

Feedforward Seismic Noise Cancellation At The 40M Interferometer

Jessica Pena Mentors: Eric Quintero, Koji Arai, Rana Adhikari

LIGO SURF Presentations, 2015

Feedforward Seismic Noise Cancellation

Jessica Pena

Background

Motivation Noise Cancellation at the 40m Interferometer

Filtering Techniques

Wiener Filterin Pre-Filtering

Results

Outline

Background

LIGO

Motivation Noise Cancellation at the 40m Interferometer

Filtering Techniques

Wiener Filtering Pre-Filtering

Results

Offline Mode Cleaner Subtraction Online Mode Cleaner Subtraction

Feedforward Seismic Noise Cancellation

Jessica Pena

Background

Motivation Noise Cancellation at the 40m Interferometer

Filtering Techniques

Wiener Filterin

Pre-Filtering

Results

Motivation

- Filter out Seismic Noise from the 40m Interferometer
- Construct a feedforward online IIR Wiener filter
 - IIR Wiener filters are ideal

LIGO

- We want an online filter so that noise will then be accounted for in real time
- Feedforward ensures that the filter will be implemented as the disturbance travels through the system

Feedforward Seismic Noise Cancellation

Jessica Pena

Background Motivation Noise Cancellation at th

Filtering Techniques

Wiener Filtering Pre-Filtering

Results

Feedback vs. Feedforward

Figure: The differences between a feedback loop and a feedforward loop [1]

Feedforward Seismic Noise Cancellation

Jessica Pena

Background Motivation Noise Cancellation at the 40m Interferometer

Filtering Techniques Wiener Filtering

Pre-Filtering

Results

LIGO Noise Sources and Detection

 Filtering out noise from mode cleaner will also reduce noise in the arms

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃|= ∽000

Feedforward Seismic Noise Cancellation

Jessica Pena

Background

Motivation Noise Cancellation at the 40m Interferometer

Filtering Techniques

Wiener Filterin

Pre-Filtering

Results

Wiener Filtering

- Target Signal is what we're trying to detect
- Witness Signal is what we use to detect the target signal
- We are trying to determine the error signal to filter it out

Background

Motivation Noise Cancellation at the 40m Interferometer

Feedforward

Seismic Noise

Filtering Techniques

Wiener Filtering

Pre-Filtering

Results

Wiener Filtering

Wiener filters minimize the following equation:

$$\xi = <\vec{d}(n)^2 > -2\vec{\omega}^T\vec{p} + \vec{\omega}^T R\vec{\omega}$$

- ξ is the RMS of the error signal
- d is the signal to filter

LIGO

- $\vec{\omega}$ is the Wiener filter to solve for
- p
 is a cross-correlation vector between witness and target signals
- R is witness correlation matrix between witness signals
- Coefficients are then applied to data in Matlab

Feedforward Seismic Noise Cancellation

Jessica Pena

Background

Motivation Noise Cancellation at the 40m Interferometer

Filtering Techniques Wiener Filtering

(1)

Pre-Filtering

Results

Pre-Filtering Techniques

- Goal is to optimize the RMS, so it will affect the Wiener filter
- Bandpass filter was used

LIGO

 Elliptic: Control filter order, passband ripple, and stopband attenuation Feedforward Seismic Noise Cancellation

Jessica Pena

Background

Motivation Noise Cancellation at the 40m Interferometer

Filtering Techniques

Wiener Filtering

Pre-Filtering

Results

Pre-Filtering Method

LIGO

Find frequency range from coherence levels cutoff

Feedforward Seismic Noise Cancellation

Jessica Pena

Background

Motivation Noise Cancellation at the 40m Interferometer

Filtering Techniques

Wiener Filterin

Pre-Filtering

Results

LIGO

Pre-Filtering Results

The use of a pre-filter showed little improvement from a Wiener filter without pre-filtering

Feedforward Seismic Noise Cancellation

Jessica Pena

Background

Motivation Noise Cancellation at the 40m Interferometer

Filtering Techniques

Wiener Filterin

Pre-Filtering

Results

Contine vs. Offline Subtraction

- Online subtraction is ideal because then the mirrors will be moved as little as possible
- Online allows for the system to be mechanically optimized
- Offline subtraction can only work with previously acquired data

Jessica Pena

Background

Motivation Noise Cancellation at the 40m Interferometer

Filtering Techniques Wiener Filtering

Pre-Filtering

Results

Offline MCL Subtraction

LIGO

Feedforward Seismic Noise Cancellation

Jessica Pena

Background

Motivation Noise Cancellation at the 40m Interferometer

Filtering Techniques ^{Wiener Filtering}

Pre-Filtering

Results

◆□▶ ◆□▶ ◆目▶ ◆日▶ 三日日 のへで

Online MCL Subtraction

10¹

Frequency[Hz]

10²

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃|= ∽000

100

Results of the online subtraction of the mode cleaner and the subsequent Y-Arm response

Feedforward Seismic Noise Cancellation

Jessica Pena

Background

Filtering Techniques

Results Online Mode Cleaner Subtraction

Online vs. Offline

LIGO

Feedforward Seismic Noise Cancellation

Jessica Pena

Background

Motivation Noise Cancellation at the 40m Interferometer

Filtering Techniques Wiener Filtering

Pre-Filtering

Results

イロト イヨト イヨト チョコ りゅつ

Offline Mode Cleaner Subtraction

Online Mode Cleaner Subtraction

Conclusion

- Steps towards methodical pre-filtering
- Online IIR Wiener filtering was implemented

Feedforward Seismic Noise Cancellation

Jessica Pena

Background

Motivation Noise Cancellation at the 40m Interferometer

Filtering Techniques

Pre-Filtering

Results

Offline Mode Cleaner Subtraction

Online Mode Cleaner Subtraction

Acknowledgments

- My Mentors: Eric, Rana, and Koji
- Ignacio

LIGO

LSC and the NSF

Feedforward Seismic Noise Cancellation

Jessica Pena

Background

Motivation Noise Cancellation at the 40m Interferometer

Filtering Techniques

Pre-Filtering

Results

Offline Mode Cleaner Subtraction

Online Mode Cleaner Subtraction

For Further Reading I

Feedforward Seismic Noise Cancellation

Jessica Pena

Appendix For Further Reading

J. Driggers, M. Evans, K. Pepper, and R. Adhikari, *Active Noise Cancellation in a Suspended Interferometer.* arxiv:1112.2224. (December 2011).