the pre-
filtered data through vectfit to create an IIR (Infinite Impulse Response) Wiener filter.
Similar inputs and outputs to the ones described in section 4 are used in IIR Wiener filters.
However, the transfer function must first be calculated for each input before data can be
interpreted by vectfit. It is also important to pre-weight the data before it is used by vectfit.
Pre-weighting emphasizes one region of frequencies, allowing one region to be minimized the
most by the subtraction. Vectfit take the transfer function and finds the zeros, poles, and
gain (zpk) of the function [13]. As vectfit returns the zpk coefficients in the s-domain, I then
transform these to the z-domain. From there, a second-order section model is created, which
can then be applied to the data and filter it appropriately.

10 Results of IIR Wiener Filtering

Using an IIR Wiener filter has made little difference from using a FIR Wiener filter. It is
probable that the pre-weighting factor used needs to be optimized. In Figure 8, the pre-
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Figure 7: The use of a pre-filter (dark blue) showed little improvement from a Wiener filter
without pre-filtering

weighting for the IIR Wiener filter was 1/
√
tf , where tf is the transfer function. This is an

improvement from no pre-weighting, but designing a pre-weight to optimize the area between
1 and 20 Hz is the next step in this process. Online IIR subtraction will be implemented in
the coming week, with the hopes that it will lower the noise. As the current settings have
not increased noise levels and did as well as FIR Wiener subtraction, it is the hope that IIR
online subtraction will work just as well.

11 Long Term Goals

Generally, by the end of summer I want to construct a static online IIR filter and then create
an adaptive online IIR filter based off of that.

Week 8: Construct a static online IIR filter, finish up and turn in Progress Report 2. Continue
work on pre-filtering and finding new techniques to do so more efficiently. Work to pre-filter
the Arm length data, not just the mode cleaner data. Complete the ALS Delay line box by
choosing the proper front panel.

Week 9: Using the static IIR filter, I will begin working on the adaptive online IIR Wiener
filter. Continue work with pre-filtering

Week 10: Finish up the IIR adaptive online filter and work on my presentation and final
paper.
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Figure 8: Comparison of FIR vs. IIR Wiener Filtering of accelerometer self-noise out of the
mode cleaner length

12 Appendix

12.1 Arm Length Stabilization Delay Line Time Delay

During my first three weeks working on filtering, I also worked on another project trying
to physically isolate the 50m long ALS (Arm Length Stabilization) Delay line cables. My
goal was to keep the cables seismically and electrically isolated. To do this, I wanted to put
them inside the same conductive box so that they feel the same seismic vibrations and are
inside a Faraday cage to keep them electrically isolated. When the cables arrived, I had to
determine the time delay in the cables. To do this, I created Bode plots for each cable. I
then used this data to write a code in Matlab that found the time delay in each cable. Both
had a time delay of 127 ns.

12.2 ALS Delay Line Box Testing

The front panels for the delay line box arrived, so I was able to build the ALS Delay Line
box. I divided it with a conductive grid of metal to prevent crosstalk between the two cables.
I also covered both cables with foam to prevent them from moving around too much. Once
the box was constructed, I tested both the front panels with conductive and isolated SMAs
to determine if crosstalk was occurring between the cables. I did this by driving a frequency
through one of the cables, and driving another frequency less than 800 Hz different from
the first through the second cable. Looking at the PSDs of these should reveal if crosstalk
occurs, as if it does, spikes will be visible at the frequency of the difference between the
driving frequencies.
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12.3 ALS Delay Line Analysis

For the conductive SMA panel, I drove 22.329 MHz through the X Arm and 22.3291 MHz
through the Y Arm, giving a difference of 100 Hz. The X Arm PSD is shown in figure 9a
and the Y Arm PSD is shown in figure 10a. Three sets of data are shown in each plot. The
first set was taken when frequencies were being driven through both cables, while the next
two were when one of the cables had a frequency driven through it and the other was off.
I centered each plot around 100 Hz, because if crosstalk was occurring then a spike would
appear when a frequency was driven through both cables but not when one cable was off.
So, in the Y Arm data, a spike can be seen at around 120 Hz when both cables were on
but not when there was no frequency driven through the X cable. This indicates that some
crosstalk may be going on when the conductive SMAs are used.

(a) X arm cable data using conductive front panel (b) X arm cable data using isolated front panel

Figure 9: Comparison between the conductive panel (a) and the isolated panel (b)

(a) Y arm cable data using conductive front panel (b) Y arm cable data using isolated front panel

Figure 10: Comparison between the conductive panel (a) and the isolated panel (b)

However, data from the isolated SMA panel shows similar results to the conductive panel.
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Driving 22.294 MHz through the X Arm and 22.2943 MHz through the Y Arm, there was a
difference of 300 Hz between the cables in the isolated front panel. Similarly to the data for
the conductive front panel, it can be seen in figures 9b and 10b that there is no noticeable
spike at 300 Hz for the X Arm data, while there is one around 300 Hz for the Y Arm data.
This spike indicates potential crosstalk between the cables. While the spike is slightly higher
than 300 Hz in the Y Arm PSDs, it is highly likely that the frequency generator is 30 Hz off,
as the frequency was on the order of 23 MHz. It is interesting that the crosstalk only shows
up in the Y Arms, and that it makes no difference whether conductive or isolated SMAs are
used. It is possible that this spike is not due to crosstalk but has other causes, which I will
be investigating in the coming weeks.
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