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ABSTRACT
GRAVITATIONAL-WAVE SCIENCE WITH THE LASER INTERFEROMETER

GRAVITATIONAL-WAVE OBSERVATORY

The University of Wisconsin–Milwaukee, May 2015

Under the Supervision of Professor Jolien Creighton

Gravitational-waves, as predicted by Einstein’s theory of general relativity, are oscil-

lations of spacetime caused by the motion of masses. Although not yet directly detected,

there is strong evidence for the existence of gravitational-waves. Detectable gravitational-

waves will come from dramatic astrophysical events, such as supernova explosions and col-

lisions of black holes. The Laser Interferometer Gravitational-wave Observatory (LIGO)

is a network of detectors designed to make the first direct detection of gravitational waves.

The upgraded version of LIGO, Advanced LIGO (aLIGO), will offer a dramatic improve-

ment in sensitivity that will virtually guarantee detections. Gravitational-wave detections

will not only illuminate mysterious astrophysical systems but will also provide a test of

Einstein’s theory of general relativity.

This dissertation discusses the development of software for use in aLIGO and tests

on aLIGO data for verifying general relativity. I have constructed and tested critical

components of aLIGO’s low-latency data analysis network. Low-latency refers to unno-

ticeable delays in the performance of software. I have developed and tested low-latency

calibration software that takes the raw data from the LIGO detectors and converts it

into gravitational-wave strain. I have also conducted a search on initial LIGO data for

gravitational waves from sub-solar mass black hole binary systems. This search is a proof-

of-principle search for an aLIGO binary neutron star search, which is the most promis-

ing search for the first direct gravitational-wave detection. Finally, I have investigated

the ability of aLIGO to detect violations of general relativity through a gravitational-

wave detection of the orbit and collision of two astrophysical objects. The dissertation

work discussed here is aimed to improve low-latency data production and analysis in

gravitational-wave physics and will further the scientific findings from a gravitational-

wave detection.
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Chapter 1

Introduction

“Begin at the beginning and go on
until you come to the end: then
stop.”

— The King, Alice in Wonderland
by Lewis Carroll

Newton described gravity as an attractive force between masses. Newtonian gravity

is an excellent theory to explain phenomena in the slowly-moving, weak-field regime, but

the theory contains an inherent flaw. In Newton’s theory, gravity is a force between two

masses that is inversely proportional to the square of the distance between the masses.

Such a formalism requires that information about one mass be instantaneously conveyed

to the other mass, which violates causality. This conundrum was solved by Einstein in

his re-formulation of gravity as a consequence of the geometry of spacetime, instead of

a force. Einstein’s theory of general relativity postulates that masses cause curvature in

spacetime. Everything that moves throughout spacetime, whether it be massive objects or

light, travels along geodesics. As the spacetime becomes curved by masses, the geodesics

are altered, leading to, for example, orbits.

Gravity also contains radiative properties in general relativity. Gravitational radia-

tion, known as gravitational waves, is the propagation of perturbations in spacetime that

travel at the speed of light. Gravitational waves are caused by the motion of masses in

spacetime, and they become stronger for more relativistic systems. Any gravitational

waves produced by day-to-day activities are incredibly small. The only moving masses

that can produce detectable gravitational waves are dramatic astrophysical events, such
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Figure 1 : Measured data (red) for the orbital decay of a binary star system and the prediction from
general relativity (blue) of the orbital decay due to gravitational-wave emission.

as the coalescence of binary neutron stars and supernova.

Gravitational waves have never been directly detected, but there is strong evidence

for the existence of gravitational waves. As a system emits gravitational radiation, the

system loses energy that is carried away with the radiation. The orbit of a binary system

will therefore decay over time as energy is lost due to gravitational radiation. Hulse

and Taylor were able to very accurately measure the decay of a binary neutron star

system, and the results were incredibly accurately described by the loss of energy due to

gravitational radiation. Fig. 1 shows the data points obtained for the orbital decay along

with the prediction from general relativity.

The Laser Interferometer Gravitational-wave Observatory (LIGO) is an on-going ex-

periment designed to directly detect gravitational waves for the first time. The first



3detections of gravitational waves will provide an excellent test of general relativity and

are bound to reveal new astrophysics. Information about the source is encoded into the

gravitational waves, and we are able to extract this source information from a detected

gravitational wave. In this sense, LIGO will become a new type of telescope that will

surely lead to improved information about observed dramatic astrophysical events.

This dissertation describes my contributions to various parts of LIGO’s gravitational-

wave science workflow. This chapter gives a brief overview of the theory behind gravita-

tional wave physics and introduces the most promising source of gravitational waves for

LIGO as well as the basic setup of the LIGO detectors. Ch. 2 discusses the process of turn-

ing the output of the LIGO detectors into a quantity that describes the measured effect

of a gravitational wave on the detector. Ch. 3 discusses a search for gravitational-wave

signals in LIGO data from sub-solar mass binary black hole systems. Ch. 4 demonstrates

an example of how a detection of gravitational waves can be used to test the theory of

general relativity. Finally, in Ch. 5, I summarize the results obtained in this dissertation

succinctly.

1.1 Review of general relativity and gravitational waves

This section assumes a basic knowledge of general relativity, such as that contained in

Hartle (2003). I only briefly summarize the salient points in gravitational-wave physics,

and a more detailed introduction can be found in, for example, Creighton & Anderson

(2011) and Flanagan & Hughes (2005). This section follows closely with the discussion

found in Creighton & Anderson (2011) and Flanagan & Hughes (2005).

Since general relativity involves a geometric description of spacetime, the most im-

portant and fundamental quantity in general relativity is the description of the distance

between two points in spacetime. The physical squared distance between two points is

ds2 = gµνdx
µdxν (1.1.1)

where gµν is known as the metric and dxµ represents the infinitesimal coordinate distance

between two points. The metric maps coordinate distances into physical distances. When

no curvature is present (flat spacetime), the metric is given the symbol ηαβ, which is
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ηαβ =


−c2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


(1.1.2)

in Cartesian coordinates. Since the metric is a map from coordinate distance into physical

distance, it contains a description of both the physical curvature of spacetime and any

apparent curvature inherent in a coordinate system (e.g. polar coordinates).

As eloquently stated by John Archibald Wheeler, “Spacetime tells matter how to

move; matter tells spacetime how to curve.” The metric describes the curvature of space-

time to which matter will respond. The stress-energy tensor describes the matter prop-

erties that will tell spacetime how to curve. The components of the stress energy tensor

are

T 00 = ρ (1.1.3)

T 0i = T i0 = J i (1.1.4)

T ij = Sij (1.1.5)

where ρ is mass density, J is momentum density, and S is the stress energy tensor.

The Einstein field equations formalize the connection between spacetime and matter,

Gαβ =
8πG

c4
Tαβ , (1.1.6)

where Gαβ is the Einstein tensor,

Gαβ = Rαβ −
1

2
gαβR . (1.1.7)

The Ricci tensor Rαβ and the Ricci scalar R are contractions of the Riemann curvature

tensor Rαβγδ,

Rαβ = gµνRαµβν (1.1.8)

R = gµνRµν . (1.1.9)

The Riemann curvature tensor is given by derivatives of the metric and characterizes the

physical curvature of spacetime.



5The Einstein tensor is divergenceless,

∇µG
µν = 0, (1.1.10)

and so the equations of motion for matter,

∇µT
µν = 0, (1.1.11)

follow from the Einstein field equations.

1.1.1 Linearized gravity

Linearized gravity refers to the weak-field approximation where the metric is taken to be

a small perturbation away from flat spacetime,

gαβ = ηαβ + hαβ (1.1.12)

where ||hαβ|| � 1. All terms O(h2) are ignored in the linearized gravity limit, which

reduces Einstein’s field equations to

−ηµν ∂
2h̄αβ

∂xµ∂xν
− ηαβ

∂2h̄µν

∂xµ∂xν
+

∂2h̄µβ
∂xα∂xµ

+
∂2h̄µα
∂xµ∂xβ

+O(h2) =
16πG

c4
Tαβ , (1.1.13)

where h̄αβ is the trace-reversed metric and is defined h̄αβ ≡ hαβ − 1
2
ηαβh. The trace of

the trace-reversed metric is the negative of the trace of the metric, h = ηαβhαβ = −h̄,

hence the name “trace-reversed metric.”1 The Einstein field equations can be simplified

by making a gauge transformation into what is known as the Lorenz gauge. The Lorenz

gauge condition requires that the divergence of the trace-reversed metric vanish,

∂h̄µα

∂xµ
= 0 . (1.1.14)

The linearized Einstein field equations in the Lorenz gauge are very simply written

−�h̄αβ =
16πG

c4
Tαβ , (1.1.15)

where � is the d’Alembertian operator in flat spacetime.

1In linearized gravity the flat spacetime metric ηαβ is used to raise and lower indices.



61.1.2 Vacuum solution to linearized Einstein field equations

In the weak-field limit where you are far from the source that is perturbing spacetime, it

is safe to approximate spacetime as a vacuum. The linearized gravity, vacuum Einstein

field equations are

�h̄αβ = 0 (1.1.16)

in the Lorenz gauge. This is a wave equation with the solution of a plane wave traveling

at the speed of light. The Lorenz gauge condition implies that the plane wave solution

is transverse. These transverse, plane-wave, metric perturbations traveling at the speed

of light are called gravitational waves. If the plane wave is chosen to travel along the

z-direction, then the waves are only a function of the retarded time t− z/c.
It turns out there is further gauge freedom in the Lorenz gauge. Moving into a gauge

where the metric perturbation is both traceless (h = h̄ = 0) and purely spatial (hα0 = 0),

known as the transverse-traceless (TT) gauge, removes all remaining gauge freedom.

Since the TT gauge is traceless, the metric and trace-reversed metric are the same in this

gauge. All t and z components of the metric are zero due to the spatial and transverse

properties of the TT gauge. This leaves four non-zero components: hTT
11 , h

TT
22 , h

TT
12 , h

TT
21 .

Due to symmetry of the metric,

hTT
12 = hTT

21 ≡ h× . (1.1.17)

Since the metric is traceless, this further implies hTT
11 + hTT

22 = 0, which means

hTT
11 = −hTT

22 ≡ h+ . (1.1.18)

The two remaining degrees of freedom in the metric, h+ and h×, represent physical

degrees of freedom. These are the two possible polarizations of a gravitational wave. The

names “+” and “×” have meaning derived from the effect of each polarization on matter,

discussed below.

1.1.3 Effect of gravitational waves on matter

In general relativity, the phenomenon of gravity is explained through the curvature of

spacetime. Test masses freely-falling through spacetime simply follow geodesics of that
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Figure 2 : The proper length between particles in a ring of freely-falling test particles would be affected
as shown here for a purely plus polarized gravitational wave traveling into the page. This diagram is a
snapshot in time as the wave’s crests and troughs pass through the plane of the ring.

spacetime. Depending on how spacetime has been curved by matter, these geodesics

could be elliptical orbits or straight lines or many other possible paths. The equations of

motion for a particle following a geodesic in spacetime with metric gαβ are

d2xα

dτ 2
= −Γαµν

dxµ

dτ

dxν

dτ
(1.1.19)

where τ is the proper time and Γγαβ are the connection coefficients, which can be expressed

in terms of the metric and derivatives of the metric as

Γγαβ =
1

2
gγδ
(

∂

∂xα
gβδ +

∂

∂xβ
gδα −

∂

∂xδ
gαβ

)
. (1.1.20)

Re-parameterizing Eq. (1.1.19) in terms of coordinate time t and moving into the TT

gauge in the linearized gravity, non-relativistic motion approximation, we reduce the

equations of motion for a freely-falling particle to

d2xα

dt2
= 0 . (1.1.21)

This implies that test particles will not experience any coordinate acceleration as a result

of gravitational waves in the TT gauge. In fact, this reveals the physical meaning of

the TT gauge. The TT gauge, which contains only physical degrees of freedom of the

gravitational wave in the metric, is the coordinate system that moves with particles as

they are affected by a gravitational wave.

Gravitational waves do, however, have a physical effect on the motion of particles.

Even though the coordinate distance between particles remains unchanged by a gravita-

tional wave in the TT gauge, the proper distance between particles is affected. For a grav-

itational wave traveling along the z-direction, the proper distance along the x-direction
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Figure 3 : The proper length between particles in a ring of freely-falling test particles would be affected
as shown here for a purely cross polarized gravitational wave traveling into the page. This diagram is a
snapshot in time as the wave’s crests and troughs pass through the plane of the ring.

between two freely-falling particles located on the x-axis and separated by coordinate

distance L′1 is

L1(t) =

∫ L′1

0

√
g11(t)dx1 (1.1.22)

=

∫ L′1

0

√
1 + hTT

11 (t)dx1 (1.1.23)

≈
∫ L′1

0

[
1 +

1

2
hTT

11 (t)

]
dx1 (1.1.24)

= L′1

[
1 +

1

2
hTT

11 (t)

]
. (1.1.25)

Similarly, for a particle located on the y-axis and separated by coordinate distance L′2,

L2(t) ≈ L′2

[
1 +

1

2
hTT

22 (t)

]
. (1.1.26)

Considering particles located off of the x or y axes involves the remaining non-zero metric

perturbations hTT
12 and hTT

21 . The proper distance between freely-falling particles will be a

changing function of time in the presence of a gravitational wave. For a purely + polarized

gravitational wave, a ring of test particles would be perturbed as shown in Fig. 2, and

for a purely × polarized gravitational wave, a ring of test particles would be perturbed

as shown in Fig. 3. The names + and × come from the effect each polarization has on a

ring of test particles.

One method to detect such changes in proper distance is to use an interferometer. The

end mirrors of the interferometer are considered test particles and the proper distance

between the mirrors and the beam splitter will be affected by a passing gravitational

wave. For an interferometer with arms along the x and y axes and a gravitational wave



9propagating along the z axis,

∆L1(t)

L′1
=
L1(t)− L′1

L′1
≈ 1

2
hTT

11 (t) =
1

2
h+(t) (1.1.27)

∆L2(t)

L′2
=
L2(t)− L′2

L′2
≈ 1

2
hTT

22 (t) = −1

2
h+(t) . (1.1.28)

The difference between the fractional change in length in each arm as induced by a gravi-

tational wave is known as the gravitational-wave strain and is related to the gravitational-

wave metric perturbation,

∆L(t)

L
≡ ∆L1(t)−∆L2(t)

L
≈ h+(t) (1.1.29)

where L is the average, unperturbed interferometer arm length (Thorne et al. 1987).

Generic gravitational waves incident on an interferometer will be a linear combination

of the + and × polarizations. The mapping of a each polarization onto the detector

strain is known as the antenna patterns, F+ and F×. The total gravitational-wave strain

incident on the interferometer is given by

∆L(t)

L
≈ h(t) = F+(θ, φ, ψ)h+(t; ι) + F×(θ, φ, ψ)h×(t; ι) (1.1.30)

where (θ, φ) are the source’s sky position, ψ is the polarization angle, and ι is the in-

clination angle between the plane containing the source and the detector and the plane

perpendicular to the polarization plane.

1.1.4 Source of gravitational waves

Secs. 1.1.2 and 1.1.3 describe how gravitational waves fall out of the linearized Einstein

field equations in a vacuum and the effect of gravitational waves on matter, respectively.

The source of gravitational waves is the motion of matter that is curving spacetime.

Including O(h2) terms in the Einstein field equations gives

�h̄αβ = −16πG

c4
Tαβ +O(h2) . (1.1.31)

The O(h2) terms can be absorbed into the stress-energy tensor to form an effective stress-

energy tensor ταβ,

�h̄αβ = −16πG

c4
ταβ . (1.1.32)



10Note that the effective stress-energy tensor ταβ is also divergenceless, which is consistent

with the equations of motion of matter and the Lorenz gauge condition.

The solution for the trace-reversed metric perturbation is found using Green’s func-

tions to be

h̄αβ(t,x) =
4G

c4

∫
ταβ(t− ||x− x′||/c,x′)

||x− x′|| d3x′ . (1.1.33)

We are located far away from the astrophysical sources of gravitational waves. Therefore,

any gravitational-wave strain that we detect on Earth would validly fall into the far-field

regime, where ||x − x′|| ≈ r for r being the distance from the source to x. Assuming

slow motion of the source, we can take t− ||x− x′||/c ≈ t− r/c. We seek the solution in

the TT gauge, so we are therefore only concerned with spatial components of the metric.

The spatial components of the effective stress-energy tensor can be related to the time

component τ 00 through identities that follow from the equations of motion of matter

(∂µτ
µν = 0). Employing these identities in the far-field limit, the solution to Einstein’s

field equations in the TT-gauge is

hTT
ij (t) ≈ 2G

c4r
ÏTT
ij (t− r/c) (1.1.34)

where

ITT
ij = PikI

klPlj −
1

2
PijPklI

kl , (1.1.35)

the quadruple tensor is

I ij(t) =

∫
xixjτ 00(t,x)d3x , (1.1.36)

and the projection operator is Pij = δij − n̂in̂j. n̂i is the unit vector in the direction of

propagation. Determining the gravitational-wave strain from a given system therefore

involves computing the system’s quadrupole tensor and taking time derivatives of the

quadrupole tensor.

Recall, the orbit of a binary system will decay over time due to gravitational-wave

emission. This is because gravitational waves carry energy with them. The stress-energy

tensor for a gravitational wave in the TT-gauge is

TGW
αβ =

c4

32πG

〈
∂hijTT

∂xα
∂hTT

ij

∂xβ

〉
(1.1.37)



11where 〈· · ·〉 is an integral average. This can be used to compute the gravitational-wave

luminosity, which is related to the third time derivative of the quadrupole tensor,

LGW = −dE
dt

=
1

5

G

c5

〈...
I ij

...
I ij
〉

(1.1.38)

where

I ij ≡
∫ (

xixj − 1

3
r2δij

)
τ 00(x)d3x . (1.1.39)

The gravitational-wave luminosity describes the energy carried away by gravitational

waves from a system per unit time.

1.2 Compact binary coalescence as a source of gravitational

waves

The most promising source for the first direct detection of gravitational waves is a compact

binary coalescence (CBC) event, which is the inspiral, merger, and ringdown of a binary

system composed of two compact bodies such as neutron stars or black holes. This is the

most promising source for the first detection, because it is a source that we know exists

and a source for which we have relatively good models. We model a CBC system as two

orbiting point particles with masses m1 and m2, orbital separation a, and orbital speed

ω. We find the gravitational wave polarizations h+ and h× using Eq. (1.1.34).

The non-zero components of the quadruple tensor are

I11 =
1

2
µa2 (1 + cos2 ι)

2
(1 + cos 2φ) (1.2.1)

I22 =
1

2
µa2 (1 + cos2 ι)

2
(1− cos 2φ) (1.2.2)

I12 = I21 =
1

2
µa2 cos ι sin 2φ (1.2.3)

where µ = m1m2/(m1 + m2), ι is the inclination angle of the observer from the orbital

axis, and φ = ωt. Using Eq. (1.1.34), the non-zero components of the metric perturbation

in the TT-gauge are

h+ = hTT
11 = −hTT

22 = −4Gµa2ω2

c4r

(1 + cos2 ι)

2
cos 2φ (1.2.4)

h× = hTT
12 = hTT

21 = −4Gµa2ω2

c4r
cos ι sin 2φ . (1.2.5)



12The gravitational-wave frequency f is twice the orbital frequency, which means ω = πf .

We often express the metric perturbation in terms of the orbital speed v = aω,

h+ = −2Gµ

c2r

(v
c

)2

(1 + cos2 ι) cos 2φ (1.2.6)

h× = −4Gµ

c2r

(v
c

)2

cos ι sin 2φ . (1.2.7)

As gravitational waves carry energy away from the system, the orbital separation of

the system decays. Over time, the bodies orbit closer and closer together. Eventually

the two bodies merge, which is known as the coalescence. The time until coalescence in

terms of the system’s initial velocity v0 is

tc =
5

256η

GM

c3

(v0

c

)−8

(1.2.8)

where M = m1 +m2. This is obtained by integrating the conservation of energy equation

from v0 to infinity. Conservation of energy implies that the luminosity of gravitational-

wave emission, as given by Eq. (1.1.38), equal the rate of energy loss in the binary system,

which we approximate using the Newtonian energy.

As the orbit of the system decays, the phase φ and speed v evolve over time.

Eqs. (1.2.6) and (1.2.7) are therefore functions of time through φ(t) and v(t). The plus

and cross gravitational-wave polarizations as a function of time for a CBC system in the

Newtonian limit are

h+(t) = −GM
c2r

1 + cos2 ι

2

(
c3(tc − t)

5GM

)−1/4

cos

[
2φc − 2

(
c3(tc − t)

5GM

)5/8
]

(1.2.9)

h×(t) = −GM
c2r

cos ι

(
c3(tc − t)

5GM

)−1/4

sin

[
2φc − 2

(
c3(tc − t)

5GM

)5/8
]

(1.2.10)

for t < tc where tc and φc are the time and phase of coalescence, respectively, and

M =
(m1m2)3/5

M1/5
. (1.2.11)

A generic gravitational wave induces a strain on a detector, also known as the gravi-

tational waveform, given by Eq. (1.1.30). For a CBC system, the strain as a function of

time in the Newtonian limit is

h(t) = − GM
c2Deff

[
c3(t0 − t)

5GM

]−1/4

cos

(
2φ0 − 2

[
c3(t0 − t)

5GM

]5/8
)

(1.2.12)
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Figure 4 : An example CBC chirp waveform as a function of time.

where t < t0 and

φ0 = φc −
1

2
tan−1

(
F×2 cos ι

F+(1 + cos2 ι)

)
(1.2.13)

Deff = r

[
F 2

+

(
1 + cos2 ι

2

)2

+ F 2
× cos2 ι

]−1/2

, (1.2.14)

and t0 is the termination time, which refers to the time of coalescence as observed in

the detector. A plot of an example waveform is shown in Fig. 4. The amplitude and

frequency of the waveform increase with time. If the waveform were played as an audio

stream it would sound like a chirp. For this reason, the CBC waveform is often referred

to as a chirp waveform. Since, at the Newtonian level, the CBC waveform is a function

of mass only through M as defined in Eq. (1.2.11), M is called the chirp mass.

The gravitational waveform is often expressed in the frequency domain instead of the

time domain. Using the stationary phase approximation (SPA), the Fourier transform of

the CBC waveform in the Newtonian limit is

h̃(f) =

√
5π

24

G2

c5

M
Deff

(
πGMf

c3

)−7/6

e−iψSPA(f) (1.2.15)

where

ψSPA(f) = 2πftc − 2φc −
π

4
+

3

128

(
πMGf

c3

)−5/3

. (1.2.16)

All of the expressions reviewed so far are in the Newtonian limit where GM/c2R� 1

and v/c2 � 1 for a system with characteristic size R, mass M , and speed v. Post-

Newtonian solutions are obtained by keeping higher order corrections to the metric and

stress-energy tensor and carrying these corrections throughout each derivation. In prac-

tice, much effort is put into computing post-Newtonian corrections to the energy and flux

equations, which are inputs for φ(t) and v(t) in the derivation of h(t).



141.3 Detecting gravitational waves with the Laser Interferometer

Gravitational-wave Observatory (LIGO)

The expected gravitational-wave strain from astrophysical sources is on the order of h ∼
10−20, which is equivalent to measuring a ∆L that is the width of a human hair if the

unperturbed length L is the distance between Earth and the closest star. In order to

measure metric perturbations on this order, we need to design a detector that is incredibly

sensitive to distance changes. The Laser Interferometer Gravitational-wave Observatory

(LIGO) is a ground-based interferometer designed to meet such sensitivity standards. The

first generation of the LIGO experiment, Initial LIGO (iLIGO), was in operation from

2002-2007. It was then upgraded to Enhanced LIGO (eLIGO) that ran from 2009-2010.

The next generation of detectors, Advanced LIGO (aLIGO), are just starting to come

online. We anticipate the first science-quality data to be taken in the fall of 2015. The

sections below describe the basic components of LIGO and the major sources of noise in

the detector. These sections are adapted from Creighton & Anderson (2011).

1.3.1 Order of magnitude estimate of LIGO sensitivity

The most simplified picture of LIGO is as a Michelson interferometer. Fig. 5 is a schematic

of the layout of a Michelson interferometer. The interference pattern created at the

photodiode depends on the difference in length of the two interferometer arms, Lx − Ly.
If the length of the arms are changed by amounts ∆Lx and ∆Ly, then the change in the

interference pattern corresponds to the differential change in arm length ∆L = ∆Lx −
∆Ly. The most obvious change in interference pattern occurs when a light fringe is shifted

to a dark fringe. Such a change corresponds to a ∆L ∼ λlaser. The wavelength of the

laser in LIGO is approximately 1 µm. If LIGO were only a Michelson interferometer,

then in order to be sensitive to gravitational waves with strain h = ∆L/L ∼ 10−20, then

the average arm length L would have to be

L =
∆L

h
∼ λlaser

h
∼ 10−6 m

10−20
= 1014 m , (1.3.1)

which would require the LIGO arms to stretch from Earth out into the Kuiper belt. This

is obviously unreasonable, and since LIGO is a well-funded NSF experiment that does



15

Laser

PD

How to build a 
GW detector...

Lx

Ly

Figure 5 : Schematic of a Michelson interferometer. The laser light is sent to a beamsplitter where it
then travels down the two interferometer arms of length Lx and Ly. The light bounces off of the end
mirrors and travels back towards the beam splitter. Some of the recombined light travels back towards
the laser and some travels towards the photodiode (PD).

not extend to Pluto, it must not be just a Michelson interferometer. In reality, the length

of the LIGO arms is ∼ 1 km, and such a Michelson interferometer would be sensitive to

h ∼ 10−9.

One way to improve LIGO’s sensitivity is to increase the effective length of the arms

by having the light take many trips up and down the arms before recombining at the

photodiode. However, there is a limit to how large the effective length should be which is

∼ λGW. If the time the light remains in the arms becomes comparable to the period of the

incident gravitational wave, then the light recombining at the cavity is much less sensitive

to the gravitational wave perturbation, except at particular periods corresponding to the

free spectral range of the interferometer arms. We seek to detect λGW ∼ 1000 km with

LIGO. By increasing the effective arm length to ∼ 1000 km, LIGO’s sensitivity improves

to,

h ∼ ∆L

Leffective

∼ λlaser

λGW

∼ 10−6 m

106 m
= 10−12 . (1.3.2)

So far, this order of magnitude calculation has assumed that we are trying to detect a

shift from a light to dark fringe in the interference pattern, which meant ∆L ∼ λlaser. In



16reality, with a high quality photodiode we can detect changes in the interference pattern

that correspond to a departure from the expected number of photons arriving. Assuming

the photon arrival follows a Poisson distribution, then we can detect

∆L ∼
√
Nphotons

Nphotons

λlaser (1.3.3)

where Nphotons is the number of photons expected to arrive in some time interval t. Once

again, it is only useful to consider light collected over a time period on the order of the

period of the incident gravitational wave, t ∼ λGW/c. The number of photons arriving in

a time period t is

Nphotons =
Plaser

hc/λlaser

λGW

c
=
PlaserλlaserλGW

hc2
(1.3.4)

where Plaser is the laser power and hc/λlaser is the energy of each photon. For a laser

power of 1 W, Nphotons ∼ 1018, which means LIGO would be sensitive to a strain of

h ∼ ∆L

Leffective

∼
√
Nphotons

Nphotons

λlaser

λGW

∼ 1

109

10−6 m

106 m
∼ 10−21 . (1.3.5)

We can get even better sensitivity by increasing the effective power of the laser. This

is done by using a power recycling cavity, discussed in more detail below. In addition,

Advanced LIGO will make use of a signal recycling cavity, giving an even greater boost

to sensitivity.

1.3.2 Main components of LIGO

As described above, LIGO must be more than just a simple Michelson interferometer

in order to achieve the desired sensitivity. Initial LIGO was actually a power-recycled,

Fabry-Perot, Michelson interferometer, and Advanced LIGO will be a signal-recycled,

power-recycled, Fabry-Perot, Michelson interferometer. Each of the components of the

interferometer are briefly described below, and a more detailed discussion can be found

in, for example, Abbott et al. (2009) or Creighton & Anderson (2011).

Michelson interferometer

A Michelson interferometer consists of a laser, a beamsplitter, one mirror at the end of

each arm, and a photodiode, as diagramed in Fig. 5. The laser light travels towards



17

Laser

PD

How to build a 
GW detector...

Ly

Lx

Figure 6 : LIGO contains a Fabry-Perot cavity at the end of each arm of the Michelson interferometer.
The end test masses of the Michelson interferometer are the input mirrors of the Fabry-Perot cavity.

the beamsplitter and then is split evenly down each arm of the interferometer towards

the two end mirrors. The transmission direction through the beamsplitter is called the

x-arm and the reflection direction is called the y-arm. The light is reflected off of the

end mirrors back towards the beamsplitter where it recombines. The laser light combines

symmetrically back towards the laser (the symmetric port) and anti-symmetrically to-

wards the photodiode (the anti-symmetric port). Any relative change in length of the

interferometer arms will manifest as a change in the recombined light.

A relative change in length of the interferometer arms can be caused by noise or by

gravitational waves. The end mirrors within the Michelson interferometer are referred

to as test masses. We are studying the effect of a gravitational wave on the mirrors

in the same way discussed in Sec. 1.1.3 for freely-falling test masses. As was shown

in Sec. 1.3.1, a reasonably sized Michelson interferometer alone would not be sensitive

enough to changes in length caused by astrophysical gravitational waves.

Fabry-Perot cavity

A Fabry-Perot cavity contains two mirrors that form a cavity. Light incident on the

input mirror circulates within the cavity for a certain number of bounces before exiting.



18

Laser

PD

How to build a 
GW detector...

Ly

Lx

Figure 7 : A mirror is placed between the laser and the beamsplitter. Light exiting the interferometer
at the symmetric port is recycled back into the interferometer. The result is to effectively increase the
laser power used for the interferometer.

This amplifies the phase shift in the light exiting the cavity by a factor known as the

arm cavity gain. LIGO contains a Fabry-Perot cavity at the end of each arm of the

Michelson interferometer. The input mirrors of the Fabry-Perot cavity are the end mirrors

of the Michelson interferometer. Fig. 6 diagrams the set-up of a Fabry-Perot, Michelson

interferometer.

Power recycling cavity

Sec. 1.3.1 discussed the connection between LIGO’s sensitivity to gravitational waves and

the laser power. The effective laser power is increased in LIGO by using a power recycling

cavity. A mirror is placed between the laser and the beamsplitter. This sends some of the

light from the symmetric port of the interferometer back into the interferometer arms,

which results in an increase in the light power in the arms and the beamsplitter. Fig. 7

shows a power-recycling, Fabry-Perot, Michelson interferometer.
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Figure 8 : A mirror is placed between the photodiode and the beamsplitter along the antisymmetric port.
Light exiting the interferometer at the antisymmetric port is recycled back into the interferometer. The
signal recycling cavity can be tuned to adjust the interferometer sensitivity within a certain bandwidth.

Signal recycling in aLIGO

Advanced LIGO incorporates an additional component in the interferometer known as the

signal recycling cavity. A mirror is placed between the photodiode and the beamsplitter

along the antisymmetric port, see Fig. 8. The length of the signal recycling cavity, which

is the distance between the the signal recycling mirror and the beamsplitter, is tunable.

Tuning the signal recycling cavity affects the bandwidth of the interferometer. The signal

recycling cavity can be tuned to provide improved sensitivity at low frequencies, improved

sensitivity at high frequencies, or improved sensitivity in a narrow frequency band.

1.3.3 Noise in the LIGO interferometers

LIGO’s goal is to detect changes in the differential arm length caused by gravitational

waves. However, the recorded strain by the photodiode of the interferometer contains

both noise (non-gravitational-wave signals) as well as potential gravitational-wave signals.

It is essential for the effort of extracting gravitational-wave signals from the data to

understand the noise. The frequency-dependent noise in the LIGO interferometers is

characterized by the noise amplitude spectral density, which is the square-root of the
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Figure 9 : The amplitude spectral density (ASD) for Initial LIGO (green curve), Enhanced LIGO (blue
curve), and the anticipated ASD for Advanced LIGO at design sensitivity (red curve).

noise power spectral density. The noise power spectral density is the power spectral

density of the strain read out by the interferometer in the presence of no gravitational-

wave signal. (See Sec. 3.1.1 for a definition of power spectral density.) Fig. 9 shows the

noise amplitude spectral density that was achieved in Initial LIGO and Enhanced LIGO

and the anticipated Advanced LIGO noise amplitude spectral density.

There are three dominant components to the noise in the LIGO interferometers.

• Seismic noise (low frequencies) At low frequencies, the noise in LIGO is domi-

nated by ground-based activity that couples to the interferometer end test masses.

Ground-based activity changes the length of the interferometer arms by physically

moving the end test masses. This noise includes everything from rush hour traffic to

earthquakes to the vibration of a fan in the control room. We mitigate the seismic

noise by dampening the motion of the end test masses through a system of pendu-

lums. In Initial LIGO, the end test masses were suspended in a single pendulum

system. In Advanced LIGO, we have improved the seismic isolation through the

use of a quadruple pendulum system. Seismic noise dominated LIGO’s noise at
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10 Hz in Advanced LIGO.

• Thermal noise (mid frequencies) The Brownian motion of molecules both in

the end test masses and in the suspension wires changes the measured length of the

interferometer arms. Since we are concerned with perturbations of spacetime on

the sub-atomic particle scale, thermal noise is a relevant source of noise that limits

our sensitivity in the mid-frequency region (10s of Hz to 100s of Hz). Advanced

LIGO will mitigate thermal noise through the use of higher quality mirrors and

suspension wires when compared to Initial LIGO.

• Photon shot noise (high frequencies) Photons arrive at the photodiode in a

Poisson process, which leads to noise associated with the process of counting photons

at the photodiode, as discussed in Sec. 1.3.1. This noise is known as “shot noise”

and dominates LIGO’s noise at high frequencies.

This chapter has reviewed how gravitational waves can be detected using an interfer-

ometer by observing the strain ∆L/L induced on the interferometer from a gravitational

wave. However, the output of the interferometer is not strain; the output is counts on

a photodiode. The very first step in determining whether or not a gravitational-wave

signal is present in LIGO data is converting the output of the detector into the physical

quantity strain. This effort is known as calibration and will be discussed in Ch. 2.
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Chapter 2

Calibration of the Advanced LIGO

Instruments

“Listen to the mustn’ts, child.
Listen to the don’ts. Listen to the
shouldn’ts, the impossibles, the
wont’s. Listen to the never haves,
then listen close to me... Anything
can happen, child. Anything can
be.”

— Shel Silverstein, Where the
Sidewalk Ends

2.1 Introduction

The work described in this chapter is in close collaboration with Xavier Siemens and the

aLIGO Calibration Team. This chapter closely follows Wade et al. (2014). The equivalent

effort for Initial LIGO is described in detail in Siemens et al. (2004).

The starting point of all LIGO gravitational-wave searches is the strain—the fractional

change in the length of the detector arms—caused by external sources including seismic

and other noise along with gravitational-wave signals. The goal of the calibration is to

provide an accurate reconstruction of the strain on the interferometer in the form of a

time series hext(t),

hext(t) =
∆Lext(t)

L
(2.1.1)

where ∆Lext(t) = Lx(t) − Ly(t) is the length change of the x and y arms caused by



23external sources, and L is the effective length of the unperturbed arms. See Fig. 8 and

Sec. 1.3 for more information about the setup of the LIGO interferometers. Calibration

is the essential first step in the analysis of gravitational-wave data. I am the lead of

the low-latency time-domain calibration effort, which is a crucial component in LIGO’s

ability to rapidly send gravitational-wave event alerts to the astronomical community,

and so for LIGO to fully participate as a facility for transient astronomy (Singer et al.

2014).

The LIGO interferometers are controlled with a set of multiple-input-mulitple-output

(MIMO) digital feedback loops. Calibration focuses on the differential arm (DARM) con-

trol loop and approximates it as single-input-single-output (SISO). A major calibration

effort is performing measurements to construct accurate frequency-domain models for the

various sub-systems within the DARM feedback loop. These tasks are often referred to

as the “frequency-domain” calibration. The tasks involved in the “time-domain” calibra-

tion are the construction of digital filters from the frequency-domain responses and the

deployment and maintenance of a pipeline that applies the appropriate filters to the error

and control signals of the DARM loop to produce a time series for hext.

2.2 A brief description: LIGO length sensing and control sys-

tem

A diagram of the DARM feedback loop is shown in Fig. 10. At low frequencies, the noise

in the external strain is dominated by seismic activity. A control displacement ∆Lctrl

is applied to physically move the test masses in opposition of the external displacement

∆Lext at low frequencies. Active feedback at the low frequencies is necessary to ensure

that the interferometer stays in alignment. A residual high-frequency displacement ∆Lres

remains.

The sensing function γ(t)C turns the residual displacement into the digital error signal

derr. This function contains a slowly-varying time-dependent gain γ(t) which depends

on the amount of light stored in the Fabry-Perot cavities in each of the arms. The

calculation of γ(t) is discussed in Sec. 2.4. The sensing function is the frequency response
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Figure 10 : The LIGO interferometers are kept in control through multiple digital feedback loops. A
simplified diagram of the differential arm (DARM) length control loop, which is the focus of external
strain calibration, is shown here.

of the Fabry-Perot cavity. The Fabry-Perot cavity is sensitive to oscillations in the cavity

length with a period greater than the average light storage time in the cavity. The

frequency dependence of the sensing function is given approximately by a real pole at

around 400 Hz known as the cavity pole. The cavity pole is inversely proportional to the

light storage time in the Fabry-Perot cavity. Within the feedback loop, a set of known

digital filters D is applied to the error signal in order to produce the digital control signal

dctrl. All digital filtering performed in the DARM loop is done in double floating-point

precision. The actuation function A converts the digital control signal into the physical

control displacement applied to the mirrors at the end of each arm. Each end test mass

is suspended at the bottom of a quadruple pendulum and the control displacement is

applied through actuators at each stage of the quadruple pendulum suspension system.

The frequency dependence of the actuation function is given by the frequency response

of the pendulum suspension systems.

The external displacement ∆Lext is constructed from both the digital error signal derr

and the digital control signal dctrl. The result is then divided by the mean interferometer

arm length L to obtain hext. In fact, ∆Lext can be constructed from the digital error
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control signals for reasons discussed in Sec. 2.4. Using the feedback loop shown in Fig. 10,

we find

∆Lres = ∆Lext −∆Lctrl

derr = γ(t)C ∆Lres

∆Lctrl = A dctrl .

Combining the above equations gives,

∆Lext =
derr

γ(t)C
+ A dctrl . (2.2.1)

In the frequency domain, Eq. (2.2.1) is a simple multiplication, up to the tim-varying

γ(t). In the time domain, the time series derr and dctrl need to be convolved with the

appropriate digital filters. The sensing gain γ(t) is more slowly varying than the decay

time of the digital filter 1/C, so we can just digitize the reference inverse sensing function

1/C, convolve it with derr, and divide the resulting time series by γ(t). Written explicitly,

∆Lext(t) ≈
1

γ(t)

[
1

C
∗ derr

]
(t) + [A ∗ dctrl] (t), (2.2.2)

where A is the digitized actuation filter, and the convolution of the filter F with the time

series x(t) is defined as

[F ∗ x] (t) =

∫
x(t′)F (t− t′)dt′ . (2.2.3)

The digitized filters A and 1/C are kept fixed for as long as they are deemed to accurately

represent the appropriate components of the DARM loop. When the various instrument

subsystems are no longer accurately represented by the reference measurements for the

sensing and actuation filters, updated measurements are used to produce new digital

filters.

In summary, frequency-domain calibration activities include performing careful hard-

ware measurements to accurately determine the sensing function C and the actuation

A. Time-domain calibration activities include accurate digitization of the actuation and

the inverse sensing frequency-domain models, tracking of the time-dependent gain of the
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Figure 11 : Hardware injections are injected after the digital error signal is read out, since hardware
injections should appear in the final product ∆Lext. However, injections that should not appear in the
final product ∆Lext, such as with the injections used to calculate γ(t), are injected before the digital
error signal is read out.

sensing function, and applying the digitized filters along with the time-dependent sens-

ing gain to the interferometer outputs to generate the external strain incident on the

interferometer.

2.3 Injections and h(t) construction

In order to commission the interferometer and test our ability to detect gravitational waves

in the data, we often inject simulated signals into the interferometer. For example, we

simulate gravitational-wave events appearing in our interferometer by introducing a strain

modeled after a real gravitational-wave signal directly into the instrument. These are

known as “hardware injections” and are used to study our ability to find simulated signals

with our search pipelines (Thrane et al. 2014). We also perform other types of injections,

such as sinusoidal injections at a set frequency, in order to study the interferometer

response to a known input for commissioning. These types of injections are not of interest
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Injecting into the DARM loop requires careful thought about the desired result of

the injection. There is flexibility as to whether injections are placed before or after the

digital control signal dctrl is read out. If the injection should appear in the final result

∆Lext, such as with hardware injections used to test our astrophysical search pipelines,

the injection should be done after dctrl is read out. If the injection should not appear

in the final result ∆Lext, such as the excitation channel xctrl used to calculate γ(t) for

calibration (see Sec. 2.4), it needs to be injected prior to where dctrl is read out.

The reason this flexibility exists is because the digital control signal dctrl is used in the

construction of ∆Lext. The details become clear when the excitation signal xctrl and the

hardware injection signal ∆LHW are included in the feedback loop (Fig. 11). The injected

excitation signal xctrl is automatically incorporated appropriately into the calculation of

∆Lext (Eq. (2.2.1)), since the digital control signal dctrl includes the excitation signal xctrl

within it. However, the hardware injection signal ∆LHW is not contained within dctrl

since it is injected after dctrl is read out. Using Fig. 11, the true differential arm length

caused by external sources should be

∆Lext,true =
1

γ(t)C
derr + A dctrl + A

(
− 1

A
∆LHW

)
=

1

γ(t)C
derr + A dctrl −∆LHW .

Since Eq. (2.2.1) is used instead for ∆Lext construction, the value reported for external

displacement contains the hardware injection signal

∆Lext,reported =
1

γ(t)C
derr + A dctrl

= ∆Lext,true + ∆LHW .

This is the desired results, since hardware injections are meant to appear in the external

strain sent to data analysis pipelines.

The use of Eq. (2.2.1) for the construction of ∆Lext allows any control signal, such as

xctrl, that is injected prior to the digital control signal dctrl to be automatically accounted

for in the determination of ∆Lext. Any signal that should appear as part of the reported

∆Lext should be injected after the digital control signal is read out.
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tion, γ(t)

The time-dependent gain of the sensing function γ(t) can be measured by adding digital

excitation signals xctrl into the DARM control loop. These excitations take the form of

large amplitude sinusoids and are usually referred to as “calibration lines,” because of

how they appear in the spectra of the DARM error and control signals.

From Fig. 11, it is possible to derive an expression for the time-dependent gain of the

sensing function γ(t) in terms of outputs of the interferometer. For this derivation, the

hardware injections are ignored. The digital control signal can be expressed in terms of

the digital error signal and the excitation signal,

dctrl = D derr + xctrl .

At the injected line frequency fc, the amplitude of the injected excitation is set to be much

larger than the external displacement, meaning in the frequency domain the residual dis-

placement is dominated by the injected signal ∆Lres(fc) ≈ −∆Lctrl(fc) = −A(fc)dctrl(fc).

This means that for Fourier transforms of xctrl and dctrl centered at time t we can write

dctrl(fc) ≈ −D(fc) γ(t)C(fc) A(fc) dctrl(fc) + xctrl(fc) , (2.4.1)

which we can use to solve for γ(t)

γ(t) ≈ 1

G(fc)

(
xctrl(fc)

dctrl(fc)
− 1

)
. (2.4.2)

Here G(fc) ≡ D(fc)C(fc)A(fc) is the open loop gain at the calibration line frequency. The

sensing gain γ(t) should always be real, up to noise contributions to ∆Lres. Departures of

γ(t) from being real-valued indicate that one or more of the DARM model components

are not modeled correctly, and a check on the reality of γ(t) is used to diagnose the fidelity

of the calibration model.

The time-dependent gain of the sensing function γ(t), also commonly known as the

calibration factor, is calculated using Eq. (2.4.2). The digital control signal dctrl(t) and

the excitation signal xctrl(t) are measured as time series. These time series need to

be demodulated at the calibration line frequency of interest fc. The demodulation is
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at time t0 and then taking a Fourier transform of the data at frequency fc. The value of

xctrl(fc; t0) is given by

xctrl(fc; t0) =
N−1∑
j=

wjxctrl

(
t0 −

1

2
N∆t+ j∆t

)
e−2πij∆tfc (2.4.3)

where the Hann window

wj =
1

2

[
1− cos

(
2πj

N − 1

)]
, (2.4.4)

1/∆t is the sample rate, and N∆t = 1 second. The equations above are for the excitation

signal, but the same transform is performed for the digital control signal. The open loop

gain is measured as a function of frequency using swept sine measurements, and the open

loop gain at the calibration line frequency is determined from these measurements. The

digital control signal dctrl is whitened before being recorded as output of the interferom-

eter. Therefore, within the calculation for γ(t), the digital control signal must also be

de-whitened at the calibration line frequency. The value of the whitening filter for dctrl is

known. This provides all of the ingredients required to compute γ(t0). The Hann window

is then shifted ahead in time by one sample and the calculation is repeated for γ(t0 +∆t).

In this way γ(t) is calculated on a sample-by-sample basis starting with a one second

delay.

2.5 Constructing time domain FIR flters from the frequency

domain models

We digitize the frequency domain models for the inverse sensing function 1/C and the

actuation function A in order to compute ∆Lext(t) (Eq. (2.2.2)). A lot of effort must first

be put towards making accurate measurements of A and C in the frequency domain in

order to produce reliable values for the external displacement. For more details on the

frequency domain models for the sensing function and the actuation function see Kissel

et al. (2014). The impulse response for the inverse sensing and actuation functions are

nicely approximated with finite impulse response (FIR) filters. The rationale for using

FIR filters in the reconstruction of the strain, as opposed to infinite impulse response
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Figure 12 : The magnitude (top) and phase (bottom) response of the actuation FIR filter (blue) and the
true frequency domain actuation model (red). The plots on the right indicate the relative error between
the two models. The errors in magnitude and phase are essentially zero across all relevant frequencies,
[10 Hz, 2048 Hz].

(IIR) filters, is two-fold. First, calibrated data often need to be re-calibrated with im-

proved models. For example, in LIGO’s fifth science run there were four revisions to the

calibration which required re-calibration of the entire data set. Unlike IIR filters, FIR

filters don’t require storing a history, making re-calibration of the data set trivially paral-

lelizable: all the data can be calibrated at once on a computing cluster provided the data

is divided into segments with sufficiently long overlaps. Second, when data drop-outs

occur, filling in the gaps of missing data is trivial with FIR filters: again, we just need

sufficient overlap with existing calibrated data. To fill in a few second gap, say, of missing

data with IIR filters would require re-calibrating much larger quantities of data because

of the need for filter histories.

The inverse sensing function is nicely approximated using a short, one second filter,

and it is calculated using the full data sample rate of 16384 Hz. However, the actuation

function requires a longer ∼a few seconds filter to capture the behavior appropriately.
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Figure 13 : The magnitude (top) and phase (bottom) response of the inverse sensing FIR filter (blue)
and the true frequency domain inverse sensing model (red). The plots on the right indicate the relative
error between the two models. The errors in magnitude and phase are less than 10−12 across the entire
calibration frequency band, [10 Hz, 5000 Hz].

This is due to narrow frequency bandwidth notch filters, such as digital notch filters

at the violin mode frequencies of the suspensions, in the actuation function that must

be resolved using a long integration time. Since the actuation is only relevant for low

frequencies and since it is a long filter, for computational speed-up the FIR filter for the

actuation is computed at a lower sample rate of 4096 Hz. For both of these filters, we

incorporate a high pass filter with a cutoff frequency of 10 Hz.

Frequency-domain calibration provides the transfer function for the sensing and the

actuation. The FIR filters for inverse sensing and actuation are computed by simply

taking the inverse Fourier transform of the frequency response of these transfer functions.

To produce the actuation FIR filter, we

1. Find the frequency response of the actuation transfer function using a frequency

vector that corresponds to the desired properties of the final FIR filter. For example,

the frequency spacing is df = 1/T where T is the duration of the FIR filter and the
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Figure 14 : The actuation FIR filter when no artificial delay is added. The filter is split across time.

Nyquist is chosen to be 2048 Hz.

2. Apply half of a Hann window that rolls off frequencies below 10 Hz to the frequency

response.

3. Zero-out the Nyquist component of the frequency response.

4. Compute the inverse Fourier transform of the frequency response. The result is the

desired FIR filter.

The resulting FIR filter from the above procedure is split across time, as shown in Fig. 14.

We add an artificial delay to center the FIR filter in time. The resulting filter is shown

in Fig. 15. This artificially delay must be undone by applying an advance during the

filtering procedure.

The inverse sensing function FIR filter is computed in a similar manner. To produce

the inverse sensing FIR filter, we

1. Find the frequency response of the sensing transfer function using a frequency vector

that corresponds to the desired properties of the final FIR filter. Here, the Nyquist

is chosen to be 8192 Hz, since derr is filtered at the full sample rate of 16384 Hz.
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Figure 15 : The actuation FIR filter with an artificial delay added. The filter is centered in time.

2. Take the inverse of the frequency response to obtain the frequency response of the

inverse sensing function.

3. Apply half of a Hann window that rolls off frequencies below 10 Hz.

4. Apply half of a Hann window that rolls off high frequencies (above ∼6 kHz).

5. Zero-out the Nyquist component of the frequency response.

6. Compute the inverse Fourier transform of the frequency response. The result is the

dies red FIR filter.

Just as with the actuation FIR filter, we add an artificial delay to center the filter in

time. The inverse sensing function requires that an additional artificial delay be added

in order to produce a physical filter. There is a delay in the sensing function due in part

to the light-travel time in the cavities. When inverting the sensing function, this turns

into an advance. Since an advance is unphysical, we must add an artificial delay to the

inverse sensing function in order to construct the FIR filter. All of the artificial delays

are removed by advancing the time series when the filter is applied to the error signal in

the calibration pipeline.
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floating point precision errors when recording these channels, we whiten both the error

and control signals before recording them. This whitening needs to be undone in the

calibration pipeline. I produce FIR de-whitening filters in the same manner as described

above. I digitize a zero, pole, gain model for the de-whitening filters by taking the inverse

Fourier transform of the frequency response of the model.

Fig. 12 shows a comparison of the magnitude and phase response of the computed

actuation FIR filter to the true frequency response of the actuation function. The errors

in magnitude and phase are essentially zero across all relevant frequencies, [10 Hz, 2048

Hz]. Fig. 13 shows the same comparison in magnitude and phase for the inverse sensing

filter. The errors in magnitude and phase are lower than 10−12 across the entire calibration

frequency band, which is [10 Hz, 5000 Hz].

2.6 Time domain calibration pipeline

For aLIGO, two methods are being developed to construct hext(t) in the time domain.

The first method involves a low-latency pipeline that will be operated within the Data

Monitoring Tool (DMT) at both the Hanford and Livingston interferometer sites. I lead

the development of this method and will discuss it in detail below. The second method,

which is currently under development, is implemented directly in the front-end of each

interferometer producing ∆Lext(t) as a raw data product in the same way the error and

control signals are currently available.

2.6.1 gstlal calibration pipeline

Our goal is to produce hext(t) in very low-latency. The low-latency pipeline that is oper-

ated within the DMT is written using a codebase known as gstlal (Cannon et al. 2014),

which is a number of LIGO Algorithm Library (LAL) (LSC 2015) tools wrapped with

GStreamer. Gstreamer (Gstreamer 2015) is a common audio and video streaming code-

base which is optimized for the manipulation of data streams that need to be processed

in real time. The primary motivation for low-latency generation of the strain is prompt

data analysis and reporting of gravitational-wave events (from, say, binary neutron star
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Figure 17 : Basic schematic of hext(t) generation for the low-latency pipeline operated within the DMT.

mergers) for electromagnetic follow-up (Singer et al. 2014).

Fig. 16 shows how the calibration pipeline fits into the current low-latency data flow.

The front-end of the instrument collects data that is broadcasted to the DMT in the

“frame” packaging format. These frames are synced up to a shared memory partition on

the DMT machine from which the calibration pipeline reads. The calibration pipeline

writes the calibrated data back into frames into a new shared memory partition. This

data is then sent to the various LIGO Data Grid (LDG) computing clusters. Full docu-

mentation of the low-latency data network can be found in (Zweizig & et al. 2014).

The procedure for computing hext(t) in the time domain is shown in Fig. 17. The
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nels: the error signal derr, the control signal dctrl, and the excitation signal xctrl. The

error signal derr is first advanced to compensate for the delay that was added to the in-

verse sensing FIR filter (see Sec. 2.5), and then convolved with the inverse sensing filter.

In parallel, γ(t) is calculated as described in Sec. 2.4. The error signal is then divided

by γ(t) to produce the residual displacement. Also in parallel, the control signal dctrl is

first advanced to compensate for the delay that was added to the actuation FIR filter (see

Sec. 2.5), and then down-sampled from 16384 Hz to 4096 Hz. The actuation FIR filter can

be long (several seconds) and down sampling is performed for computational efficiency.

Since the control signal only contains the low frequency part of hext(t), downsampling it

and losing the high frequency information is not problematic. The down-sampled control

signal is then convolved with the actuation FIR filter and resampled back up to 16384

Hz. The control and error signals in the DARM loop have large dynamic ranges and

need to be whitened prior to being recorded in single floating-point precision. For the

calibration, the control and error signals must therefore be de-whitened. This is done

after the control signal has been filtered through the actuation and after the error signal

has been filtered through the inverse sensing and multiplied by 1/γ(t). Finally, the fil-

tered error and control signals are added together, producing ∆Lext(t), and divided by

the mean detector arm length L to form the external strain hext(t). All of the filtering in

this process is performed in the time domain to avoid latencies in hext production.

2.6.2 Calibration state vector

In addition to producing hext(t), the gstlal calibration pipeline also produces calibration

state information. The pipeline outputs a bit-wise calibration state vector known as the

GDS-CALIB STATE VECTOR where the populated bits are defined as follows:

0 : HOFT OK: h(t) calibration is okay

1 : SCIENCE LOCKED: “science intent” bit is on and the instrument is locked

2 : LOCKED: instrument is locked

3 : HOFT PROD: h(t) is produced by the calibration pipeline



374 : FILTERS OK: filters settled in

5 : GAMMA OK: γ in expected range

A value of zero for a given bit means that the bit is “off” and a value of one means the

bit is “on.” For example, if the zeroth bit is one then the calibration is considered okay.

The fifth bit is an indication of whether the real and/or imaginary parts of γ(t) have

strayed too far from one and zero, respectively. If this does occur, that indicates the

calibration has incurred an error and should be reexamined. The fourth bit indicates

whether or not the filters have been given an appropriate amount of time to settle in

after a non-locked time period. If the detector has just locked, then the data for the first

N seconds, where N is the length of the filter, should not be analyzed. This is because any

glitchy data in the non-locked time period would be contaminating the first N seconds

of h(t). If the FILTERS OK bit is turned on, that means the filters have been given the

appropriate amount of time to settle in. The third bit is turned on if any output for h(t)

is produced by the pipeline. The value of the second bit, LOCKED, is determined from

the Online Detector Characterization (ODC) state vector (Ballmer et al. 2012) that is

read-in as a required input to the calibration pipeline. If the ODC vector indicates that

the instrument is locked, then the second bit of GDS-CALIB STATE VECTOR will be turned

on. The first bit, SCIENCE LOCKED is also determined from the ODC state vector.

If the first (“science intent”) AND second (“locked”) bits of the ODC state vector are

turned on, then the SCIENCE LOCKED bit of GDS-CALIB STATE VECTOR will be turned

on. The “science intent” bit is a human-determined state of the instrument that indicates

the instrument is in a mode that should be producing science-quality data.

The calibration is considered okay, and hence the zeroth bit would be recorded as

“on”, if the criteria for bits 2-4 are met. The fifth bit, GAMMA OK, being off does not

imply the calibration is not acceptable. Instead, this situation should be treated as a data

quality veto flag by data analysis pipelines. In addition, the first bit being off while the

second bit is on indicates that the instrument is locked but not in “science intent” mode.

Such a scenario does not preclude the calibration from being good, and therefore the first

bit does not go into determining the overall state of the calibration. However, analysis

pipelines should look for both the zeroth and first bit of GDS-CALIB STATE VECTOR to be
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2.7 Engineering runs as tests of the calibration procedure

In order to prepare for the advanced detector era, the LIGO Scientific Collaboration

has been conducting “engineering runs” that aim to test various aspects of the aLIGO

infrastructure. These engineering runs begin with the production of hext, whether it be

fake or real, and test the aLIGO infrastructure from transferring data to the appropriate

computing sites all the way through searching the data for gravitational wave signals and

preparing electromagnetic follow-up events.

Before the DARM loop was commissioned in the aLIGO interferometers, the gstlal

calibration pipeline was exercised by producing fake strain data during the early aLIGO

engineering runs, specifically during engineering runs 3 through 5 (ER3-ER5). During

these earlier ERs the calibration procedure described throughout this document could

not be implemented. However, the infrastructure surrounding the gstlal calibration

pipeline was built-up and tested within the DMT machines during at this time. In

the most recent engineering run (ER6), a full interferometer was commissioned at the

LIGO Livingston Observatory (LLO). We were able to implement the actual calibration

procedure described in Sec. 2.6 during ER6.

2.7.1 Early engineering runs (ER3-ER5)

During the early engineering runs for which the gstlal calibration pipeline participated

(ER3-ER5), the pipeline produced fake strain data by recoloring data from one of the

aLIGO subsystems. The infrastructure surrounding the gstlal calibration pipeline was

built up and tested during these runs.

The recoloring process is outlined in the following manner:

1. The aLIGO subsystem data is read-in from frames and whitened. Whitening data is

the process of removing any frequency dependence from the power spectral density.

(a) During ER3, this whitening was done adaptively. This means that the power

spectral density (PSD) that was used to whiten the data was measured and
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move undesirable line features in the PSD of the recolored data. However, this

process was found to cause data quality issues, specifically the introduction

of anti-line features in the recolored data’s PSD.

(b) Due to the data quality issue mentioned above, the whitening scheme was

adjusted for ER4 and ER5. In ER4 and ER5, the data was whitened using

a fixed reference PSD that was taken during a known stable time for the

relevant subsystem. The fixed whitening spectrum was smoothed to remove

line features by taking the median of 32 samples on either side of each point

in the PSD. Since the data is whitened using a fixed PSD, the data quality of

the recolored fake strain can vary, sometimes significantly, when the real-time

PSD of the relevant subsystem strays from the measured reference PSD.

2. The whitened data was resampled from its original sample rate (32768 Hz) to 16384

Hz.

3. The whitened data was recolored to match the aLIGO zero-detuned high power

(ZDHP) PSD (Shoemaker 2009). Recoloring the data means frequency dependence

was given to the PSD of the data.

4. The recolored data was labeled with the channel name FAKE-STRAIN and written

to frames at a sample rate of 16384 Hz.

During ER3 and ER4, the aLIGO subsystem that was recolored was the pre-stabilized

laser (PSL). During ER5, the aLIGO subsystem that was recolored was the input mode

cleaner (IMC).

During these early engineering runs the reliability and stability of the gstlal pipeline

infrastructure was tested and improved. By ER5, the pipeline produced fake strain data

in very low latency more than 99.9% of the time for the entire run.
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Figure 18 : Comparison in magnitude (top plots) and phase (bottom plots) of the gstlal calibration
pipeline to a frequency domain calibration (Eq. (2.7.1)).

2.7.2 Recent engineering run (ER6)

In the most recent engineering run (ER6), there was a full interferometer commissioned

at LLO. Since the LIGO Hanford Observatory (LHO) did not yet have a full interferom-

eter, we still produced fake strain data as the LHO data stream. The gstlal pipeline

produced real, calibrated hext(t) data during ER6 at LLO. The procedure used for cal-

ibration is exactly that described in Sec. 2.6.1, except we artificially set γ(t) = 1 for

the entire engineering run. We were able to produce calibrated data in near-real-time

(∼ 10 second latency) throughout the entire engineering run. During ER6 we were able

to identify several errors in the FIR filter generation procedure and the gstlal calibra-

tion pipeline. Upon fixing these errors, the time domain calibration agreed to better

than 1% in amplitude and 2 degrees in phase with a frequency domain calibration. The

frequency domain calibration was computed by Fourier transforming a stretch of derr

and dctrl data, multiplying these by the inverse sensing and actuation function frequency
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hext(f) =

(
dctrl(f) A(f) +

derr(f)

C(f)

)
1

L
, (2.7.1)

taking γ(t) = 1. Fig. 18 shows a comparison of the frequency domain calibration to

the gstlal calibration pipeline output. The segment of the strain produced by the

gstlal calibration pipeline is Fourier transformed for comparison to the frequency domain

calibration. If the frequency domain calibration is taken to be the true calibration, the

time domain calibration procedure introduces errors of less than 1% in amplitude and 2

degrees in phase across the whole frequency band. This is well within the promised errors

for calibration for ER6. However, the complete calibration errors include both the time-

domain errors and the errors accrued by inaccuracies of the frequency-domain models.

The calculation of the frequency-domain model errors is part of the frequency-domain

calibration effort.

2.8 Conclusions

Time-domain calibration provides the transition step between data acquisition at the

instrument level and analysis of this data for astrophysical signals. The time-domain

calibration process takes in raw instrument data and models of the instrument behavior

to produce a time series of the external strain incident on the detector. The first step

in the calibration procedure is to make accurate measurements of the relevant instru-

ment parameters and to model each of the relevant subsystems. Detailed discussions of

measurement techniques and required models can be found in (Kissel et al. 2014), and a

brief discussion of the models can also be found in Sec. 2.2. In addition to modeling the

relevant subsystems, the calibration process must track the time-dependent gain of the

sensing function, as discussed in Sec. 2.4.

Once measurements are made and models are developed, then the time-domain cal-

ibration process can begin. The first step in the time-domain calibration process is to

make FIR filters out of the actuation and sensing function models. These FIR filters are

quite accurate to the true models, as shown in Sec. 2.5. The time-domain calibration is
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ever, a method to perform time domain calibration in the front-end of the interferometer

is also under development.

The calibration team has been heavily involved in the LIGO engineering runs, and

the gstlal calibration pipeline has produced the fake strain data for the third through

fifth engineering runs and real calibrated strain data at LLO during the sixth engineering

run. We have improved the gstlal calibration low-latency infrastructure to better than

99.9% reliability. During the sixth engineering run we were able to test the full accuracy

of the time domain calibration for the first time at LLO, and we found accuracies of

better than 1% in amplitude and 2 degrees in phase. The errors do not account for the

errors associated with the frequency-domain models.

Looking forward to the seventh engineering run and the first official observing runs,

we will continue to investigate the major sources of error in the time-domain calibration

procedure. We will commission and test the implementation of the γ(t) calculation in the

gstlal calibration pipeline, and we will develop an infrastructure for ensuring the FIR

filters for the actuation and inverse sensing are automatically updated in real time when

models within the front-end are adjusted.

Calibration is a critical step towards the discovery of gravitational waves. Once the

external strain hext(t) is constructed, it can then be passed to data analysis pipelines and

searched for gravitational-wave events. Ch. 3 picks up where calibration leaves off and

discusses how we search for gravitational waves from compact binary coalescence events

in LIGO data.
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Chapter 3

Search for sub-solar mass binary

systems in Initial LIGO data

“Then he looked beyond the
thornbushes, out into the big dark
night. Nothing could be farther than
the sky.”

— Little Nutbrown Hare, Guess
How Much I Love You by Sam

McBratney

3.1 Introduction

Through calibration (see Ch. 2), we construct the external strain incident on the LIGO de-

tectors. The external strain s(t) contains both noise n(t) and, potentially, a gravitaitonal-

wave signal h(t),1

s(t) = n(t) + h(t) .

The process of searching for gravitational waves in LIGO data is the process of determin-

ing the probability that there is a signal buried in the noise. The most promising source for

gravitational waves in LIGO is compact binary coalescence (CBC) events. As discussed

in Sec. 1.2, the CBC gravitational-wave strain is well-modeled using the post-Newtonian

formalism.

1In the previous chapter, external strain was denoted hext(t). Here, to agree with standard conven-

tions, it will be denoted s(t).



44Since a search for CBC signals involves a well-defined model for the gravitational-wave

strain, these searches can employ the optimal detection statistic, which is a statistic that

quantifies the probability that the data s(t) contains the signal model h(t). The optimal

detection statistic is the odds ratio, which is the ratio of the probability that there is a

signal in the data to the probability that there is just noise in the data. Using Bayes

theorem, the odds ratio is found to be proportional to the likelihood ratio (Creighton &

Anderson 2011),

Λ(H1|s) =
p(s|H1)

p(s|H0)
(3.1.1)

where H1 is the alternative hypothesis stating that there is a signal in the data and H0

is the null hypothesis stating that there is just noise in the data. The notation p(A|B)

refers to the probability density that A is true given B.

3.1.1 Matched filter statistic

This section follows the discussion found in Chapter 7 of Creighton & Anderson (2011)

and Allen et al. (2012). Assuming the noise in the LIGO detectors is stationary and

Gaussian, the probability of obtaining a data set n(t) is

p[n(t)] ∝ e−(n,n)/2 (3.1.2)

where the noise weighted inner product (a, b) is defined

(a, b) = 2

∫ ∞
−∞

ã(f)b̃∗(f)

Sn(|f |) df

and Sn(f) is the one-sided power spectral density of the noise n. The power spectral

density (PSD) characterizes how much power the data set contains in each frequency

component and is often defined in terms of the frequency components of the data set

〈ñ∗(f ′)ñ(f)〉 =
1

2
Sn(|f |)δ(f − f ′) .

The square root of the PSD, known as the amplitude spectral density (ASD), for Initial,

Enhanced, and Advanced LIGO is shown in Fig. 9.
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ponentials of the noise weighted inner product,

Λ(H1|s) =
p[s(t)− h(t)]

p[s(t)]

=
e−(s−h,s−h)/2

e−(s,s)/2

= e(s,h)e−(h,h)/2 ,

where h is the true signal in the data. The only term in the likelihood ratio that depends

on the strain data s(t) is the noise weighted inner product of the strain data s(t) with the

signal h(t). Since the likelihood ratio, and therefore the odds ratio, is a monotonically

increasing function of the inner product (s, h), then (s, h) is the optimal detection statistic

for stationary, Gaussian noise. This optimal detection statistic is called the matched filter

statistic,

(s, h) = 2

∫ ∞
−∞

s̃(f)h̃∗(f)

Sn(|f |) df . (3.1.3)

A normalized version of the matched filter statistic is often called the signal-to-noise ratio

(SNR),

ρ =
(s, h)

σ
, (3.1.4)

where σ2 is the variance of the matched filter, which can be shown to be (h, h) (Creighton

& Anderson 2011). The SNR characterizes the strength of the signal h in the data for

given noise Sn(f). Since the SNR can be constructed from the matched filter statistic, we

often refer to the SNR as the optimal detection statistic for stationary, Gaussian noise.

3.1.2 Maximum likelihood statistic

In reality, we do not know the true signal in the data. We have a model for the signal

that is a function of parameters, such as binary component masses, termination time, and

termination phase. The true parameters are unknown. Instead of using the likelihood

statistic as described above, we need to use the maximum likelihood statistic, which

is the likelihood, or SNR, maximized over the signal model parameters. The process

for maximizing the SNR involves several steps. We seek to maximize the SNR over an

unknown signal amplitude, termination time and phase, and intrinsic source parameters,
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not of great interest in the search procedure, but it can be solved for given the maximized

SNR and the variance of the matched filter statistic σ2 (Creighton & Anderson 2011).

Conventionally, we normalize the signal models and refer to the normalized signal model

as a “template,” hmod(t) = A m(t) where m(t) is the normalized template. We actually

compute the matched filter statistic of the data with the normalized template.

Recall from Sec. 1.2 the form of the CBC signal model is

h(t) = − GM
c2Deff

[
c3(t0 − t)

5GM

]−1/4

cos

(
2φ0 − 2

[
c3(t0 − t)

5GM

]5/8
)

(3.1.5)

whereM = (m1m2)3/5/(m1+m2)1/5 is the chirp mass, t0 is the termination time, φ0 is the

termination phase, and Deff is the effective distance. The effective distance is the distance

to the source scaled by the binary orientation. The template m(t) is a normalized version

of Eq. (3.1.5). Since the termination phase appears in a cosine argument, a rotation of the

template by π/2 in the frequency domain can be expressed as m̃(f ; 2φ0 → 2φ0 − π/2) =

m̃(f)eiπ/2 = im̃(f) for f > 0. It is therefore efficient to maximize the SNR over the

unknown termination phase by forming a complex matched filter

z = x+ iy = 4

∫ ∞
0

s̃(f)m̃∗(f)

Sn(f)
df . (3.1.6)

x and y form an orthogonal basis for the template in the termination phase space. The

quadrature sum of x and y therefore maximizes the SNR over the unknown termination

phase,

ρ =
|z|
σ
. (3.1.7)

In addition to the unknown termination phase, the signal model also contains an

unknown termination time t0 per Eq. (3.1.5). We take our templates m as a function of

t − t0 and seek to maximize the SNR over t0. In the frequency domain, m(t − t0) takes

the form m̃(f) e−2πift0 , which means the complex matched filter statistic becomes

z(t0) = 4

∫ ∞
0

s̃(f)m̃∗(f)

Sn(f)
e2πift0df . (3.1.8)

We parameterize the matched filter in terms of termination time t and compute a time

series for the complex matched filter statistic z(t) for all possible termination times,

z(t) = 4

∫ ∞
0

s̃(f)m̃∗(f)

Sn(f)
e2πiftdf . (3.1.9)
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Figure 19 : An illustration of an SNR time series (bottom plot) given Gaussian data plus a signal
(blue) for a given template (red) (top plot). Note that the signal is grossly exaggerated in the data for
illustrative purposes. Imagine the template has swept across this data segment to produce the SNR time
series. The horizontal dashed line on the bottom plot represents the SNR threshold, where events above
this threshold are potential triggers. Local peak finding determines the trigger and the estimated arrival
time for this trigger. This figure is credit of Leslie Wade.

Since the SNR is a normalized matched filter, this is equivalent to computing an SNR

time series ρ(t) = |z(t)|/σ. The SNR is maximized over termination time using local peak

finding of the SNR time series. This completes the maximization over termination time

and phase.

The SNR still needs to be maximized over the remaining signal parameters, such as

binary component masses. This is done through the use of a template bank. The relevant

parameter space is gridded up and a template is calculated at each point on the grid. The

coarseness of the grid is determined such that any possible real signal will produce an

SNR with at least one template that is greater than or equal to a number known as the

minimal match (Owen & Sathyaprakash 1999). The minimal match is typically chosen

to be around 0.97, which means no more than 3% of SNR is lost due to the coarseness of

the template bank.

Once a template bank is constructed, an SNR time series is computed for each of the

templates. The resulting bank of SNR time series are used to determine potential signal

candidates, or “triggers.” All points in the SNR time series that cross a pre-determined
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Figure 20 : An illustration of an SNR time series (bottom plot) given data (blue) that includes a large
glitch (top plot). Imagine the template (red) has swept across this data segment to produce the SNR
time series. The horizontal dashed line on the bottom plot represents the SNR threshold, where events
above this threshold are potential triggers. Local peak finding determines the trigger and the estimated
arrival time for this trigger. This figure is credit of Leslie Wade.

threshold are stored. Local peak finding is then performed across all stored SNRs within

a given time window. The peak SNR value is recorded as a trigger at the peak time tpeak.

Fig. 19 illustrates the procedure of peak finding in an SNR time series.

3.1.3 Non-stationary, non-Gaussian noise

In reality, the LIGO noise is neither stationary nor Gaussian. Examples of non-stationary

noise include certain types of seismic noise, such as the human-related noise associated

with rush hour traffic, trains passing nearby, earthquakes, logging, and much more. In

order to combat the fact that our noise is not stationary, the power spectral density

(PSD) is recomputed over time periods that are short compared to the time-evolution of

the noise.

The LIGO noise is also not Gaussian and contains transient noise events (“glitches”)

caused by, for example, seismic excitations. We combat the non-Gaussianity of the noise

using several methods. First, we flag times in the data that should be vetoed based

on data quality tests. The types of vetoes are described in Secs. 3.3 and 4.5. Any

triggers that emerge during these times are automatically assumed to be noise events.
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determining signal candidates is to perform a test for coincidence across detectors. A

true gravitational wave will appear in each detector within a light-travel-time between

the detectors. Not only do triggers need to pass a time coincidence check, but they also

must pass a template coincidence check, meaning that only triggers coincident in time

across detectors for the same template are stored as potential signal candidates. These

coincidence requirements effectively veto most glitches, since glitches are unlikely to be

coincident across detectors. The rare coincident glitches are usually just a coincidence.

However, such coistrel coincident coincidences can occur (tongue tied?), and therefore a

χ2 test is used as an additional discriminant.

Glitches will accumulate SNR over time (and frequency) in a different manner than

signals. Figs. 19 and 20 illustrate what the SNR time series might look like for a signal

vs. for a glitch. The χ2 test quantifies how similar the SNR accumulation is to what it

should be if the signal model is known to be in the data. A small value for χ2 implies

the SNR accumulation is consistent with the modeled signal existing in Gaussian noise.

A large value for χ2 indicates that there is a disagreement in the SNR accumulation with

the expectation of the modeled signal in Gaussian noise. A large value for χ2 indicates

that the signal template does not accurately model what appears in the data. This could

be caused by a transient event in the data or by an imperfect signal model.

The χ2 statistic used in the search method we employ is the autocorrelation χ2 statis-

tic, which compares the SNR time series to the autocorrelation function of the signal

model. The autocorrelation function is α(τ) ≡ (m(t),m(t− τ)), and the autocorrelation

χ2 is

χ2
auto =

∫ T/2

−T/2
|ρ(t− τ)− Aα(τ)|2 dτ (3.1.10)

where T is a tunable parameter that relates to the degrees of freedom of the χ2 statistic

(Privitera 2014) and A is the maximum amplitude of the SNR time series. This is a

computationally efficient version of the χ2 statistic since all of the information necessary

to compute this statistic has been previously computed while constructing the matched

filter statistic and the template bank.
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Figure 21 : The distribution of simulated gravitational wave events (injections) and noise events (back-
ground) in SNR - χ2 space. The colored dots in the legend refer to values of spin. This plot is for a
non-spinning search, so spin = 0.0. The χ2 statistic allows for the separation of signals and background.

Through the use of both the SNR and the χ2 statistics we are able to effectively deter-

mine the probability that a gravitational-wave signal exists in LIGO data. A true signal

candidate would have a high value for SNR and a small value for χ2. We perform tests

on our search pipeline by inserting simulated gravitational-wave signals (“injections”)

into our data. Fig. 21 demonstrates how the injections separate from the noise events

(“background”) in the χ2 vs. SNR parameter space. Injections will have a range of SNRs,

depending on the strength of the gravitational wave and will have a relatively small χ2.

Signals with large SNR may have a large value for χ2 due to the mismatch between

template and signal, but similarly large SNR glitches will have much larger χ2 values.

Background noise events can also have a range of SNRs, including large values, but the

χ2 value for these events will increase with SNR. The louder a glitch appears in the data,

the more pronounced the difference between the shape of the glitch and the shape of a

real signal becomes.
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Extensive searches have already been conducted for binary neutron star (e.g. the LIGO

Scientific Collaboration et al. (2012)), super-solar mass binary black hole (e.g. The LIGO

Scientific Collaboration et al. (2013)), and neutron star – black hole (e.g. the LIGO

Scientific Collaboration et al. (2012)) events in Initial LIGO data. The early science runs

have also been searched for sub-solar mass binary events (Abbott et al. 2005). However,

Initial LIGO’s fifth and sixth science runs have not yet been searched for sub-solar mass

binary events. Along with my advisor and collaborators, Kipp Cannon and Chad Hanna, I

conduct a search for sub-solar mass (SSM) binary events on one month of Initial LIGO’s

fifth science run. The motivation for conducting this search is two fold: (1) There is

the possibility for a detection of gravitational waves produced by binary coalescences of

massive compact halo objects in this mass region, and (2) this search is computationally

very similar in complexity to a search for binary neutron star events in Advanced LIGO

data.

3.2.1 Astrophysical motivation

It is well known that dark matter is a large constituent of galactic halos based on measure-

ments of galactic rotation curves (Trimble 1987). The nature of dark matter is currently

an active area of research. The current most popular dark matter candidate is a weakly

interacting massive particle (WIMP). Historically, massive compact halo objects (MA-

CHOs) have been another enticing possibility for the composition of dark matter. The

MACHO Collaboration were the first ones to put an upper limit on the existence of MA-

CHOs in our galactic halo through microlensing of the Large Magellanic Cloud (LMC)

(Alcock et al. 2000). The MACHO Collaboration determined that no more than 20% of

the galactic halo was composed of MACHOs for their favored galactic halo model. The

EROS and OGLE collaborations set even more restrictive upper limits on the existence

of MACHOs in the galactic halo (Tisserand et al. 2007; Wyrzykowski et al. 2011). As a

result, WIMPs has taken the lead as the most likely candidate for dark matter. However,

no conclusive results have been found to support the existence of WIMPs and recent

measurements of the galactic rotation curve indicates that the halo could be less massive
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far as arguing that we should no longer rule out an all-MACHO galactic halo in light of

these recent results, and in fact the preferred halo model for quoting upper limits on the

MACHO content of our halo may no longer be consistent with galactic rotation curve

measurements. For the purpose of this dissertation, it is enough that the existence of

MACHOs has not been entirely ruled out.

The most likely mass for MACHOs as determined by microlensing experiments is less

than a solar mass, with the most probable mass lying around 0.2 M� (Alcock et al. 2000;

Tisserand et al. 2007; Wyrzykowski et al. 2011). The most likely candidate for sub-solar

mass compact objects are primordial black holes. Black holes with masses less than a

solar mass cannot form from stellar evolution. According to current theories, the most

probable formation process for sub-solar mass black holes is from the collapse of quantum

fluctuations in the early universe (Carr & Hawking 1974; Zel’Dovich & Novikov 1967).

It is also possible that primordial black holes will have formed in binary systems. These

primordial black hole binary systems are the target source for the SSM binary search

discussed here.

The only existing direct upper limit on SSM binaries, independent of halo model, is

R < 63 yr−1 MWH−1, set by LIGO (Abbott et al. 2005) after searching for SSM CBC

signals in iLIGO’s second science run (S2). In the absence of a detection, a search for

SSM binaries in iLIGO’s fifth science run (S5) will set a more restrictive upper limit due

to both increased sensitivity of the detectors and increased observation time (≈ 1 year)

when compared to S2.

During S5, there were three operational LIGO detectors. Two detectors were co-

located in Hanford, WA. One of these detectors (H1) had 4 km arms and the other

detector (H2) had 2 km arms. There was a third detector in Livingston, LA with 4 km

arms (L1). One way we measure the sensitivity of each interferometer is to compute the

horizon distance for a given CBC signal. The horizon distance is the distance at which

an optimally oriented CBC system with some specified mass parameters would produce a

signal with SNR of 8 in the detector. The estimated horizon distance for a 0.5 M� − 0.5

M� binary in S5 was about 6 Mpc for the least sensitive LIGO detector (H2) and 12 Mpc
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Figure 22 : Distribution of templates in the binary component mass space. Each dot indicates a template
in the template bank.

for the two larger detectors (H1 and L1). These horizon distances probe other galaxy

halos, beyond even our Local Group, which has not been done previously when searching

for SSM binaries.

Since microlensing experiments place the most likely MACHO mass around 0.2 M�,

we chose our template bank parameter space to extend down to 0.11 M�. We do not want

to place the most probable mass on the edge of the template bank, but computational

restraints prevent us from moving the lower mass cut off below 0.11 M�. In addition,

LIGO has never searched for SSM – neutron star (NS) binary systems, so we chose to

push the upper mass limit in our template bank up to 1.4 M�. However, such a template

bank is too computationally expensive given current resources. We decide to restrict the

mass ratios of the template bank to [1 : 1, 3 : 1]. This limits the size of the template bank

while still allowing binaries that straddle the most probable mass of 0.2 M� and includes
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Fig. 22 shows how the template bank is distributed in binary component masses.

Some templates are placed beyond the mass limits discussed above. These templates

are necessary in order to ensure the edge of the template bank has the desired minimal

match. The chosen minimal match for this template bank was 0.93, rather than the

typical 0.97. This was done so that the problem is computationally tractable within a

graduate student’s lifetime, assuming 2015-era resources.

3.2.2 Computational motivation

An arguably more important justification than the astrophysical justification for a SSM

binary search on S5 data is the technological similarities such a search holds to a binary

neutron star (BNS) search in the advanced detector era. Binary neutron star systems are

the most probable source for the first CBC detection (Abadie et al. 2010) and therefore

viewed as a high priority search in aLIGO. The SSM binary search on S5 data will be

conducted with the gstlal inspiral pipeline from the gstlal software package (Cannon

et al. 2014, 2012), which is poised to be the online low-latency CBC pipeline in aLIGO.

Using this pipeline for an iLIGO SSM binary search will test its capability of performing

a computationally intensive low-latency search. The iLIGO SSM binary search is an

important proof-of-principle for aLIGO BNS searches at design sensitivity. We analyze

the ability of the low-latency search software to produce prompt gravitational-wave events

through the iLIGO SSM binary search.

Some of the technical similarities between a SSM S5 search and a BNS aLIGO search

are the number of templates required in a template bank and the duration of signals in

the LIGO sensitive frequency band. The number of templates N required for a template

bank scales with the minimal match (MM), the minimum mass in the template bank,

and the low frequency cut-off (Owen & Sathyaprakash 1999),

N ∼ (1−MM)−1m
−8/3
min f

−8/3
min . (3.2.1)

The low frequency cut-off is determined by the “seismic wall,” which refers to the sharp

climb in seismic noise below a certain frequency. For iLIGO, the seismic wall occurred
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should be pushed down to 10 Hz at aLIGO design sensitivity. Therefore, compared to an

BNS iLIGO search, an aLIGO BNS search will require more templates per Eq. (3.2.1).

Similarly, an iLIGO SSM search requires more templates than an iLIGO BNS search

because of the lower minimum mass mmin (0.11 M� rather than 1 M�).

In addition to requiring more templates in the template bank, lowering the low-

frequency cut-off also increases the duration of signals in the LIGO sensitive frequency

band. The duration of a CBC inspiral signal is given by the time until coalescence tc,

which is the time it takes the system to evolve from some starting frequency fmin to

infinity,

tc =
5

256η

GM

c3

(
πGMfmin

c3

)−8/3

, (3.2.2)

where η = m1m2/M
2 is the symmetric mass ratio and M is the total binary mass. The

SSM search also has longer templates than the BNS search in iLIGO, again because of

the lower minimum mass.

In summary, compared to an iLIGO BNS search, aLIGO BNS searches will require

more templates and each template will be longer. These two effects are mimicked in an

iLIGO SSM search. Even though the low frequency cut-off is 40 Hz, the lower masses

in the template bank lead to a large number of templates required in the bank and

longer template durations. Table 1 shows the comparison between an aLIGO BNS search

and an iLIGO SSM search. For the astrophysical reasons discussed in Sec. 3.2.1 and

computational feasibility, the iLIGO SSM template bank is chosen with a minimum mass

of 0.11 M� and mass ratios restricted to [1:1,3:1]. This template bank is also chosen

because of its similarity to an aLIGO BNS template bank. Fig. 22 shows the distribution

of templates across binary component mass space.

3.3 Coherent and null streams for co-located detectors

Since the two Hanford interferometers (H1 and H2) were co-located, it is possible to

combine the data from the two interferometers into two new types of data streams:

a coherent combination and a null combination (Creighton & Anderson 2011). The
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mmin mmax fmin q MM duration # templates

aLIGO BNS 1.0 M� 3.0 M� 10 Hz all 0.97 ∼ 30 mins 92,319

iLIGO SSM 0.11 M� 1.4 M� 40 Hz [1 : 1, 3 : 1] 0.93 ∼ 30 mins 101,133

Table 1 : Comparison of iLIGO SSM search costs to aLIGO BNS search costs assuming the aLIGO zero-
detuned high power noise spectrum (Shoemaker 2009). The minimum mass in the template bank mmin

and the low frequency cut-off fmin are the main factors in dictating the number of templates required
for a template bank with a given minimal match MM . The maximum mass in the template bank mmax

has a minimal effect on the required number of templates. In order to make an iLIGO SSM search with
mmin = 0.11 M� more feasible, we restrict the mass ratio q of the bank to be [1 : 1, 3 : 1]. We also show
the duration that a signal with the minimum masses in each template bank would remain in the LIGO
sensitive frequency band.

coherent combination is a sensitivity-weighted linear combination of the two individual

interferometer data streams, and it contains noise along with any gravitational-wave

signals,

s̃coh(f) =
s̃H1(f)/SH1(f) + s̃H2/SH2(f)

1/SH1(f) + 1/SH2(f)
. (3.3.1)

Note, this definition is normalized so that if s̃H1 = h̃ and s̃H2 = h̃ then s̃coh = h̃. The

PSD of the coherent combination is

S−1
coh =

1

SH1(f)
+

1

SH2(f)
. (3.3.2)

The coherent combination has the benefit of an improved sensitivity of about 10% over

the more sensitive individual interferometer data stream. Fig. 23 shows the improved sen-

sitivity of the coherent combination over the two individual interferometer data streams.

The null combination is a simple subtraction of the two data streams obtained from

each individual interferometer,

snull(t) = sH1(t)− sH2(t) . (3.3.3)

Since a gravitational wave will manifest in the same way in co-located interferometers,

the null combination will contain no gravitational-wave signal. Therefore, the null com-

bination can be used to veto large transient events that are only noise.

While it is possible to create coherent and null combinations for interferometers that

are not co-located, the formation of these streams is more complicated and computation-

ally expensive for such systems. For interferometers that are not co-located, the coherent
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Figure 23 : The power spectral density S(f), or noise, of the two individual Hanford interferometers,
H1 (red) and H2 (blue), and the coherent combination (black), which is a linear combination of the two
individual interferometer data streams. As the plot demonstrates, the coherent combination has better
sensitivity (less noise) than the two individual interferometers by themselves. The coherent combination
yields an improvement of about 10% over the H1 individual interferometer.

and null combinations are only produced when a sky position for the source of the grav-

itational wave is known to some degree (Creighton & Anderson 2011). Therefore, the

coherent and null combinations are only used for the co-located Hanford detectors in our

search and not for the network of Hanford and Livingston detectors.

For the SSM binary search, we search for gravitational waves using the coherent

combination data stream instead of the individual H1 and H2 data streams. We are

effectively treating H1 and H2 as a single instrument (H1H2) that is 10% more sensitive

than H1. We use the null stream to form a list of veto times. We first whiten the null

stream,

s̃null,white(f) =
s̃null(f)√
Snull(f)

. (3.3.4)

Whitening is the process of removing any frequency dependence from the PSD. In reality,

Snull(f) is an average PSD of the null combination over a given time interval. Bursts of
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Figure 24 : A flow chart of the gstlal inspiral pipeline.

power that appear over short time intervals compared to the average time for the PSD

will not be eliminated through the whitening process. Since this is the null combination,

any bursts of power must be associated with glitches, not gravitational-wave events. We

set a threshold on the whitened null stream and mark any time periods that cross above

the threshold as veto times. This means that any gravitational-wave event candidates

that we identify in these veto times will be discarded after-the-fact.

3.4 Search software algorithm

The software that we use for the SSM binary search is gstlal inspiral from the gstlal

software package (Cannon et al. 2014, 2012), which is poised as the leading low-latency

CBC search pipeline for aLIGO. As described in Sec. 3.1, gstlal inspiral computes

the SNR statistics for a template bank for all interferometers involved in the search. The

pipeline employs several methods to improve the computational speed of this calculation.

These methods are briefly described in Sec. 3.4.1. After triggers are generated by passing

a pre-determined SNR threshold, the pipeline computes the autocorrelation χ2 statistic

for each trigger and checks for coincidence in triggers across detectors. As discussed
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coincidence tests are considered gravitational-wave event candidates. We know that we do

not have stationary, Gaussian noise, so the maximized SNR is not the maximum likelihood

statistic. Instead, a different likelihood statistic, described in Sec. 3.4.2, is computed using

both the SNR and the autocorrelation χ2 statistic for each event candidate. Any triggers

that pass the SNR threshold but are not found in coincidence are known to be produced

by noise. These triggers are actually used to help determine the denominator if the

likelihood statistic. The value of the likelihood for all event candidates is translated into

a false alarm rate (FAR). We place a threshold on the FAR, and all event candidates that

pass the FAR threshold are considered gravitational-wave events. Sec. 3.4.3 discusses the

transformation from likelihood into FAR. Fig. 24 is a flow chart that demonstrates the

procedure gstlal inspiral uses to identify gravitational-wave events.

3.4.1 Low-latency SNR calculation

The first search statistic that is computed is the SNR time series. This is derived from

the matched filter statistic (see Eq. (3.1.9)), as ρ(t) = |z(t)|/σ. In reality, we absorb the

normalization σ into the the templates. We also whiten both the templates and the data

such that,

s̃w(f) =
s̃(f)√
Sn(f)

m̃w,n(f) =
m̃(f)

σ
√
Sn(f)

where s̃w(f) is the whitened data, m̃w,n(f) is the whitened, normalized template, and

Sn(f) is the power spectral density of the noise. In this formalism, the SNR time series

is calculated through,

ρ(t) =

∣∣∣∣4 ∫ ∞
0

s̃w(f)m̃∗w,n(f)e2πiftdf

∣∣∣∣ . (3.4.1)

The external strain on the LIGO detectors is a time series, but the SNR is traditionally

calculated in the frequency domain due to the computational efficiency of the calculation

in the frequency domain. Typically, the data is chunked up in time, each time chunk is

Fourier transformed, and then the SNR is calculated on that chunk.
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enough data must accumulate for a time chunk before the SNR can be computed. The

gstlal inspiral pipeline is designed as a low-latency search pipeline and therefore seeks

to avoid the inherent latency of the frequency domain calculation. Eq. (3.4.1) can also

be expressed in the time domain,

ρ(t) =

∣∣∣∣2 ∫ ∞
−∞

sw(τ)m′w,n(τ − t)dτ
∣∣∣∣ , (3.4.2)

where m′w,n(t) = mw,n(t, φ0 = 0) + imw,n(t, φ0 = π/2), which is used in order to maximize

over termination phase, and the template mw,n(t) is a windowed kernel. For a signal

model that would be in the LIGO sensitive frequency band for a duration T ,

mw,n(t) =


0 : t < 0

mT : 0 < t < T

0 : t > T

where mT is the whitened, normalized signal model as it would appear in the LIGO

sensitive frequency band.

The SNR computation in the time domain is capable of producing real-time output,

once a time T has passed from the start of the analysis, where T is the template du-

ration. However, the time domain computation is computationally expensive. Actually

producing low-latency output would require a very large amount of computing power.

The gstlal inspiral pipeline combats this issue by using several tricks for reducing the

SNR calculation’s computational requirements.

The LIGO data is not a continuous time series but is discretely sampled at a sample

rate of 16384 Hz. The discretized version of Eq. (3.4.2) is

ρ[i] =

∣∣∣∣∣2
N−1∑
j=0

sw[j]m′w,n[j − i]∆t
∣∣∣∣∣ , (3.4.3)

where N = T/∆t is the length of template. However, the signal model does not need to

be sampled at 16384 Hz across its full duration. Fig. 4 shows an example CBC waveform.

At early times, this template can be effectively sampled at lower frequencies than at later

times. It saves computational cost to slice the template up in time and resample each
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a rate of fs would be,

ms
w,n[j] ≡


mw,n

[
j f
fs

]
, if ts ≤ j/fs < ts+1

0, otherwise,

(3.4.4)

where f is the original sample rate of the template and [ts, ts+1) is the time interval for

the sth time slice. The SNR calculation is then performed on each time slice separately,

with the data being resampled to the appropriate sample rate,

ρs[i] =

∣∣∣∣∣2
Ns−1∑
j=0

sw

[
j
f

fs

]
ms′

w,n

[
(j − i) f

fs

]
∆ts

∣∣∣∣∣ , (3.4.5)

where Ns is the number of samples in the sth time slice and fs = 1/∆ts. Details on the

exact computational cost savings for this method can be found in Cannon et al. (2012).

In addition to slicing the templates in time and resampling to a lower sampling rate,

the gstlal inspiral pipeline also reduces the computational cost of the time-domain

SNR calculation by taking advantage of the redundancy of the templates in a template

bank. The templates in the template bank form a matrix where the rows are the whitened,

normalized time-domain template samples and columns are template index. In this for-

malism, the SNR for all templates in the bank can be reduced to a matrix operation,

ρs = 2 Ms sw , (3.4.6)

where Ms is the matrix of templates and the subscript s refers to a specific time slice. In

fact, the matrix Ms contains 2N templates where N is the number of templates in the

template bank, one template with phase φ0 = 0 and one template with phase φ0 = π/2 for

each template in the bank. The SNR maximized over termination phase is the quadrature

sum of the two orthogonal phase templates. Many of the templates in the template bank

are redundant, since this is necessary to fill the bank with the appropriate minimal match.

However, this leads to redundant computations for SNR. The effective dimension of the

matrix Ms is reduced in gstlal inspiral by performing a singular value decomposition

(SVD) on the matrix Ms and computing the SNR using the decomposed matrix. The

singular vectors of the SVDed Ms are ranked by singular value, and the least important
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reduces the dimensions of Ms, which in turn reduces the computational cost of the SNR

calculation. The truncation of the matrix Ms is done in a manner such that the fractional

loss in SNR is 〈
δρ

ρ

〉
=

1

2n

S−1∑
s=0

n∑
µ=n′s+1

(
σsµ
)2

, (3.4.7)

where n is the number of rows in Ms, n
′ is the number of rows in the truncated Ms, S

is the total number of time slices, and σsν is the νth singular value in time slice s (Wade

2012). The details of how the full SVD decomposition and truncation method is employed

can be found in Cannon et al. (2010) and Cannon et al. (2012).

The combination of time slicing the templates and truncating a singular value de-

composition of the matrix of templates in the template bank allows the low-latency,

time-domain computation of SNR to become computationally feasible given reasonable

computing resources. The gstlal inspiral pipeline uses the autocorrelation χ2 statistic,

discussed in Sec. 3.1.3, as the second detection statistic. This statistic is already compu-

tationally efficient and does not require further improvement for use in low-latency. Once

SNR and autocorrelation χ2 are computed, the next step in the algorithm is to compute

a likelihood based on these two statistics.

3.4.2 Likelihood statistic in gstlal inspiral

As was shown in Eq. (3.1.1), the likelihood ratio determines the probability that there is

a signal in the data given the data; it is given by the probability of the data given a signal

is present divided by the probability of the data given only noise. The gstlal inspiral

pipeline computes a likelihood ratio statistic to rank gravitational-wave candidates from

the two detection statistics, SNR and χ2, and from probabilities of these statistics man-

ifesting in the detected combination of interferometers at detected interferometer sensi-

tivities. In fact, there are N combinations of SNR and χ2 where N is the number of

interferometers involved in the search. For this search, there is ρH1H2, χ2
H1H2, ρL1, and

χ2
L1, where H1H2 is the effective coherent detector of H1 and H2. The likelihood ratio

used by gstlal inspiral is discussed in detail in Cannon et al. (2015) and Cannon et al.

(2013). This section gives a brief overview of the likelihood calculation. The likelihood
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Λ
(
signal|{DHIFO1

,DHIFO2
, ...}, {IFO1, IFO2, ...}, ρIFO1, χ

2
IFO1, ρIFO2, χ

2
IFO2, ..., θ̄

)
(3.4.8)

= Λ(...|θ̄)Λ(θ̄) (3.4.9)

=
P({DHIFO1

,DHIFO2
,...},{IFO1,IFO2,...},ρIFO1,χ

2
IFO1,ρIFO2,χ

2
IFO2,...|θ̄,signal)

P({DHIFO1
,DHIFO2

,...},{IFO1,IFO2,...},ρIFO1,χ
2
IFO1,ρIFO2,χ

2
IFO2,...|θ̄,noise)

Λ(θ̄) , (3.4.10)

where {DHIFO1
, DHIFO2

, ...} is the horizon distance for the set of interferometers (IFOs)

that observed an event, {IFO1, IFO2, ...} is the set if IFOs that observed the event, and

θ̄ are the template parameters for the event. This is a likelihood statistic in that it is

a probability of the data given a signal in the data and template parameters θ̄ divided

by a probability of the data given noise only and the template parameters θ̄. These

probabilities depend on the specific set of coincident IFOs, the sensitivity of those IFOs,

given by the horizon distance, and computed values for the detection statistics SNR and

χ2.

The factor Λ(θ̄) is the probability of finding parameters θ̄ given a signal in the data

divided by the probability of finding parameters θ̄ given only noise in the data. The

probability of finding parameters θ̄ given a signal in the data is chosen to be uniform,

and the probability of finding θ̄ given only noise in the data is computed by dividing the

total number of noise events found for a template with parameters θ̄ by the total number

of noise events found by all templates.

The numerator of the Eq. (3.4.10) can be factored to

P ({DHIFO1
, DHIFO2

, ...})P ({IFO1, IFO2, ...}|{DHIFO1
, DHIFO2

, ...}, signal)

×P (ρIFO1, ρIFO2, ...|{DHIFO1
, DHIFO2

, ...}, {IFO1, IFO2, ...}, signal)

×
∏

inst∈{IFO1,IFO2,...}

P (χ2
inst|ρinst, signal) , (3.4.11)

since the χ2 values for each of the IFOs are independent, and the denominator can be

factored to

P ({DHIFO1
, DHIFO2

, ...})P ({IFO1, IFO2, ...}|noise)

×
∏

inst∈{IFO1,IFO2,...}

P (ρinst, χ
2
inst|noise) (3.4.12)

since the noise in each IFO is independent.
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the denominator and therefore cancel out of the likelihood calculation. The remaining

factors in the numerator of the likelihood are computed in the following manner:

• The second factor in Eq. (3.4.11), P ({IFO1, IFO2, ...}|{DHIFO1
, DHIFO2

, ...}, signal),

is the probability that the specific set of IFOs finds the signal in coincidence given

the signal and the IFO sensitivities. This term is computed by performing a Monte

Carlo integration over the full sky that gives the number of sources visible above

an SNR threshold in a certain set of IFOs.

• The third factor in Eq. (3.4.11), P (ρIFO1, ρIFO2, ...|{DHIFO1
, DHIFO2

, ...}, {IFO1, IFO2, ...}, signal),

is the joint probability of finding the signal with specific values of SNR given the

set of coincident detectors and their sensitivities. This term is also computed with

a Monte Carlo integration that maps out the correlations between SNRs for each

set of IFOs.

• The fourth factor in Eq. (3.4.11), P (χ2
inst|ρinst, signal), is the probability of obtaining

the specific value of χ2 for the signal given an SNR. This is computed by first

computing P (ρ, χ2/ρ2|signal), given by an analytic expression assuming Gaussian

noise, and then marginalizing over ρ.

The remaining terms in the denominator of the likelihood are calculated in the fol-

lowing manner:

• The second factor in Eq. (3.4.12), P ({IFO1, IFO2, ...}|noise), is the probability that

a specific set of IFOs will find a trigger in coincidence given only noise. This is

computed by measuring the rate of noise triggers in each separate IFO and using

the coincidence time window, which is the time window in which the trigger must

appear in another IFO in order to be considered coincident, to find the rate of noise

coincidences in a set of IFOs.

• The third factor in Eq. (3.4.12), P (ρinst, χ
2
inst|noise), is the probability that specific

values for SNR and χ2 will be found given only noise. Triggers that pass the SNR

threshold but are not found in coincidence are called “non-coincident triggers.” The
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of obtaining a certain SNR and χ2 from noise alone. This is shown as part of the

gstlal inspiral flow chart in Fig. 24.

After all of the components are calculated, an interpolated likelihood function is com-

puted and used to assign likelihood values to all gravitational-wave candidates.

3.4.3 False alarm probability (FAP) and false alarm rate (FAR)

The final step in determining if there are any gravitational-wave events in the data is

to assign a false alarm probability and, for historical reasons, a false alarm rate to each

gravitational-wave candidate. The full details of this calculation can be found in Can-

non et al. (2015) and Cannon et al. (2013). The false alarm probability (FAP) is the

probability that a noise event would be assigned likelihood Λ. To find FAP, first compute

P (Λ|θ̄, noise) =

∫
Σ(Λ)

P (...|θ̄, noise)dn−1Σ , (3.4.13)

where (...) are all n parameters that the likelihood depends on, as given in Eq. (3.4.10),

and Σ(Λ) are surfaces of constant likelihood Λ. This integral is computed by sampling

the (...) parameter space using importance-weighted sampling and determining Λ and

P (...|θ̄, noise) at each sample point. Once the space is adequately sampled, the integral

can be computed along a surface of constant Λ. Eq. (3.4.13) is then marginalized over all

of the templates to give P (Λ|noise). The probability of finding a noise event with Λ ≥ Λ∗

is

P (Λ ≥ Λ∗|noise) =

∫ ∞
Λ∗

P (Λ|noise)dΛ. (3.4.14)

Accounting for the trials factor, the probability of finding at least one event with Λ ≥ Λ∗

from m independent coincidences is

P (Λ ≥ Λ∗|m ind. coincs.) = 1− (1− P (Λ ≥ Λ∗|noise))m , (3.4.15)

which is the false alarm probability.

For historical reasons and in order to compare to other CBC searches, the FAP is

turned into a false alarm rate (FAR). Assuming Poisson statistics, the probability of
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P (n|λ) =
λn

n!
e−λ , (3.4.16)

and the probability of observing n or more events is

P (≥ n|λ) = 1− e−λ
n−1∑
j=0

λj

j!
. (3.4.17)

The FAP is the probability of observing one or more events with Λ ≥ Λ∗. Setting n = 1

in Eq. (3.4.17) gives

P (≥ 1|λ) = P (Λ ≥ Λ∗|m ind. coincs.) = 1− eλ . (3.4.18)

Solving Eq. (3.4.18) for λ, which is a function of Λ∗, gives

λ(Λ∗) = − ln [1− P (Λ ≥ Λ∗|m ind. coincs.)] (3.4.19)

or, equivalently,

λ(Λ∗) = −m ln

[∫ Λ∗

0

P (Λ|noise)dΛ

]
. (3.4.20)

The false alarm rate is the average number of events with Λ ≥ Λ∗, which is λ(Λ∗) divided

by the observation time T ,

FAR(Λ∗) =
λ(Λ∗)

T
. (3.4.21)

The final step in determining whether a gravitational-wave candidate is an event is to

place a threshold on the FAR. Any gravitational-wave candidates above the threshold are

considered events. For the SSM binary search which took place on one month of data,

a 5σ detection would require FAR ≈ FAP/(one month) = (1/1744278)/(2629740 s) =

2.18× 10−13.

3.5 Results

We analyze one week of data from iLIGO’s fifth science run using the template bank

described in Sec. 3.2 and the gstlal inspiral search pipeline described in Sec. 3.4. The

template bank is composed using the frequency domain post-Newtonian CBC waveform

with phase corrections kept out to the 3.5 post-Newtonian order. The time period we
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of seconds since 00:00:00 UTC, January 6, 1980. These times correspond to 19:53:28,

August 14, 2007 - 06:22:28, September 14, 2007. We use the null vetoes described in

Sec. 3.3 and the following three categories of data quality vetoes:

• Category 1: Indicates a severe problem with the data to the point where any PSD

estimates are unusable.

• Category 2: Indicates a major problem with the data, such as instrumental problems

in sub-systems that are known to couple to the DARM feedback loop.

• Category 3: Indicates a moderate concern with the data, such as an elevated glitch

level.

In order to test the efficiency and sensitivity of the search pipeline on the SSM binary

region of parameter space, we insert a large number of simulated CBC signals (“injec-

tions”) into the data. We analyze the signals the same way any real triggers would be

analyzed by the pipeline. We then draw conclusions on the sensitivity and efficiency of

the search pipeline based on how many injections were found in the data and how many

injections were missed in the data. In addition, we record the computational resources

required to perform the search and conclude on the gstlal inspiral pipeline’s ability to

perform a similar type of search, such as an aLIGO BNS search, in low latency. Finally,

we determine if any gravitational-wave events were present in the analyzed data.

3.5.1 Search sensitivity

We chose to distribute the injection set uniformly in component masses between 0.11 M�

and 1.4 M� with the mass ratio restricted to [1 : 1, 3 : 1], uniformly in the logarithm of

distance, and uniformly in sky position, cosine of inclination angle, and polarization. The

waveform used for injections is the post-Newtonian CBC waveform with phase corrections

kept out to 3.5 post-Newtonian order. The injections were performed uniformly in time

throughout the entire search period.

One measure of the sensitivity and efficiency of the search is to analyze how many of

the injections were found and how many were missed. Fig. 25 shows how many injections
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Figure 25 : Distribution of injections that were found (blue dots) above the FAR threshold and injections
that were missed (black dots) in Chirp Mass–Decisive Deffective space.

were found (blue dots) and how many injections were missed (red dots) in Chirp Mass

– Decisive Deffective space. Decisive Deffective is the second highest Deffective out of the

operating instruments for each set of injection parameters, and Deffective and chirp mass

are defined in Eqs. (1.2.14) and (1.2.11), respectively. Out of the 10,177 injections, a

total of 5,326 were found and 4,851 were missed.

We compute the efficiency of the search over a range of distances by first creating M

distance bins. We determine the total number of found injections in the jth bin Nfound,j

and divide that by the total number of injections Nj in the bin to give the efficiency of

the jth distance bin,

εj =
Nfound,j

Nj

. (3.5.1)

The efficiency in each distance bin can then be used to compute the volume to which the

search was sensitive,

V =
M∑
j=1

4πεjd
2
j∆dj , (3.5.2)

where dj is a representative distance in the jth distance bin, such as the midpoint of the



69bin, and ∆dj is the width of the bin. The distance to which the search is sensitive R is

then just derived from the sensitive volume,

R =

(
3V

4π

)1/3

. (3.5.3)

The sensitive distance is a measure how far the search is actually sensitive out to (in

an average sense), taking into account the combined instrument noise and the search

procedure.

There is error in the calculation for efficiency associated with the fact that we perform

only a finite number of injections. This error is modeled approximately by a binomial

distribution,

∆εj =

√
εj(1− εj)

Nj

. (3.5.4)

The errors on efficiency are propagated into errors on sensitive volume, and the error on

sensitive distance is derived from the relationship between sensitive distance and sensitive

volume (Eq. (3.5.3)),

∆V =

√√√√ M∑
j=1

(4π∆εjd2
j∆dj)

2

∆R =
R

3

∆V

V
,

where ∆dj still refers to the width of the jth distance bin.

Fig. 26 shows the sensitive distance of the SSM binary search in four total mass bins

as a function of FAR. The sensitive distance is a function of FAR through the FAR

threshold that determines found injections in the efficiency calculation (Eq. (3.5.1)). For

the smallest total mass values, ranging from 0.00 M� – 0.75 M�, we are sensitive to

systems out to∼4 Mpc. This includes the Local Group and therefore provides a significant

expansion to previous searches for MACHOs.

3.5.2 Required computing resources

The SSM binary search was conducted on a large LSC computing cluster. Condor was

used to distribute the analysis across computing nodes (HTCondor 2015). We track

the total number of CPU hours used for the analysis through condor and determine the
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Figure 26 : The sensitive distance of the SSM binary search across a range of FAR values. The sensitive
distance is provided for four chirp mass bins.

number of CPUs required in order for the analysis to be able to produce real-time results.

This is how many CPUs are required in order for the analysis to complete in N days when

analyzing N days of data. The number of CPUs required in order to produce real-time

results is

#CPUs =
CPU hours

analysis time
. (3.5.5)

Certain properties of the gstlal inspiral pipeline were tuned to maximize efficiency

and minimize computational cost. For example, the level of truncation of the SVDed

matrix of templates was tuned and how often the full SNR time series was reconstructed

from the SVDed result was tuned. These tunings were done by hand and could be

optimized more efficiently in the future.

After tuning the pipeline, we found that for our one month analysis of S5 data,

we would require ∼200 CPUs in order to produce real-time results. We conclude that a
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Figure 27 : The number of events detected vs. inverse FAR (solid line). The dotted line indicates the
expectation from a Poisson process. The shaded regions indicate 1σ, 2σ, and 3σ contours.

comparable aLIGO BNS search would require∼ 200 CPUs in order to produce low-latency

gravitational-wave events. This is a very reasonable computing request and shows the

low-latency gstlal inspiral pipeline is ready for a high performing, low-latency search

in the advanced detector era.

3.5.3 Gravitational-wave detection results

Fig. 27 shows the number of events detected vs. inverse FAR and compares this to the

expectation from a Poisson process. The number of detected events for a given inverse

FAR is consistent with a Poisson process to within 3σ, which means all detected events

fall within the expectation of a noise event to 3σ. None of the detected events stand out

above the noise as true gravitational-wave events.

The loudest gravitational-wave candidate had a FAR of 1.43 × 10−7 and a FAP of

0.295. This event was found as a 1.37 M� - 0.47 M� system with a combined SNR of

9.36. This loudest gravitational-wave candidate was within 2σ of the expected background

and therefore is not significant enough to be considered a gravitational-wave event. There
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still falls within 3σ of the expectation from a Poisson process.

3.6 Conclusions

While no gravitational-wave events were found in this search, it did yield positive results.

We find the gstlal inspiral search pipeline is sensitive to SSM binary systems out to

the edge of our Local Group for the least massive systems (and farther for more massive

systems). Previously, MACHOs, such as SSM binary systems, have only been searched for

within our own Milky Way halo. The SSM binary search is able to significantly expand the

search volume to other galaxy halos within our Local Group. In addition, we find that the

gstlal inspiral search pipeline is already at a very reasonable computational efficiency

for long-duration, large-template-bank searches, such as a search for BNS systems in

aLIGO data at design sensitivity.

We plan to expand this work in the future and run the SSM binary search on all

of LIGO’s fifth (S5) and sixth (S6) science run data. LIGO’s sixth science run yielded

improved instrument sensitivity over S5. However, a search on S6 data would not employ

the coherent and null data streams for the co-located Hanford detectors, since the smaller

Hanford detector (H2) was decommissioned in S6. Future work also involves including

the Virgo interferometer in each analysis. A search involving a three detector network is

more computationally burdensome and further study is required to determine the com-

putational readiness of gstlal inspiral for a three detector network BNS search in the

advanced detector era.

While we hope to discover gravitational-wave events in a search on all of S5 and/or

S6 data, we can also produce interesting results in the absence of a detection. If no

gravitational-wave events are found, we will set an upper limit on the rate of SSM binary

coalescences that includes information beyond our own galaxy halo. Such a result can

contribute useful information to the mystery of the nature of dark matter.

After a gravitational-wave detection is made, there is a good deal of astrophysics that

can be extracted from the detection. Ch. 4 discusses one route for post-detection science

through a test of conjectures believed to be true in general relativity.
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Chapter 4

Tests of cosmic censorship and the

no-hair theorem with aLIGO

“The greatest secrets are always
hidden in the most unlikely places.”

— Roald Dahl, Charlie and the
Chocolate Factory

4.1 Introduction

This chapter follows closely Wade et al. (2013) and involves work done in collaboration

with Jolien Creighton, Evan Ochsner, and Alex Nielsen. As was discussed in Sec. 1.2,

the inspiral portion of compact binary coalescence (CBC) events are the most promising

sources for gravitational-wave detections in ground-based interferometers, such as aLIGO.

Expected detection rates for binary black hole (BBH) mergers range from 0.4 to 1000 per

year with a realistic rate of 20 per year, and expected detection rates for neutron-star–

black-hole (NS-BH) mergers range from 0.2 to 300 per year with a realistic rate of 10 per

year (Abadie et al. 2010). The form of the gravitational-wave strain, as it was introduced

in Sec. 1.1, depends on the chosen metric theory of gravity. The most accepted theory of

gravity is Einstein’s theory of general relativity. An important use of gravitational-wave

detectors will be to test the theory of general relativity and cosmological conjectures

associated with general relativity.

Even within the confines of general relativity, there are conjectures that, while widely
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gravitational-wave observations. One such conjecture that is believed to be true in general

relativity is the cosmic censorship conjecture, which states roughly that all singularities in

spacetime must have an event horizon that conceals the singularity from a distant observer

(Penrose 1969). In the Kerr geometry of a spinning black hole, the event horizon can

only exist for mass and spin ratios that satisfy the Kerr bound, j ≤ m2 in geometric

units (adopted throughout this chapter), where j is the spin of the black hole and m is

the mass of the black hole. If the spin of a compact object exceeds the value of its mass

squared, then the compact object violates the cosmic censorship conjecture within the

context of the Kerr geometry (Kerr 1963; Misner et al. 1973; Hartle 2003). This limit is

often expressed in terms of the Kerr parameter χ ≡ j/m2 ≤ 1.

The no-hair theorem is a consequence of the theory of general relativity. The no-hair

theorem states that a regular black hole that has settled down to its final stationary

vacuum state is determined only by its mass, spin and electric charge (Hawking 1971,

1972; Israel 1967, 1968; Carter 1970; Ruffini & Wheeler 1971; Misner et al. 1973; Chrusciel

et al. 2012). Astrophysical black holes are thought to be electrically neutral, and therefore

would be categorized just by their mass and spin. It is widely expected that black holes

in binary systems will be closely described by such simple states for most of the inspiral

phase. Although the black hole will be slightly tidally distorted by its binary partner, it

has been shown that the relativistic tidal Love number of a nonrotating black hole will still

be zero (Binnington & Poisson 2009). The literature shows that the tidal Love number

should be zero for slowly rotating black holes (Landry & Poisson 2015), and we suspect

it should still be small for rapidly rotating black holes. Thus if the post-Newtonian tidal

Love number is found to deviate from zero for a nonrotating object, it can be seen as

evidence that the requirements of the no-hair theorem are not fulfilled, since the black

hole is no longer uniquely defined by its mass, spin and electric charge. If the object is

too massive to be a neutron star (i.e. mi > 3 M�)1, then it is likely to be some exotic

1Reasonably general arguments show that compact objects having m > 3 M� should be fully-collapsed

black holes (Hannam et al. 2013), though it is possible that exotic objects may have masses with m > 3

M�.
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of the no-hair theorem can be found in Sec. 4.4.2.

The gravitational-wave strain produced by the inspiral portion of a CBC event depends

on the system’s parameters, such as component masses, component spins, and component

tidal Love numbers. Once a gravitational-wave detection is made by aLIGO, parameter

estimation techniques will be used to extract the system’s most likely parameters from

the raw data. This will be done using full Bayesian analyses that involve techniques such

as Markov-chain Monte Carlo and nested sampling. An in-depth discussion of LIGO

parameter estimation can be found in the LIGO Scientific Collaboration et al. (2013).

Based on the results of parameter estimation, if at least one of the system’s measured

component masses indicates that a body should nominally be a black hole, then the

system can be used to test for apparent violations of the cosmic censorship conjecture

and the no-hair theorem.

Many other authors have investigated the possibility of using gravitational-wave ob-

servations to test aspects of general relativity. These include measuring the deviation of

post-Newtonian coefficients from their predicted values in general relativity (Arun et al.

2006; Yunes & Pretorius 2009; Li et al. 2012), looking for alternative wave-polarization

states that do not occur in general relativity (Chatziioannou et al. 2012; Hayama &

Nishizawa 2013), testing for a nonzero graviton mass (Arun & Will 2009; Mirshekari

et al. 2012; Keppel & Ajith 2010), and exploring whether the ringdown signal is con-

sistent with the quasinormal modes of a Kerr black hole (Gossan et al. 2012; Dreyer

et al. 2004; Kamaretsos et al. 2012). For recent reviews of these techniques, see Van Den

Broeck (2013); Arun & Pai (2013); Yunes & Siemens (2013). Rodriguez et al. (2012)

look at aLIGO’s ability to verify the no-hair theorem for intermediate-mass black hole

systems. Tests of the no-hair theorem and cosmic censorship can also be conducted in the

electromagnetic sector using a variety of techniques, including accretion disk modeling

(Johannsen & Psaltis 2013), observations of orbiting stars and gas (Sadeghian & Will

2011), and pulsar orbit timing (Stairs 2003).

The inspiral portion of the CBC gravitational waveform is well-modeled by post-

Newtonian (pN) expansions to the phase and amplitude of the waveform (Einstein et al.



761938; Epstein & Wagoner 1975; Misner et al. 1973; Weinberg 1972; Blanchet 2002;

Creighton & Anderson 2011; Buonanno et al. 2009). However, systematic biases due

to the deviation of a post-Newtonian waveform from the true waveform can significantly

affect parameter estimation. Therefore, when using post-Newtonian waveforms, it is im-

portant to employ the most up-to-date and accurate calculations. We use the waveforms

provided in Arun et al. (2009) that include post-Newtonian expansions of the phase to

3.5 pN order and of the amplitude to 2.5 pN order. Spin corrections are calculated for

both the post-Newtonian phase to 2.5 pN order and amplitude to 2.0 pN order in Arun

et al. (2009). We briefly investigate how the 3.0 pN- and 3.5 pN order spin-orbit phase

corrections calculated by Marsat et al. (2013) affect our results. For nonspinning, tidal

waveforms, we use the lowest-order tidal correction to the phase of the waveform given

in Hinderer et al. (2010).

To estimate the measurability of parameters appearing in the inspiral CBC gravita-

tional waveform, we use the Fisher matrix formalism for a single detector, described in

Sec. 4.3. The accuracy of measurement errors produced by the Fisher matrix formalism

is a function of the signal-to-noise ratio (SNR). At low SNR, parameter error estimates

obtained with the Fisher matrix formalism will be biased (Vallisneri 2008). However,

a more accurate Bayesian approach to parameter estimation using techniques such as

Markov-chain Monte Carlo (MCMC) can be computationally expensive. For the purpose

of this preliminary investigation, the Fisher matrix formalism does well to indicate the

effects that should be studied more closely with a full Bayesian analysis.

Much work has been done on parameter measurability for CBC systems using the

Fisher matrix formalism and post-Newtonian CBC inspiral waveforms. Cutler & Flana-

gan (1994) studied the measurability of spin parameters, along with other parameters,

for the gravitational waveform with a Newtonian-amplitude (0.0 pN order correction to

the amplitude) and 1.5 pN order corrections to the phase. Poisson & Will (1995) and

Królak et al. (1995) expanded the study for Newtonian-amplitude waveforms with 2.0 pN

order phase corrections. Arun et al. (2005) studied parameter estimation for nonspinning

waveforms with a Newtonian-amplitude and phase corrections to 3.5 pN order. Van Den

Broeck & Sengupta (2007) included post-Newtonian corrections to the amplitude of the
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spin effects in the phase. Nielsen (2013) studied a Newtonian-amplitude waveform with

additional spin-spin and spin-orbit corrections appearing in the phase of the waveform as

derived in Arun et al. (2009).

We investigate aLIGO’s ability to detect apparent violations of the cosmic censorship

conjecture and the no-hair theorem. We study how different post-Newtonian approxi-

mations to the amplitude of the gravitational waveform affect parameter measurability.

We include the post-Newtonian phase corrections to 3.5 pN order with spin-orbit and

spin-spin2 phasing corrections to 2.5 pN and 2.0 pN order respectively, and we vary the

post-Newtonian-amplitude corrections from 0.0 pN to 2.5 pN order. We also study the

effect of spin corrections in the amplitude of the waveform (Arun et al. 2009) and of

spin-orbit corrections to the phase of the waveform at 3.0 pN and 3.5 pN order (Marsat

et al. 2013).

We investigate how prior knowledge about unphysical areas of parameter space can

affect the measurability of spin and tidal parameters appearing in the waveform. We have

not done this by incorporating a prior into the Fisher matrix calculations. It is difficult to

incorporate flat priors into the Fisher matrix formalism, although this has been studied

by Nielsen (2013). Instead, we restrict some of the parameter space after a full Fisher

matrix calculation has been carried out.

(Units convention: G = c = 1.)

4.2 Compact binary coalescence (CBC) gravitational waveform

with higher harmonics

Sec. 1.2 derived the CBC gravitational waveform and described the post-Newtonian ex-

pansion of the phase of the waveform while assuming a Newtonian amplitude. Recall,

the gravitational-wave strain for the inspiral portion of a CBC event has the following

2The “spin-spin” corrections include not only ~χ1 · ~χ2 corrections, but also quadrupole-monopole and

the so-called “self-spin” terms ∝ χ2
1.



78general form in the frequency domain

h̃(f) = A(f ; ~θ)eiΨ(f ;~θ) , (4.2.1)

where f is the gravitational-wave frequency and ~θ are the parameters of the system

producing the gravitational-wave signal (Misner et al. 1973). In general, we expand the

amplitude A and the phase Ψ in a post-Newtonian (pN) approximation, and the phase is

found using the stationary phase approximation (SPA). The form for the pN expanded

waveform in amplitude and phase given in Arun et al. (2009) is

h̃(f) =
M2

DM

√
5πη

48

N∑
n=0

K∑
k=0

v
n− 7

2
k C

(n)
k ei[kΨSPA(vk)−π/4] , (4.2.2)

where M = m1 + m2 is the total post-Newtonian mass of the binary system, DM is the

transverse comoving distance (see Hogg (1999), however, no cosmological redshift effects

are included in this study), η = m1m2/M
2 is the symmetric mass ratio, ΨSPA is the

SPA for the phase of the waveform to some chosen pN order (see below), the index n

indicates twice the pN expansion order of the amplitude, N is twice the highest included

pN expansion order of the amplitude, the index k indicates the kth harmonic, K is the

highest included harmonic, and the C
(n)
k coefficients are given in Appendix D of Arun

et al. (2009). The dimensionless pN expansion parameter vk for the kth harmonic is

vk =

(
2πM

f

k

)1/3

. (4.2.3)

The gravitational-wave frequency f is related to the orbital frequency F of the binary

system through f = kF .

We restrict ourselves to spin-aligned (or antialigned), nonprecessing systems, where

the spin is defined in the standard post-Newtonian fashion. In reality, precession should be

included in the gravitational waveform model when spins are not aligned with the orbital

angular momentum (Kidder 1995a; Apostolatos et al. 1994). This is especially important

for unequal-mass systems, such as NS-BH binaries. The size of the precession cone scales

with the mass ratio in such a way that unequal-mass systems will precess more than

equal-mass systems. The effect of precession on parameter estimation has been studied

in depth for space-based detectors (Lang & Hughes 2006; Vecchio 2004; Lang et al. 2011).
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parameter degeneracies, but astrophysical systems may not have enough precession to in-

duce this effect. There are fewer studies of parameter estimation that include precession

for ground-based detectors. The LIGO-Virgo Collaboration performed parameter estima-

tion for a few precessing models in the LIGO Scientific Collaboration et al. (2013). The

effect of precession upon detection, rather than parameter estimation, for ground-based

interferometers was recently studied in Harry et al. (2013). Recent studies of precession

for LIGO parameter estimation include Brown et al. (2012); Cho et al. (2013); Pekowsky

et al. (2013), but there are no definitive conclusions on how precession will affect param-

eter estimation for ground-based detectors. Large-scale, systematic Bayesian inference

analyses will likely be required to develop a better understanding of how precession will

impact parameter estimation in the aLIGO era. For simplicity, we have not investigated

precessing systems here.

We study waveforms with amplitude corrections up to the 2.5 pN order (N = 5), which

include up to seven harmonics (K = 7) in the waveform. Post-Newtonian corrections for

spinning systems have been investigated at length in, for example, Arun et al. (2009),

Marsat et al. (2013), Kidder et al. (1993), Kidder (1995b), Porto (2006), Owen et al.

(1998), Tagoshi et al. (2001), Faye et al. (2006), and Porto (2010). We include spin

corrections to amplitude and phase as found in Arun et al. (2009). These include spin-

orbit corrections calculated at 1.5 pN and 2.5 pN order in the phase, spin-spin corrections

at 2.0 pN order in the phase, spin-orbit corrections appearing at 1.0 pN and 1.5 pN order

in the amplitude, and spin-spin corrections appearing at 2.0 pN order in the amplitude.

Separately, we also study spin-orbit corrections that appear at 3.0 pN and 3.5 pN order

in the phase as recently calculated in Marsat et al. (2013). We investigate both spinning

waveforms with no tidal corrections and nonspinning waveforms with the leading-order

tidal correction to the phase, which appears at 5.0 pN order.



80The general SPA phase ΨSPA used in Eq. (4.2.2) is

ΨSPA(vk) =
v3
k

M
tc − φc +

3

256

1

v5
kη

{
1 +

(
3715

756
+

55

9
η

)
v2
k+ (4εβ − 16π) v3

k

+

(
15293365

508032
+

27145

504
η +

3085

72
η2 − 10εσ

)
v4
k

+

(
38645π
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− 65π

9
η − εγ

)(
1 + 3 ln

[
vk
vref

])
v5
k

+

[
11583231236531

4694215680
− 6848

21
γE −

640π2

3
+

(
2255π2

12
− 15737765635

3048192

)
η

+
76055

1728
η2 − 127825

1296
η3 −6848

21
ln (4vk) + α (160πβ − 20ξ)

]
v6
k

+

[
77096675π

254016
+

378515πη

1512
− 74045πη2

756
+ α

(
−20ζ + γ

(
−2229

112
− 99η

4

)
+β

(
43939885

254016
+

259205η

504
+

10165η2

36

))]
v7
k

}
, (4.2.4)

where ε and α are either 1 or 0 to turn on or off spin corrections to the phase (ε turns on

or off the 1.5 pN- to 2.5 pN order corrections and α turns on or off the 3.0 pN- and 3.5

pN order corrections), tc and φc are the time and phase of coalescence, M = Mη3/5 is

the chirp mass, γE = 0.577216... is Euler’s constant, and vref is an integration constant,

which we take to equal 1.

The five spin parameters appearing in ΨSPA and derived in Arun et al. (2009) and

Marsat et al. (2013)–β, σ, γ, ξ, and ζ–are

β =
2∑
i=1

(
113

12

(mi

M

)2

+
25

4
η

)
~χi · L̂N ,

σ = η

[
721

48

(
~χ1 · L̂N

)(
~χ2 · L̂N

)
− 247

48
(~χ1 · ~χ2)

]
2∑
i=1

{
5

2
qi

(mi

M

)2
[
3
(
~χi · L̂N

)2

− χ2
i

]
+

1

96

(mi

M

)2
[
7χ2

i −
(
~χi · L̂N

)2
]}

,

γ =
2∑
i=1

[(
732985

2268
+

140

9
η

)(mi

M

)2

+η

(
13915

84
− 10

3
η

)]
~χi · L̂N ,
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ξ =

2∑
ı=1

[
75π

2

(mi

M

)2

+
151π

6
η

]
~χi · L̂N ,

ζ =
2∑
i=1

[(mi

M

)2
(

130325

756
− 796069

2016
η +

100019

864
η2

)
+η

(
1195759

18144
− 257023

1008
η +

2903

32
η2

)]
~χi · L̂N

where qi is a quadrupole-moment parameter, L̂N is the unit vector in the direction of

the binary’s orbital angular momentum, ~χi = ~Si/m
2
i are the dimensionless spins of the

ith body, and χi = ~χi · L̂N. In the works that derive these pN corrections, qi has been

implicitly set to 1. This is the value it takes for spinning black holes but not the value it

takes for neutron stars and possibly other spinning exotica [see for example Eq. (8) of E.

(1998)]. However, we adopt the same simplification here since we will not be considering

spinning systems outside of the Kerr class.

We reparameterize the component spins χi into an antisymmetric and a symmetric

combination,

~χs =
1

2
(~χ1 + ~χ2) (4.2.5)

~χa =
1

2
(~χ1 − ~χ2) . (4.2.6)

Recall that we restrict ourselves to spin-aligned (or antialigned), nonprecessing waveforms,

which means χa ≡ ~χa·L̂N = ±|~χa| and χs ≡ ~χs·L̂N = ±|~χs|. The positive sign corresponds

to systems with (anti)symmetric spins aligned with the orbital angular momentum of

the binary, and the negative sign corresponds to systems with (anti)symmetric spins

antialigned with the binary’s orbital angular momentum.

We also study nonspinning waveforms that include the 5.0 pN order tidal correction

to the phase. Tidal corrections are calculated for the phase beyond 5.0 pN order (Damour

et al. 2012). However, we find that the tidal corrections beyond 5.0 pN order in phase

are completely unmeasurable by the Fisher matrix. Including these terms create a worse-

conditioned Fisher matrix and does not affect the measurability of the 5.0 pN order tidal

correction. Therefore, we omit all but the leading-order tidal correction in this work.

The point-particle contributions to the phase of the waveform are only calculated

through 3.5 pN order (v7
k beyond leading order). The leading-order tidal correction to
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k beyond leading order). Therefore, the 5.0 pN

order term in the phase of the waveform does not include all point-particle effects to that

order. The 5.0 pN order tidal term that adds linearly to Eq. (4.2.4) is

δΨtidal(vk) = −117Λ̃

16η
v5
k , (4.2.7)

with Λ̃ = λ̃/M5 and

λ̃ =
1

26

(
m1 + 12m2

m1

λ1 +
m2 + 12m1

m2

λ2

)
, (4.2.8)

where λi is the tidal deformability parameter for component mass mi (Hinderer et al.

2010). The tidal deformability parameter, which in this post-Newtonian description de-

scribes the ratio of the induced quadrupole moment to the perturbing external tidal field,

is written in terms of the dimensionless tidal Love number k2 (Hinderer et al. 2010) as

λ =
2

3
k2r

5 , (4.2.9)

with r being the radius of the star. A fully relativistic generalization of this was provided

in Binnington & Poisson (2009), where it was shown that for nonrotating black holes,

the relativistic Love numbers all vanish. Landry & Poisson (2015) also showed that the

relativistic Love numbers vanish for slowly rotating black holes.

We examine two scenarios: spinning systems with no tidal corrections and nonspinning

systems with tidal corrections. For spinning systems we “turn on” the 1.5 pN- to 2.5 pN

order spin corrections in the phase by setting the parameter ε = 1 in Eq. (4.2.4), and

we “turn on” the 3.0 pN- and 3.5 pN order spin corrections in the phase by setting

the parameter α = 1. We also turn on or off the spin corrections in the amplitude

of the waveform as derived in Arun et al. (2009). For nonspinning systems with tidal

corrections, we turn off all of the spin corrections in the phase and the amplitude and

add Eq. (4.2.7) linearly to Eq. (4.2.4) for the phase of the waveform. We do not include

any tidal corrections in the amplitude of the waveform, because they have not yet been

calculated.
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4.3.1 Fisher matrix

We construct the covariance matrix using the Fisher information matrix formalism for

a single detector to determine parameter errors and correlations. For a large enough

signal-to-noise ratio (SNR), the measurement errors on the waveform parameters ~θ given

a gravitational waveform h̃(f) fall into a Gaussian probability density function

p(∆~θ) =

√
det

(
Γ

2π

)
e(−

1
2

Γij∆θ
i∆θj) ,

where Γ is the Fisher information matrix (Creighton & Anderson 2011; Cutler & Flanagan

1994). The components of the Fisher matrix are defined as

Γij =

(
∂h

∂θi
,
∂h

∂θj

)∣∣∣∣
~θmax

, (4.3.1)

where h is the gravitational waveform, θi is a waveform parameter, ~θmax is the set of true

parameters, and (· · · | · · ·) is an inner product defined by

(a, b) = 4Re

∫ ∞
0

ã(f)b̃∗(f)

Sn(f)
df (4.3.2)

for power spectral density Sn(f) (see Sec. 3.1).

The root-mean-square error on a parameter θi is derived from the inverse Fisher

matrix, which is the covariance matrix under certain assumptions (Vallisneri 2008),

(
∆θi
)

rms
=

√
(Γ−1)ii (no summation over i) . (4.3.3)

The correlation between two parameters θi and θj is also derived from the inverse Fisher

matrix,

cij =
(Γ−1)

ij√
(Γ−1)ii (Γ−1)jj

(no summation over i or j) . (4.3.4)

4.3.2 Validity of the Fisher matrix

The Fisher matrix provides an approximation to the covariance matrix that represents

the Cramer-Rao bound (Vallisneri 2008). Studies using the Fisher matrix in the context

of gravitational-wave parameter estimation are vast in the literature (e.g. Poisson & Will
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Figure 28 : The cumulative distribution function (CDF) for the quantity log10R where R ≡ | log r|.
The quantity R, defined in Eq. (4.3.5), is a measure of the self-consistency of the Fisher matrix. This
quantity is calculated at 5000 random points on the 1σ-error surface, and the CDF of these points is
plotted here. The smaller values of R indicate a more self-consistent Fisher matrix. Therefore, the most
self-consistent Fisher matrix calculations have a CDF of R that rises quickly. Above we plot log10R

for a spinning BBH system (m1 = 10 M�, m2 = 11 M�), a spinning NS-BH system (m1 = 1.4 M�,
m2 = 10 M�), and a tidal BBH system (m1 = 10 M�, m2 = 11 M�) all with tc = 0, φc = 0, θ = π/6,
φ = π/6, ψ = π/4 and ι = π/3 and with a fixed SNR of ρ = 100. For the spinning BBH system, the
component spins are χ1 = χ2 = 1, for the spinning NS-BH system the component spins are χ1 = 0
and χ2 = 1, and for the nonspinning, tidal BBH system the tidal deformability parameter is Λ̃ = 0.
The 1σ-error estimates employed in this calculation were obtained from a five- or four-parameter Fisher
matrix calculation with ~θ = {logM, η, tc, χa, χs} or ~θ = {logM, η, tc, Λ̃} for the spinning systems and the
tidal system, respectively. The plot shows results for the Newtonian-amplitude waveform (red triangles),
the 0.5 pN order amplitude-corrected waveform (blue X’s), and the 1.0 pN order amplitude-corrected
waveform (green circles), with spin corrections included in the amplitude for the spinning systems. The
spinning-system plot titles indicate which spin corrections are kept in the phase of the waveform.



85(1995), Cutler & Flanagan (1994), Finn (1992), Nielsen (2013), Hinderer et al. (2010), and

Van Den Broeck & Sengupta (2007)). However, there are several drawbacks in employing

the Fisher matrix for parameter estimation studies. The derivation of the Fisher matrix

requires the linearized signal approximation (LSA), which is only valid in the high-SNR

limit (Vallisneri 2008). Real gravitational-wave detections in the advanced-detector era

are not expected to fall into the high-SNR limit (Abadie et al. 2010). In addition, the

Fisher matrix assumes a Gaussian, single-modal distribution of the likelihood function

(Vallisneri 2008; Rodriguez et al. 2013). In reality, the likelihood could be very non-

Gaussian and multimodal. The Fisher matrix does not fully explore the parameter space

but rather focuses on one point in parameter space and assumes a Gaussian likelihood

about this point. In reality, a full Bayesian calculation of the likelihood function starting

from the raw data and using techniques such as MCMC to explore parameter space is

required for accurate parameter estimation, which has also been studied extensively in

the literature (e.g. Van Der Sluys et al. (2008a), Van Der Sluys et al. (2008b), Veitch

& Vecchio (2010), Raymond et al. (2010), Veitch et al. (2012), the LIGO Scientific Col-

laboration et al. (2013), and Rodriguez et al. (2013)). Rodriguez et al. (2013) perform

an in-depth comparison of the Fisher matrix with a full Bayesian MCMC study and find

that the Fisher matrix can be very ill suited to parameter estimation for certain systems.

Below, we perform some tests to verify the validity of the Fisher matrix approach in our

work.

Vallisneri (2008) discusses a self-consistency check for the Fisher matrix. To determine

the level of self-consistency of the Fisher matrix, we calculate

|log r| = 1

2

(
(∆θj)rmshj −∆h

∣∣ (∆θk)rmshk −∆h
)

(4.3.5)

where hj = ∂h/∂θj|~θmax
, ∆h = h|~θ1σ − h|~θmax

, and ~θ1σ is a point in parameter space

that lies on the 1σ-error surface. The value of | log r| will depend on the SNR, since the

1σ-error surface and parameter root-mean-square errors are a function of SNR.

Fig. 28 plots the cumulative distribution function of log10R (R ≡ | log r|) calculated

for a large number of random points on the 1σ-error surface at a fixed SNR of 100 for

the Newtonian-amplitude waveform (red triangles), the 0.5 pN order amplitude-corrected

waveform (blue X’s), and the 1.0 pN order amplitude-corrected waveform (green circles),
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surface used in the calculation of | log r| came from a five- or four-parameter Fisher matrix

calculation with ~θ = {logM, η, tc, χa, χs} or ~θ = {logM, η, tc, Λ̃} for the spinning systems

and the nonspinning, tidal system, respectively. Fig. 28 shows results for the spinning

systems both with and without the 3.0 pN- and 3.5 pN order spin corrections to the

phase.

Fig. 28 indicates that the approximations necessary for the Fisher matrix formalism

to be self-consistent, such as the linearized signal approximation (LSA), are more valid

for the 1.0 pN order amplitude-corrected waveform with spin corrections in the amplitude

when compared to the Newtonian-amplitude waveform and the 0.5 pN order amplitude-

corrected waveform for the spinning systems. In addition, including the 3.0 pN- and

3.5 pN order spin corrections to the phase for the NS-BH system leads to significant

improvement in the self-consistency of the Fisher matrix. However, the spinning BBH

system is either left unchanged or made slightly less valid by including these higher-order

spin-orbit corrections. For the nonspinning, tidal BBH system, all of the waveforms prove

equally valid.

Vallisneri (2008) notes that the LSA will be more valid for parameter spaces with

weaker correlations. As will be discussed in Sec. 4.5, the amplitude-corrected wave-

forms cause certain parameters that are strongly correlated in the Newtonian-amplitude

waveform to decouple for the spinning BBH system. Parameter correlations are bro-

ken when moving both from the Newtonian-amplitude waveform to the 0.5 pN order

amplitude-corrected waveform and from the 0.5 pN order amplitude-corrected waveform

to the spin-dependent 1.0 pN order amplitude-corrected waveform. Degeneracies are also

slightly decreased when including the 3.0 pN- and 3.5 pN order spin corrections in the

phase for the spinning NS-BH system but mostly unchanged for the spinning BBH system.

Fig. 28 is a good reference for the self-consistency of the Fisher matrix for different

orders of the post-Newtonian expansion. The scale of | log r| indicates that the Fisher

matrix may only be self-consistent for high SNR. Therefore, we perform an additional

investigation into the validity of the Fisher matrix below. The results of this investigation

conclude that the Fisher matrix should give fairly reliable results for the cases we study,
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Figure 29 : The ambiguity function for different systems, as indicated by the title of each plot, over the
most relevant parameters to this work, {M, η, χs, χa}. The amplitude pN order is 0.0 pN for these plots.
In each plot, the parameter on the x axis is varied while all other parameters are held fixed at fiducial
values (see Sec. 4.4). Each plot also shows quadratic fits over three different scales: P ≥ 0.95 (red dashed
line), P ≥ 0.99 (green dot-dashed line), and P ≥ 0.999 (blue solid line). The actual ambiguity function is
shown with black dots. The fit lines are all fairly close to each other, which indicates that the likelihood
for these systems is fairly Gaussian over the relevant scale. In addition, the orange, dotted line shows
the quadratic fit predicted from the Fisher matrix, which is also in good agreement.

even for a SNR of 10.

The Fisher matrix involves the partial derivative of the waveform with respect to a set

of parameters. In order for the Fisher matrix approximation to be valid, the likelihood

needs to be fairly Gaussian on scales appropriate to the SNR being studied. One way to

examine the Gaussianity of the likelihood would be through the ambiguity function P ,

defined in Cho et al. (2013) as

P (~θmax, ~θ) = maxtc,ψ

(
h~θmax

∣∣h~θ)√(
h~θmax

∣∣h~θmax

) (
h~θ
∣∣h~θ) (4.3.6)

where maxtc,ψ means a maximization over coalescence time and polarization angle, as

described in Cho et al. (2013). The ambiguity function is a measure of the overlap between

the true waveform with parameters ~θmax and a waveform described by parameters ~θ.
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curve (Cho et al. 2013). The scale over which the ambiguity function should be quadratic

is determined by the SNR. For a SNR of ρ, the ambiguity function should be well fit

to the same Gaussian over scales up to P ≥ 1 − 1/ρ2 (Cho et al. 2013). Throughout

this work, we mainly study a SNR of ρ = 10, so the scale of interest for the ambiguity

function is P ≥ 0.99. For completeness, we examine the ambiguity function on scales

P ≥ 0.95. Fig. 29 shows the ambiguity function over the most relevant parameters to

this work, {M, η, χs, χa}. In each plot, the parameter on the x-axis is varied while all

other parameters are held fixed at fiducial values, which are outlined for the previous

validity test. Each plot also shows quadratic fits over three different scales: P ≥ 0.95

(red dashed line), P ≥ 0.99 (green dot-dashed line), and P ≥ 0.999 (blue solid line). The

actual ambiguity function is shown with black dots. Although we only show plots for

the spinning BBH system in the Newtonian-amplitude, the plots look very similar for the

different systems studied in this work and across different post-Newtonian approximations

to the amplitude and phase. The quadratic fits across different scales match up well. This

test indicates that the likelihood is appropriately Gaussian for the SNR we study.

Fig. 29 also shows the quadratic fit as predicted by the Fisher matrix (orange dotted

line). The comparison between ambiguity and the Fisher matrix is most simply seen

by examining the logarithm of the Gaussian likelihood, as retrieved from Eqs. (17) and

(22) in Cho et al. (2013), for example. The one-dimensional ambiguity function over

parameter θi not maximized over tc or ψ, denoted below as P̃ , is simply related to the

relevant Fisher matrix component Γii,

P̃ = 1− 1

2

Γii
ρ2

(∆θi)
2 (no summation over i). (4.3.7)

However, to make a more direct comparison with the normalized ambiguity function

maximized over tc and ψ, the parameters DM, tc, and ψ should be projected out of the

Fisher matrix. Projecting out these three parameters is achieved by computing a four-

dimensional Fisher matrix including the parameters of interest, DM, tc, and ψ, inverting

this matrix, and taking the inverse of the relevant component [(Γ−1)ii]
−1

. The orange
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P = 1− 1

2

[(Γ−1)ii]
−1

ρ2
(∆θi)

2 (no summation over i),

where θi is either M, η, χs, or χa. These fits are very consistent with the ambiguity

function calculation in all cases.

Qualitatively, we expect the Fisher matrix results to be accurate. Quantitatively, the

Fisher matrix results will be most accurate for a high SNR. The results in this work are

provided for an SNR of 10. The Fisher matrix results scale very simply from an SNR of 10

if the reader wishes to study different SNR scenarios. Other sources of quantitative error

that may exceed the errors introduced by the Fisher matrix are errors associated with the

inaccuracies of the post-Newtonian waveforms. When working with real data, additional

quantitative errors, such as calibration errors, can also become significant. This work is

intended to give insight into the ability of aLIGO to study tests of general relativity in

a mainly qualitative manner. This study should motivate full Bayesian studies that will

be required to investigate low-SNR scenarios quantitatively.

4.3.3 Singular-value decomposition

The parameter spaces that we investigate can be 11 or 10 dimensional; see Eqs. (4.4.1)

and (4.4.3). In these multidimensional parameter spaces, the Fisher matrix is often

singular or badly conditioned and therefore difficult to invert. One way we address this is

by using a singular-value decomposition (SVD) on the Fisher matrix (Pai & Arun 2013).

The SVD of a matrix Γ is

Γ = USV† , (4.3.8)

where S is a diagonal matrix whose diagonal elements contain the singular values, and

U and V are unitary matrices of the left and right singular vectors, respectively. The

covariance matrix in terms of its singular-value decomposition is

Γ−1 = VS−1U† .

Since the Fisher matrix is real and symmetric by definition, for our case we have V = U

and this matrix will be an orthogonal matrix of the real eigenvectors of Γ.
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very small. We remove the singular or badly conditioned pieces of the Fisher matrix by

zeroing out the elements of S−1 that are very large or infinite. These elements correspond

to the zero or very small singular values of the Fisher matrix, which become infinite or very

large upon inversion. Zeroing out these elements is effectively removing the unmeasurable

linear combinations of parameters from the Fisher matrix. In this way we are able to

obtain error estimates for only the measurable parameters, and we do not have to assume

a priori which are the measurable parameters.

4.4 Parameters and parameter space bounds

4.4.1 Spinning waveform

For the spinning waveform described in Sec. 4.2, the full parameter space is 11 dimen-

sional,

~θspin,full = {log(1/DM), logM, η, tc, φc, cos ι, χa, χs, cos θ, φ, ψ} (4.4.1)

where ι is the inclination angle of the binary, θ and φ are the sky position polar coordi-

nates, ψ is the polarization angle, and χs and χa are the symmetric and antisymmetric

spin parameters described in Sec. 4.2. We use true values of tc = 0, φc = 0, ι = π/3,

θ = π/6, φ = π/6, and ψ = π/4 for all of the results reported here. All calculations are

performed for a fixed SNR, which determines the value of DM for each calculation. The

component masses and spins are varied as described in Sec. 4.5.1.

We find that a smaller dimensional parameter space is required to obtain reliable re-

sults from the Fisher matrix when performing calculations with the Newtonian-amplitude

spinning waveform, even when employing the SVD method described in Sec. 4.3. For the

Newtonian-amplitude spinning waveform calculations, we use a reduced six-dimensional

parameter space:

~θspin,reduced = {log(1/DM), logM, η, tc, χa, χs} . (4.4.2)

For this reduced parameter space, we use true values of tc = 0, φc = 0, ι = π/3, θ = π/6,

φ = π/6, and ψ = π/4, and we vary component masses and spins as described in Sec. 4.5.1.
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system.

We exploit bounds on the symmetric mass ratio and the Kerr parameter to reduce

the acceptable parameter space. The physical bounds on m1 and m2 and the definition

of the symmetric mass ratio restrict η to be between 0 and 1/4. For Kerr solutions,

cosmic censorship requires |~χi| ≤ 1, which restricts |~χs| and |~χa| to be less than or equal

to 1. The bounds on spin and the symmetric mass ratio create a finite region of χs,a − η
parameter space that is both physical and consistent with a Kerr black hole. Excluding the

unphysical areas of η parameter space is not imposed as a flat prior in the Fisher matrix

calculation but is applied after the fact to the error ellipse that results from an unrestricted

Fisher matrix calculation. A more detailed discussion on the improved measurability of

spin by restricting the spin-mass parameter space can be found in Sec. 4.5.1.

For amplitude-corrected waveforms, the 11-dimensional parameter space given in

Eq. (4.4.1) often leads to a badly conditioned or singular Fisher matrix. We use the

singular-value decomposition method discussed in Sec. 4.3 to invert the Fisher matrix

and discover the unmeasurable linear combinations of parameters. For the Newtonian-

amplitude waveform all of the parameters in the reduced parameter space ~θspin,reduced are

measurable. For the lowest-order amplitude-corrected waveform (0.5 pN), the measurable

parameters are M, η, tc, φc, cos ι, χa, and χs. For the 1.0 pN order amplitude-corrected

waveform, the measurable parameters areM, η, tc, φc, cos ι, χa, χs, and φ. In Sec. 4.5.1

we only report on the measurement errors for M, η, χs and χa, since these are the most

pertinent to our study.

4.4.2 Nonspinning, tidal waveform

For the nonspinning, tidal waveform described in Sec. 4.2, we investigate a 10–dimensional

parameter space,

~θtidal =
{

log(1/DM), logM, η, tc, φc, cos ι, Λ̃, cos θ, φ, ψ
}
. (4.4.3)

We use true values of tc = 0, φc = 0, ι = π/3, θ = π/6, φ = π/6, and ψ = π/4 for

all of the results reported here. All calculations are performed for a fixed SNR, which



92determines the value of DM for each calculation. The component masses and the tidal

parameter are varied as described in Sec. 4.5.2.

As was the case with the spinning waveform, the tidal parameter space also has

bounds with useful physical interpretations. We explore how exploiting the physical

bound on the symmetric mass ratio (0 < η ≤ 1/4) affects the measurability of the

tidal parameter. In addition, we place a bound on the tidal deformability parameter

(Λ̃ = 0) for the waveform to be consistent with expectations from the no-hair theorem,

in the sense described in Sec. 4.1. Previous work on tidal deformability calculations for

compact systems (Damour & Nagar 2009) suggests that δΨtidal should be zero or small

for black holes. The closest matter analog would be an incompressible star at maximum

compactness (c = m/r = 4/9), for which the tidal Love number would be k2 = 0.0017103

(Damour & Nagar 2009). For an equal mass, equal radius binary system, the parameter

Λ̃ is

Λ̃ =
λ̃

(2m)5
=

λ

(2m)5
=

1

48
k2

( r
m

)5

where the above follows from the definition of λ̃ (given by Eq. (4.2.8)) for an equal mass

system, λ is the tidal parameter for one component object as defined in Eq. (4.2.9), r is the

radius of one component object, and m is the mass of one component object. Using the

ratio of m/r for maximum compactness in the above expression gives Λ̃ ≈ 0.002. There-

fore, it is reasonable to conclude that the parameter Λ̃ should be small, if not identically

zero, for black holes. There could potentially be internal structure effects appearing at 5.0

pN order in the phase that differ from the point particle approximation, but these effects

should be undetectable for a black hole to have no hair. Therefore, we take δΨtidal = 0,

which implies Λ̃ = 0, for a nonspinning black hole with no hair. For the most comprehen-

sive aLIGO test of the no-hair theorem, it would be more appropriate to use numerical

relativity waveforms with various realizations of internal structure parameterized by Λ̃.

Just as with the spinning waveform, this 10–dimensional parameter space often

leads to a badly conditioned or singular Fisher matrix. Using the method described in

Sec. 4.3, we determine the measurable parameters for each waveform. For the Newtonian-

amplitude waveform, the measurable parameters areM, η, tc, and Λ̃. For the lowest-order

amplitude-corrected waveform (0.5 pN), the measurable parameters areM, η, tc, φc, cos ι,
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Figure 30 : The 1σ error ellipses in the η − χs parameter space for a spinning Newtonian-amplitude
waveform with spin corrections in the phase to 2.5 pN order as described in Sec. 4.2 and with the reduced
parameter space ~θspin,reduced given in Eq. (4.4.2). These ellipses are calculated for a spinning BBH system
with m1 = 10 M� and m2 = 11 M� (left plot) and a spinning NS-BH system with m1 = 1.4 M� and
m2 = 10 M� (right plot). Both systems have true parameters tc = 0, φc = 0, θ = π/6, φ = π/6, ψ = π/4
and ι = π/3 and a fixed SNR of ρ = 10. For the BBH system, the component spins are varied from
χ1 = χ2 = −4 (red dashed ellipse) to χ1 = χ2 = 4 (purple solid ellipse). Each ellipse takes a step of
2 in component spins. For the NS-BH system, the component spins are varied from χ1 = 0, χ2 = −8
(red dashed ellipse) to χ1 = 0, χ2 = 8 (purple, solid ellipse). Each ellipse takes a step of 2 in χs, which
corresponds to the black hole taking a step of 4 in its component spin. The neutron star spin is held
fixed at zero. The numbers near each ellipse indicate the χs value for that ellipse (color coded).

and Λ̃. For the 1.0 pN order amplitude-corrected waveforms, φ also becomes measurable.

In Sec. 4.5.2 we only report on the measurement errors for M, η, and Λ̃, since these are

the most pertinent to our study.

4.5 Results

4.5.1 Detectable apparent violations of the cosmic censorship conjecture

We study two different spinning systems: a near equal mass binary black hole (BBH)

system with component masses m1 = 10 M� and m2 = 11 M� and a neutron-star–

black-hole (NS-BH) system with component masses m1 = 1.4 M� and m2 = 10 M�.

The exactly equal mass limit is avoided due to singularities in the Fisher matrix at the

equal mass limit when including amplitude corrections. Both systems are parameterized

as described by Eqs. (4.4.1) or (4.4.2) and are subject to the parameter space bounds

discussed in Sec. 4.4.1. We use the spinning waveform described in Sec. 4.2 with the

phase kept to 3.5 pN order and the amplitude varied from 0.0 pN to 2.5 pN order. Spin

corrections are always included in the phase to 2.5 pN order. We study the effect of
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Figure 31 : The 1σ error ellipses in the η − χs parameter space for a spinning Newtonian-amplitude
waveform with spin corrections in the phase to 2.5 pN order as described in Sec. 4.2 and with the
reduced parameter space ~θspin,reduced given in Eq. (4.4.2). These ellipses are calculated for a spinning
BBH system with m1 = 10 M�, m2 = 11 M�, tc = 0, φc = 0, θ = π/6, φ = π/6, ψ = π/4 and ι = π/3
and with a fixed SNR of ρ = 10. The component spins for each ellipse are given as an inlay on the plot.
The plot on the left shows the minimum detectable violation of the Kerr bound when considering the
entire parameter space. The plot on the right shows the minimum detectable violation of the Kerr bound
when only considering the parts of the error ellipse that are physical. The unphysical areas of parameter
space are shaded gray in the plot on the right. The vertical solid lines bound the region of parameter
space that is consistent with the Kerr bound (−1 ≤ χs ≤ 1).

turning on or off spin corrections in the amplitude of the waveform and turning on or off

the 3.0 pN and 3.5 pN order spin corrections in the phase.

We use the zero detuned, high power aLIGO power spectrum as given in Shoemaker

(2009) for the power spectral density Sn(f). The inner product integrations are carried

out from fmin = 10 Hz to fmax = kFLSO where (Creighton & Anderson 2011)

FLSO =
1

63/22πM
. (4.5.1)

We choose to only examine positive (aligned) spins when determining the minimum

detectable violation of the Kerr spin bound. Negative (anti-aligned) spins are not as

well measured as positive spins, and therefore will lead to a larger minimum detectable

violation of the Kerr bound. Fig. 30 shows the 1σ error ellipses as produced by the Fisher

matrix for both the spinning BBH system and the spinning NS-BH system. Each ellipse is

calculated for different values of component spin. Fig. 30 demonstrates how positive spins

are more measurable than negative spins and therefore more useful in determining the

minimum detectable violation. The figure also illustrates how parameter measurability

varies significantly for different values of spin for the BBH system and the NS-BH system.

One goal of our work with spinning black hole systems is to investigate how much
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the physical area of η parameter space is considered (see Sec. 4.4.1 for a discussion of

parameter space bounds). As mentioned before, this is not done by imposing a flat prior

on the Fisher matrix. Rather, an unrestricted Fisher matrix calculation is performed.

We examine the 1σ error ellipses in the η−χs or η−χa plane and determine if the entire

physical area of the ellipse is consistent or inconsistent with the Kerr bound. We explore

the parameter space until we find the minimum χi = ji/(mi)
2 that violate the Kerr bound

when considering only physical parts of the error ellipse. As can be seen in Tables 2– 5,

the parameter χs is better measured than the parameter χa. As discussed above and

shown in Fig. 30, positive spins are also better measured than negative spins. Therefore,

we determine the minimum violation of the χs = 1 bound in order to determine the

minimum violation of the Kerr bound.

Fig. 31 compares the minimally violating spin values for a Newtonian-amplitude wave-

form when considering the entire parameter space (left plot) versus considering only the

physical area of parameter space (right plot). The error ellipse on the right of Fig. 31

is consistent with the Kerr bound when considering the entire parameter space, but it is

inconsistent with the Kerr bound when considering only the area of the ellipse within the

physically-allowed region of η. Results are shown for only the spinning BBH system. The

spinning NS-BH system is not affected by bounding values of η due to the error ellipse’s

orientation and placement in parameter space, as is evident in Fig. 33.

The strong correlation between the symmetric mass ratio η and spin when using

a Newtonian-amplitude waveform has been studied by Baird et al. (2013) and Nielsen

(2013), among others. The correlation between mass and spin can be seen in Figs. 31, 32

and 33. As a result, the spin parameters are not well measured with the Newtonian-

amplitude waveform when considering the full η − χs parameter space. However, by

restricting the parameter space to only the physical region of η for the spinning BBH

system, aLIGO’s ability to detect violations of the Kerr bound increases by about a

factor of three. This result is also summarized in Table 2.

We examine how the measurability of spin is affected by including spin-independent

and spin-dependent amplitude corrections. The measurability of spin for waveforms with
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Figure 32 : The σ error ellipses in the η − χs parameter space for various spinning, amplitude-corrected
waveforms with spin corrections in the phase to 2.5 pN order as described in Sec. 4.2. The title of each
plot indicates the pN order amplitude correction. For the 1.0 pN order amplitude-corrected waveform,
the title also indicates whether spin corrections have been included in the amplitude. These ellipses are
calculated for a spinning BBH system with true parameters m1 = 10 M�, m2 = 11 M�, tc = 0, φc = 0,
θ = π/6, φ = π/6, ψ = π/4 and ι = π/3 and with a fixed SNR of ρ = 10. The component spins for
the solid, blue ellipses are given as an inlay on the plot. These spins indicate the minimum detectable
apparent violation of cosmic censorship. The dashed, red ellipses are calculated with the fiducial spin
values of χ1 = χ2 = 1 in each plot. The plots on the left are all to the same scale for comparison
purposes. The plots on the right are shown to a scale appropriate for each ellipse. The unphysical areas
of parameter space are shaded gray. The vertical solid lines bound the region of parameter space that is
consistent with cosmic censorship (−1 ≤ χs ≤ 1).
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Figure 33 : The 1σ error ellipses in the η−χs parameter space for various spinning, amplitude-corrected
waveforms with spin corrections in the phase to 2.5 pN order as described in Sec. 4.2. The title of each
plot indicates the pN order amplitude correction. For the 1.0 pN order amplitude-corrected waveform,
the title also indicates whether spin corrections have been included in the amplitude. These ellipses
are calculated for a spinning NS-BH system with true parameters m1 = 1.4 M�, m2 = 10 M�, tc = 0,
φc = 0, θ = π/6, φ = π/6, ψ = π/4 and ι = π/3 and with a fixed SNR of ρ = 10. The component spins
for the solid, blue ellipses are given as an inlay on the plot. These spins indicate the minimum detectable
apparent violation of cosmic censorship. The dashed, red ellipses are calculated with the fiducial spin
values of χ1 = 0 and χ2 = 1 in each plot. The plots on the left are all to the same scale for comparison
purposes. The plots on the right are shown to a scale appropriate for each ellipse. The unphysical areas
of parameter space are shaded gray. The vertical solid lines bound the region of parameter space that is
consistent with cosmic censorship (−1 ≤ χs ≤ 1).
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Table 2 : Spinning BBH System This table shows results for the spinning BBH system with true
parameters m1 = 10 M�, m2 = 11 M�, tc = 0, φc = 0, θ = π/6, φ = π/6, ψ = π/4 and ι = π/3 and with
a fixed SNR of ρ = 10. The spins χ1 and χ2 for each scenario are given in the tables. The tables show
the 1σ measurement errors and correlation coefficients obtained from the Fisher matrix using spinning
waveforms as described in Sec. 4.2 with spin corrections in the phase to 2.5 pN order. Also given in the
tables is the distance DM in units of Mpc of the system in order to achieve the fixed SNR of 10. Different
order amplitude corrections, with and without spin in the amplitude, are given in different rows of the
tables. The top table shows results for fiducial spin values of χ1 = χ2 = 1, and the bottom table shows
results for the minimum detectable violating spins for each waveform. The first row of the bottom table
is for the minimum violating spin when the entire η parameter space is considered, and the second row
is when only the physical η parameter space is considered.

pN order in amp. χ1 = χ2 DM ∆M/M ∆η ∆χa ∆χs cηχs cMχs

0.0 pN 1 938 0.0367 2.06 522.2 30.8 –0.9998 0.9989

0.5 pN 1 938 0.00420 0.0411 42.2 2.66 –0.3543 0.9197

1.0 pN 1 879 0.00328 0.00704 28.8 1.84 –0.1541 0.8777

1.5 pN 1 879 0.00339 0.00807 30.5 1.94 –0.1422 0.8844

2.0 pN 1 851 0.00360 0.00752 34.3 2.18 –0.1646 0.8979

2.5 pN 1 851 0.00329 0.00766 29.4 1.87 –0.1491 0.8790

1.0 pN + spin 1 879 0.00164 0.00709 2.84 0.159 0.1568 0.3184

1.5 pN + spin 1 935 0.00168 0.00882 2.56 0.167 0.2238 0.3168

2.0 pN + spin 1 901 0.00167 0.00809 2.44 0.159 0.1734 0.3169

2.5 pN + spin 1 902 0.00166 0.00825 2.44 0.159 0.1741 0.3201

pN order in amp. χ1 = χ2 DM ∆M/M ∆η ∆χa ∆χs cηχs cMχs

0.0 pN (w/o η bound) 4.81 938 0.00609 0.129 103.2 3.81 –0.9998 –0.9452

0.0 pN (w/ η bound) 1.43 938 0.00918 0.936 226.3 11.8 –0.9994 0.9757

0.5 pN 2.33 938 0.00377 0.0411 23.6 1.51 –0.5014 0.8082

1.0 pN 2.08 879 0.00304 0.00709 15.0 1.07 –0.1851 0.8390

1.5 pN 2.12 879 0.00316 0.00810 15.7 1.12 –0.1737 0.8479

2.0 pN 2.21 850 0.00335 0.00755 16.7 1.21 –0.1995 0.8652

2.5 pN 2.09 851 0.00307 0.00769 15.2 1.09 –0.1809 0.8409

1.0 pN + spin 1.16 879 0.00165 0.00708 2.40 0.159 0.1693 0.3344

1.5 pN + spin 1.18 945 0.00170 0.00891 2.57 0.172 0.2471 0.3383

2.0 pN + spin 1.17 909 0.00169 0.00815 2.45 0.163 0.1891 0.3339

2.5 pN + spin 1.17 909 0.00168 0.00831 2.45 0.164 0.1916 0.3381
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Table 3 : Spinning BBH System with 3.0 pN and 3.5 pN Spin-Orbit Phase Terms This table
shows results for the spinning BBH system with true parameters m1 = 10 M�, m2 = 11 M�, tc = 0,
φc = 0, χ1 = χ2 = 1, θ = π/6, φ = π/6, ψ = π/4 and ι = π/3 and with a fixed SNR of ρ = 10. The
table shows the 1σ measurement errors and correlation coefficients obtained from the Fisher matrix using
spinning waveforms as described in Sec. 4.2 with spin corrections in the phase to 3.5 pN order. Also
given in the table is the distance DM in units of Mpc of the system in order to achieve the fixed SNR of
10. Different order amplitude corrections, with and without spin in the amplitude, are given in different
rows of the table.

pN order in amplitude χ1 = χ2 DM ∆M/M ∆η ∆χa ∆χs cηχs cMχs

0.0 pN 1 938 0.00431 0.0681 14.9 1.09 0.9173 0.8811

0.5 pN 1 938 0.00419 0.0358 20.9 1.14 0.1460 0.9062

1.0 pN 1 879 0.00309 0.00697 16.8 1.13 0.1315 0.8686

1.5 pN 1 879 0.00324 0.00798 17.5 1.17 0.1155 0.8788

2.0 pN 1 850 0.00356 0.00742 19.4 1.30 0.1271 0.9000

2.5 pN 1 851 0.00314 0.00757 17.4 1.16 0.1237 0.8736

1.0 pN + spin 1 879 0.00165 0.00707 2.42 0.166 0.1995 0.4112

1.5 pN + spin 1 935 0.00172 0.00880 2.55 0.176 0.2628 0.4319

2.0 pN + spin 1 901 0.00172 0.00806 2.44 0.168 0.2106 0.4303

2.5 pN + spin 1 902 0.00169 0.00822 2.43 0.168 0.2140 0.4224

spin corrections included in the phase but only spin-independent amplitude corrections

was reported in Van Den Broeck & Sengupta (2007). Since then, more accurate spin

corrections to the phase and spin corrections to the amplitude have been calculated. As

described in Sec. 4.2, here we use the waveforms given in Arun et al. (2009), which include

spin corrections in the amplitude to 2.0 pN order and spin corrections in the phase to 2.5

pN order. Later in this section we address the more recent spin-orbit corrections at 3.0

pN and 3.5 pN order in the phase.

The results for different order amplitude corrections, with and without spin corrections

in the amplitude, are shown in Fig. 32 and Table 2 for the BBH system and in Fig. 33

and Table 4 for the NS-BH system. The plots in Figs. 32 and 33 show 1σ error ellipses

for fiducial spin values of χ1 = χ2 = 1 for the BBH system and χ1 = 0, χ2 = 1 for the

NS-BH system (red, dashed ellipses). In addition, the plots show 1σ error ellipses for the

minimum detectable violation of the Kerr bound (blue, solid ellipses). The top table in

Tables 2 and 4 show parameter root-mean-square errors and correlation coefficients for
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Table 4 : Spinning NS-BH System This table shows results for the spinning NS-BH system with
true parameters m1 = 1.4 M�, m2 = 10 M�, tc = 0, φc = 0, θ = π/6, φ = π/6, ψ = π/4 and ι = π/3
and with a fixed SNR of ρ = 10. The spins χ1 and χ2 for each scenario are given in the tables. The
tables show the 1σ measurement errors and correlation coefficients obtained from the Fisher matrix using
spinning waveforms as described in Sec. 4.2 with spin corrections in the phase to 2.5 pN order. Also
given in the table is the distance DM in units of Mpc of the system in order to achieve the fixed SNR of
10. Different order amplitude corrections, with and without spin in the amplitude, are given in different
rows of the tables. The top table shows results for fiducial spin values of χ1 = 0 and χ2 = 1, and the
bottom table shows results for the minimum detectable violating black hole spin for each waveform. The
first row of the bottom table is for the minimum violating spin when the entire η parameter space is
considered, and the second row of the bottom table is for the minimum violating spin when only the
physical η parameter space is considered.

pN order in amplitude χ1 χ2 DM ∆M/M ∆η ∆χa ∆χs cηχs cMχs

0.0 pN 0 1 383 0.00199 0.0399 3.30 2.66 –0.9929 0.9981

0.5 pN 0 1 391 0.00164 0.0340 2.76 2.22 –0.9879 0.9964

1.0 pN 0 1 364 0.00156 0.0329 2.64 2.12 –0.9875 0.9965

1.5 pN 0 1 361 0.00159 0.0335 2.68 2.16 –0.9869 0.9963

2.0 pN 0 1 356 0.00159 0.0336 2.68 2.16 –0.9474 0.9965

2.5 pN 0 1 355 0.00158 0.0336 2.68 2.15 –0.9868 0.9964

1.0 pN + spin 0 1 363 0.00150 0.0316 2.53 2.04 –0.9864 0.9962

1.5 pN + spin 0 1 376 0.00154 0.0322 2.59 2.09 –0.9859 0.9958

2.0 pN + spin 0 1 371 0.00154 0.0323 2.59 2.08 –0.9861 0.9960

2.5 pN + spin 0 1 370 0.00154 0.0323 2.59 2.08 –0.9859 0.9959

pN order in amplitude χ1 χ2 DM ∆M/M ∆η ∆χa ∆χs cηχs cMχs

0.0 pN 0 4.98 383 0.000469 0.0118 2.33 1.49 –0.99996 –0.7490

0.5 pN 0 4.72 391 0.000381 0.0115 2.11 1.35 –0.9998 –0.6461

1.0 pN 0 4.72 364 0.000357 0.0115 2.11 1.35 –0.9998 –0.6148

1.5 pN 0 4.78 362 0.000359 0.0115 2.14 1.37 –0.9998 –0.6162

2.0 pN 0 4.84 358 0.000361 0.0116 2.19 1.41 –0.9998 –0.6277

2.5 pN 0 4.84 356 0.000360 0.0117 2.21 1.42 –0.9998 –0.6232

1.0 pN + spin 0 4.60 365 0.000337 0.0115 2.03 1.30 –0.9997 –0.5566

1.5 pN + spin 0 4.52 435 0.000382 0.0114 1.97 1.26 –0.9995 –0.6175

2.0 pN + spin 0 4.50 430 0.000372 0.0113 1.94 1.24 –0.9995 –0.5960

2.5 pN + spin 0 4.50 429 0.000371 0.0113 1.94 1.24 –0.9994 –0.5914
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Table 5 : Spinning NS-BH System with 3.0 pN and 3.5 pN Spin-Orbit Phase Terms This
table shows results for the spinning NS-BH system with true parameters m1 = 1.4 M�, m2 = 10 M�,
tc = 0, φc = 0, χ1 = 0, χ2 = 1, θ = π/6, φ = π/6, ψ = π/4 and ι = π/3 and with a fixed SNR of ρ = 10.
The table shows the 1σ measurement errors and correlation coefficients obtained from the Fisher matrix
using spinning waveforms as described in Sec. 4.2 with spin corrections in the phase to 3.5 pN order.
Also given in the table is the distance DM in units of Mpc of the system in order to achieve the fixed
SNR of 10. Different order amplitude corrections, with and without spin in the amplitude, are given in
different rows of the table.

pN order in amplitude χ1 χ2 DM ∆M/M ∆η ∆χa ∆χs cηχs cMχs

0.0 pN 0 1 383 0.000452 0.00527 1.05 0.900 0.8153 0.9208

0.5 pN 0 1 390 0.000396 0.00480 0.956 0.822 0.7442 0.9138

1.0 pN 0 1 364 0.000387 0.00462 0.968 0.831 0.7350 0.9181

1.5 pN 0 1 361 0.000394 0.00469 0.991 0.850 0.7251 0.9192

2.0 pN 0 1 356 0.000397 0.00465 1.01 0.868 0.7222 0.9222

2.5 pN 0 1 355 0.000399 0.00466 1.02 0.876 0.7182 0.9229

1.0 pN + spin 0 1 363 0.000385 0.00461 0.963 0.827 0.7324 0.9173

1.5 pN + spin 0 1 376 0.000390 0.00474 0.954 0.819 0.7295 0.9137

2.0 pN + spin 0 1 371 0.000392 0.00471 0.969 0.832 0.7293 0.9162

2.5 pN + spin 0 1 370 0.000393 0.00472 0.976 0.838 0.7251 0.9167

the fiducial spin values. The bottom table in Tables 2 and 4 show parameter errors and

correlation coefficients for the systems that provide the minimum detectable violation of

the Kerr bound with each waveform.

The BBH system is strongly affected by including amplitude corrections in the wave-

form and spin corrections in the amplitude. There is about a factor-of-ten improvement

in the measurability of the spin parameters when the lowest-order amplitude correction

(0.5 pN) is included in the waveform and the spin terms in the phase are kept to 2.5

pN order. Van Den Broeck & Sengupta (2007) also report on improved measurability

of spin when amplitude corrections are included in the waveform. A notable effect in

our calculations is that the symmetric mass ratio decouples from spin and many other

waveform parameters when the first-order amplitude correction is included in the wave-

form.3 There is additional improvement in spin and mass measurability when the 1.0

3Since the correlation between symmetric mass ratio and spin is decreased when using amplitude-

corrected waveforms, restricting the error ellipse to only the physical area of η parameter space does

not significantly improve aLIGO’s ability to detect apparent violations of cosmic censorship with these
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in the degeneracy between spin and chirp mass for this waveform. Furthermore, when

spin corrections are included in the amplitude, which occurs at lowest-order at 1.0 pN,

the measurability of spin improves by an additional factor of about ten. In this case,

including spin corrections in the amplitude breaks the correlation between chirp mass

and spin even further.

The spinning NS-BH system is not strongly affected by including spin-dependent or

nonspinning amplitude corrections. There is a slight improvement in parameter measura-

bility when moving from the Newtonian-amplitude waveform to the amplitude-corrected

waveform, but this effect is not nearly as significant as with the spinning BBH system.

There is an even less significant improvement in parameter measurability for the spinning

NS-BH system when moving from nonspinning amplitude corrections to spin-dependent

amplitude corrections. Overall, the Newtonian-amplitude spinning NS-BH waveform per-

forms equally well as the amplitude-corrected waveforms when it comes to parameter

measurability.

We do a brief study of how parameter measurability is affected by the 3.0 pN and 3.5

pN order spin-orbit corrections to the phase (Marsat et al. 2013). Tables 3 and 5 show

the 1σ errors and correlation coefficients from the Fisher matrix for the spinning BBH

system and the spinning NS-BH system, respectively, with spin corrections in the phase

to 3.5 pN order and the amplitude corrections varied as described in the table.

The BBH system and the NS-BH system are both affected in some way by the 3.0 pN

and 3.5 pN order spin-orbit terms in the phase. For the BBH system, there is more than a

factor-of-ten improvement in the symmetric mass ratio and spin parameter measurability

for the Newtonian-amplitude waveform, and there is about a factor-of-ten improvement

in the chirp mass measurability. The degeneracy between the chirp mass and the spin

is slightly decreased when the 3.0 pN and 3.5 pN order spin terms in the phase are

included in the Newtonian-amplitude waveform, which may be what leads to the improved

measurability of mass and spin. The amplitude-corrected waveforms without spin in the

amplitude show improved measurability of about a factor of two for the spin but not the

waveforms. This is evident from the plots in Fig. 32.
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Figure 34 : The 1σ error ellipses in the η − Λ̃ parameter space for nonspinning, tidal waveforms, as
described in Sec. 4.2. The title of each plot indicates the pN order amplitude correction. These ellipses
were calculated for a BBH system with true parameters m1 = 10 M�, m2 = 11 M�, tc = 0, φc = 0,
θ = π/6, φ = π/6, ψ = π/4 and ι = π/3 and with a fixed SNR of ρ = 10. The tidal parameter Λ̃ for
the solid, blue ellipses is given as an inlay on the plot. These tidal deformability parameters indicate the
minimum detectable deviation from the no-hair theorem for each waveform. The dashed, red ellipses are
shown for the fiducial tidal value of Λ̃ = 0 in each plot. The unphysical areas of parameter space are
shaded gray. The Λ̃ = 0 axis indicates the area of parameter space that is consistent with the no-hair
theorem. Both plots above are shown to the same scale for comparison purposes.

mass parameters, and the amplitude-corrected waveforms with spin corrections in the

amplitude are minimally affected by the 3.0 pN and 3.5 pN order spin-orbit corrections

to the phase.

For all of the different amplitude-corrected waveforms, the spinning NS-BH system

shows about a factor-of-ten improvement in the measurability of the mass parameters

when the 3.0 pN and 3.5 pN order spin-orbit corrections are included in the phase and

about a factor of three improvement in the measurability of the spin parameters. The

3.0 pN and 3.5 pN order spin-orbit phase corrections decrease the degeneracy between

the symmetric mass ratio and the spin parameters, which may lead to the improved

parameter measurability in this case.

4.5.2 Detectable deviations from the no-hair theorem

In this section we discuss aLIGO’s ability to detect deviations from the no-hair theorem

using nonspinning, tidal waveforms, as described in Sec. 4.2. We keep the phase to 5.0

pN order, where point-particle calculations are known to 3.5 pN order and the leading

order tidal correction appears at 5.0 pN order (point-particle corrections to 4.0, 4.5, and

5.0 pN orders are neglected). We vary the amplitude corrections from 0.0 pN to 2.5
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Table 6 : Nonspinning Tidal BBH System This table shows results for the nonspinning BBH system
with true parameters m1 = 10 M�, m2 = 11 M�, tc = 0, φc = 0, θ = π/6, φ = π/6, ψ = π/4 and
ι = π/3 and with a fixed SNR of ρ = 10. The tidal deformability parameter Λ̃ for each scenario is given
in the tables. The tables show the 1σ measurement errors and correlation coefficients obtained from the
Fisher matrix using the tidal waveform as described in Sec. 4.2. Also given in the table is the distance
DM in units of Mpc of the system in order to achieve the fixed SNR of 10. The phase is kept out to
3.5 pN order and different order amplitude corrections are given in different rows of the tables. The top
table shows results for a fiducial tidal parameter value of Λ̃ = 0, and the bottom table shows results for
the minimum detectable violating tides for each waveform.

pN order in amplitude Λ̃ DM ∆M/M ∆η ∆Λ̃ cηΛ̃ cMΛ̃

0.0 pN 0 938 0.00281 0.0200 15.7 0.9326 0.8305

0.5 pN 0 938 0.00234 0.0102 13.1 0.9019 0.7575

1.0 pN 0 879 0.00115 0.00649 7.26 0.6090 0.1241

1.5 pN 0 879 0.00123 0.00723 7.64 0.6569 0.2192

2.0 pN 0 851 0.00118 0.00694 7.77 0.6375 0.1778

2.5 pN 0 851 0.00118 0.00693 7.71 0.6331 0.1758

pN order in amplitude Λ̃ DM ∆M/M ∆η ∆Λ̃ cηΛ̃ cMΛ̃

0.0 pN 18.4 938 0.00281 0.0200 18.4 0.9512 0.8581

0.5 pN 14.4 938 0.00232 0.0160 14.3 0.9193 0.7809

1.0 pN 7.61 879 0.00115 0.00649 7.61 0.6537 0.1723

1.5 pN 8.13 879 0.00123 0.00730 8.12 0.7039 0.2747

2.0 pN 8.19 850 0.00118 0.00698 8.18 0.6831 0.2308

2.5 pN 8.16 851 0.00118 0.00697 8.15 0.6811 0.2305
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since they are not yet calculated. We only investigate heavy systems, nominally BBH

systems, without spin. We look at a near equal mass BBH system with component masses

m1 = 10 M� and m2 = 11 M�. As with the spinning system, the exactly equal mass

limit is avoided due to singularities in the amplitude-corrected waveforms at this limit.

The BBH system is parameterized as described in Sec. 4.4.2. We use the zero detuned,

high power aLIGO power spectrum (Shoemaker 2009) for the power spectral density, and

we perform inner product integrations from fmin = 10 Hz to fmax = kFLSO, where FLSO

is defined in Eq. (4.5.1).

We investigate how both excluding the unphysical values of the symmetric mass ratio

and including different order amplitude corrections to the waveform affect aLIGO’s ability

to detect deviations from the no-hair theorem expectations, as described in Sec. 4.4.2.

The bounds on the symmetric mass ratio parameter space do not decrease the minimum

detectable deviation from the no-hair theorem due to the orientation of the 1σ error

ellipses in the η – Λ̃ plane, as illustrated in Fig. 34. The amplitude corrections do

have a noticeable affect on the measurability of tidal deformability. While the lowest-

order amplitude correction (0.5 pN) does not lead to a dramatic improvement in the

measurability of the tidal parameter Λ̃, the 1.0 pN order amplitude correction does give

about a factor of two improvement in the measurement error on Λ̃. The tidal parameter

is strongly correlated to both the symmetric mass ratio and the chirp mass, but these

correlations are decreased, especially between chirp mass and Λ̃, when using the 1.0 pN

order amplitude-corrected waveform. The results are summarized in Fig. 34 and Table 6

for both the fiducial tidal parameter value of Λ̃ = 0 and for the minimum detectable

violating Λ̃.
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Applying physical limits on the symmetric mass ratio can have a noticeable impact on

aLIGO’s ability to measure spin. When considering a near equal mass, spinning BBH sys-

tem, aLIGO’s ability to test the cosmic censorship conjecture is improved by about a fac-

tor of three by excluding unphysical values of the symmetric mass ratio for a Newtonian-

amplitude waveform, as can be seen in Fig. 31 and Table 2. The frequency domain

waveform given in Eq. (4.2.2) with a Newtonian-amplitude is commonly used for detec-

tion and parameter estimation efforts. The strong correlations between the symmetric

mass ratio and spins result in poor measurability of the spin parameters when using this

waveform. However, our results imply that including a prior on the symmetric mass ratio

can lead to a significant improvement of spin measurability for near equal mass, spinning

BBH systems. We find that a prior on the symmetric mass ratio will not affect unequal

mass systems, as can be seen in Fig. 33, nor will it affect near equal mass systems when

amplitude-corrected waveforms are employed, as can be seen in Fig. 32.

We find that switching from the Newtonian-amplitude waveform to the amplitude-

corrected waveform significantly affects parameter measurability for the near-equal mass,

spinning BBH system, but not for the unequal mass, spinning NS-BH system. Ampli-

tude corrections add multiple harmonics to the gravitational waveform. The Newtonian-

amplitude waveform only includes the second harmonic. However, the 0.5 pN order

amplitude-corrected waveform adds the lowest-order point particle correction to the first

and third harmonics. The 1.0 pN order amplitude-corrected waveform adds a spin cor-

rection to the first harmonic, a point particle correction to the second harmonic and the

lowest-order point particle correction to the fourth harmonic. Parameter measurability

for the spinning BBH system is most significantly affected by the 0.5 pN order point

particle correction terms in the first and third harmonics and the 1.0 pN order spin cor-

rection terms in the first harmonic. The higher order amplitude correction terms above

1.0 pN order minimally affect parameter measurability.

For the spinning BBH system, the lowest-order amplitude correction improves the

measurement error for chirp mass and spin parameters by about a factor-of-ten and for
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amplitude waveform. This translates to about a factor of two improvement on the min-

imum detectable spins that violate the cosmic censorship conjecture when compared to

the Newtonian-amplitude waveform using the full symmetric mass ratio parameter space.

The improved measurability may be due to the breaking of the degeneracy between the

symmetric mass ratio and the spin parameters.

The spinning BBH system shows significant improvement in parameter measurabil-

ity again when the lowest-order spin corrections are added to the amplitude, but the

spinning NS-BH system shows no significant change by including spin terms to the am-

plitude, as is seen in Tables 2 and 4 and Figs. 32 and 33. For the spinning BBH system,

the lowest-order spin corrections to the amplitude result in more than a factor-of-ten

improvement in the measurability of both spin parameters when compared to the 1.0

pN order amplitude-corrected waveform without spin corrections in the amplitude. The

improved measurability may be a result of decoupling chirp mass from spin. There is also

about a factor of two improvement in the measurability of chirp mass when the lowest-

order spin corrections are included in the amplitude. Including spin corrections in the

amplitude leads to about a factor of two improvement in the ability of aLIGO to detect

violations of cosmic censorship for a near equal mass BBH system.

A brief study of how the 3.0 pN and 3.5 pN order spin-orbit phase corrections affect

parameter measurability, summarized in Tables 3 and 5, indicates that these corrections

can have a noticeable impact on the spinning BBH system and the spinning NS-BH

system.

For the spinning BBH system, including the newer spin-orbit phase corrections leads

to significant improvement in mass and spin measurability and a decrease in the degen-

eracy between spin and chirp mass for the Newtonian-amplitude waveform. There is also

some improvement in the measurability of the spin parameters for the amplitude-corrected

waveforms without spin terms in the amplitude. However, the amplitude-corrected wave-

forms with spin terms in the amplitude are mostly unaffected by the 3.0 pN and 3.5 pN

order spin-orbit phase terms.

The spinning NS-BH system demonstrates improved measurability for all different
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pN order spin-orbit phase terms are included in the waveform. More follow-up studies

should be done to see how the 3.0 pN and 3.5 pN order spin-orbit phase corrections affect

aLIGO’s ability to detect apparent violations of the cosmic censorship conjecture.

In summary, aLIGO can theoretically detect spin violations of the cosmic censorship

conjecture at 1σ for an SNR of 10 (or 3σ for an SNR of 30) for a near equal mass

BBH system with component spins as small as χ1 = χ2 = 1.16 when using 1.0 pN

order amplitude-corrected waveforms with spin corrections in the amplitude. In addition,

aLIGO can theoretically detect a spin violation at 1σ for an SNR of 10 (or 3σ for an SNR

of 30) for a spinning NS-BH system with m1 = 1.4 M�, m2 = 10 M�, χ1 = 0 and

χ2 = 4.50 when using the 2.0 pN or 2.5 pN order amplitude-corrected waveform with

spin corrections in the amplitude.

As discussed in Sec. 4.5.2, excluding unphysical values of the symmetric mass ratio

does not affect aLIGO’s ability to test whether the requirements of the no-hair theorem

are fulfilled. However, including amplitude corrections in the waveform does noticeably

affect the measurability of the tidal deformability parameter Λ̃, as shown in Table 6 and

Fig. 34, which improves aLIGO’s ability to detect deviations from the no-hair theorem.

There is some small improvement in parameter measurability when including the 0.5

pN order amplitude correction. However, there is about a factor of two improvement in

measurement error for both mass parameters and the tidal parameter when moving to the

1.0 pN order amplitude-corrected waveform. Note that for the nonspinning BBH system

examined in Sec. 4.5.2, no spin corrections were included in the amplitude. Therefore,

the 1.0 pN order amplitude correction only adds a point particle correction to the second

and fourth harmonic. The tidal parameter Λ̃ is coupled to both the symmetric mass ratio

and the chirp mass for waveforms including up to the 0.5 pN order amplitude correction.

The 1.0 pN order amplitude correction decouples Λ̃ from chirp mass and decreases the

strength of the coupling between Λ̃ and the symmetric mass ratio.

The minimum detectable deviation from the no-hair theorem for a near equal mass

BBH system with m1 = 10 M� and m2 = 11 M� is Λ̃ = 7.61 at 1σ for an SNR of 10 (or 3σ

for an SNR of 30). For comparison, a typical value for Λ̃ for a binary neutron star system
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Table 7 : Advanced LIGO’s ability to measure spin and tidal deformability, and therefore
test cosmic censorship and the no-hair theorem, improves by...

restricting η including higher including spin including the 3.0 pN, 3.5 pN

parameter space harmonics in the amplitude spin-orbit phase terms

spinning yes, only yes, starting yes, starting yes, mostly

BBH at 0.0 pN at 0.5 pN at 1.0 pN at 0.0 pN

spinning no no no yes, for all

NS-BH pN orders

tidal no yes, starting N/A N/A

BBH at 1.0 pN

is about 40, but the value of Λ̃ is strongly dependent on the equation of state (Lackey

et al. 2012). For an incompressible star at maximum compactness, the tidal parameter

would be Λ̃ ≈ 0.002 (Damour & Nagar 2009).

It is worth making a brief mention of what could be causing an apparent violation

of cosmic censorship or the no-hair theorem. There could be exotic objects, such as

boson stars, that do violate cosmic censorship or the no-hair theorem and therefore lead

to an apparent violation through their gravitational waveform. However, observing an

apparent violation of cosmic censorship or the no-hair theorem does not necessarily mean

these conjectures are false. Rather, it could be the theory of gravity, general relativity,

that is wrong, or it could be post-Newtonian theory that is wrong. The post-Newtonian

waveforms employed in this paper are based on assumptions in standard general relativity,

which could be violated for systems such as a naked singularity. However, in the case

of a naked singularity, the quantum gravity effects that are fixing the singularity should

only minimally affect the surrounding spacetime on which post-Newtonian waveforms

are based. In addition, the assumptions of the Kerr solution, such as axial-symmetry

and asymptotic flatness, could not be satisfied. However, detecting a nominal black hole

that violates the Kerr bound or detecting internal structure in a nominal black hole

would be inconsistent with the current post-Newtonian framework of general relativity

and cosmological conjectures in the Kerr geometry.
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We explore ways to improve aLIGO’s ability to test cosmic censorship and the no-hair

theorem by improving the measurability of spin and tidal deformability. We find several

methods for improving parameter measurability that affect different systems and different

amplitude-corrected waveforms in different ways. Table 7 summarizes our findings for how

to improve parameter measurability for each astrophysical system that we examine. The

pN orders in the table all refer to pN order in the amplitude of the waveform, except

when indicated directly.

Our studies indicate that both a prior on the symmetric mass ratio and including

higher harmonics in the waveform can have a significant effect on aLIGO’s ability to test

whether expectations from the cosmic censorship conjecture and the no-hair theorem are

satisfied for some, but not all, systems.

For near equal mass spinning BBH systems, both a prior on the symmetric mass ratio

and including higher harmonics could lead to significant improvement in spin and mass

parameter measurability, and therefore significant improvement in aLIGO’s ability to test

cosmic censorship. In addition, including spin corrections in the amplitude, specifically

the lowest-order spin correction to the first harmonic, could lead to even further improved

measurability of spin and mass parameters. For the Newtonian-amplitude waveform or

the waveforms with nonspinning amplitude corrections, the 3.0 pN and 3.5 pN order

spin-orbit phase terms should lead to improved mass and spin measurability as well.

For the spinning NS-BH system, a prior on the symmetric mass ratio should not lead

to much improvement in aLIGO’s ability to test cosmic censorship. Higher harmonics

should also not improve spin or mass parameter measurability for this system. However,

the 3.0 pN and 3.5 pN order spin-orbit phase corrections should lead to improved mass

and spin measurability for both Newtonian and amplitude-corrected waveforms.

For near equal mass nonspinning BBH systems with tidal corrections, a prior on

the symmetric mass ratio will not improve aLIGO’s ability to investigate the no-hair

theorem, but including higher harmonics in the waveform will improve mass and tidal

measurability.
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monic effects, is discussed briefly in Sec. 4.4. Certain angle parameters, φc, ι, and φ, are

unmeasurable for a single detector with the Newtonian-amplitude waveform. However,

including the lowest-order amplitude correction in the waveform allows both φc and ι to

become measurable, even for a single detector. Including spin corrections in the ampli-

tude further allows the azimuthal angle φ to become measurable for a single detector.

Therefore, higher harmonics can play a significant role in the measurability of some of

the system’s angle parameters, on top of the benefits to mass and spin measurability

discussed above.

Overall, using a flat prior on the symmetric mass ratio and including higher harmonics

in the waveform could provide aLIGO with a keen ability to test the theory of general

relativity with gravitational-wave detections from black hole compact binary coalescence

events in the near equal mass limit.
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Chapter 5

Conclusions

“Good night, black hole.”

— Adam Gamble and Mark Jasper,
Goodnight Galaxy

5.1 Summary

The first direct detections of gravitational waves from astrophysical sources is immi-

nent. The Laser Interferometer Gravitational-wave Observatory (LIGO) is poised as

the leading experiment to participate in the first detections. Tackling the challenging

problem of gravitational-wave detection requires immense effort spread across the entire

gravitational-wave science workflow. This dissertation has reviewed work from three com-

ponents of the gravitational-wave science workflow: (1) the procedure of converting the

output of the LIGO detector into gravitational-wave strain (calibration), (2) a search for

gravitational-wave signals in LIGO data, and (3) post-detection science including tests of

general relativity.

The production of real-time gravitational-wave event candidates is a priority for the

advanced detector era. With low-latency detection, we will be able to fully participate

in electromagnetic follow-up observations to gravitational-wave detections. The essential

first step in low-latency detection is low-latency calibration. I developed a low-latency

time-domain calibration pipeline that will be operating in the advanced detector era using

the gstlal software package. The pipeline has been tested during previous LIGO engi-

neering runs and is currently producing calibrated data for analysis by the collaboration.
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for calibration such that the FIR filters now contain negligible errors. Overall, we are

prepared with reliable and accurate low-latency calibration machinery as we enter into

the first science-quality data taking with advanced interferometers.

The next step in the gravitational-wave science workflow after calibrating the data is

searching the data for gravitational-wave signals. I performed a search on one month of

Initial LIGO (iLIGO) data for sub-solar mass binary black hole systems. The motivation

for this search was both astrophysical and computational. Not only could the search

produce the first detection of gravitational waves or set new upper limits on the rate of

sub-solar mass binary black hole mergers, but the search was also a proof-of-principle for

an Advanced LIGO (aLIGO) binary neutron star (BNS) search. There are similarities in

an iLIGO sub-solar mass binary search and an aLIGO BNS search in both the duration

of signals in band and the number of templates required to appropriately populate the

template bank. I used the gstlal inspiral search pipeline, which is poised as the leading

low-latency compact binary coalescence search pipeline in aLIGO. While no gravitational

waves were found in the iLIGO sub-solar mass binary search, we did find the search was

sensitive out to about 4 Mpc, which is beyond our Local Group. This means we are

now able to probe many other galaxy halos for primordial black hole systems, whereas

microlensing experiments are limited to searching our own Galactic halo. We found

that, upon tuning the pipeline appropriately, we were able to run the search with very

reasonable computational resources. We determined that we would only require about

200 CPUs to produce results for a search with this type of computational burden in low-

latency. Therefore, the low-latency search pipeline is ready for an aLIGO BNS search at

design sensitivity.

The final step in the gravitational-wave science workflow is post-detection science.

Any gravitational-wave detection will be carefully analyzed after-the-fact for details on

the source parameters and consistency of the source with general relativity. I studied

aLIGO’s ability to test two conjectures believed to be true in general relativity: the cosmic

censorship conjecture and the no-hair theorem. I used the Fisher matrix formalism to

determine how well aLIGO will be able to measure spin and tidal parameters for binary
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estimation accuracy will affect our ability to distinguish a system that has violated either

the cosmic censorship conjecture or the no-hair theorem. Including corrections to the

amplitude of the gravitational waveform can break parameter degeneracies between mass

and spin, allowing significant improvement in the measurability of the spin parameter

and therefore aLIGO’s ability to test the cosmic censorship conjecture. In addition,

amplitude corrections can break degeneracies with the tidal parameter, which improves

aLIGO’s ability to test the no-hair theorem. I found with amplitude-corrected waveforms

aLIGO could significantly improve its ability to test conjectures believed to be true in

general relativity.

5.2 Further work

Each of the projects discussed in this dissertation can be expanded and improved in the

future. Below I outline plans for continued work in each of fields.

• Calibraiton: I will continue to improve the accuracy and reliability of the low-

latency time-domain calibration pipeline and prepare the infrastructure for the first

advanced detector science run. We are moving towards a system where the fre-

quency domain models can be automatically and reliably converted into FIR filters,

allowing for a seamless flow of the low-latency calibration network. I will lead this

effort and help continue to improve the calibration infrastructure in the advanced

detector era.

• Sub-solar mass binary search: I will analyze all of LIGO’s fifth and sixth science

runs for sub-solar mass binary black hole systems. In the absence of a detection,

I will place a new upper limit on the existence of sub-solar mass binary black hole

systems.

• Testing cosmic censorship and the no-hair theorem: I plan to expand this

project by using a full Bayesian framework to study aLIGO’s ability to test conjec-

tures believed to be true within general relativity. I will study how different wave-

form accuracies and how different priors affect aLIGO’s ability to measure spin and
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no-hair theorem.

5.3 Closing remarks

Each step in the gravitational-wave science workflow plays a crucial role in the effort to

detect gravitational waves with LIGO. In combination, each effort brings us closer to our

first confident, and fast, detection. In the near future, when gravitational-wave detections

become common place, we will be able to embrace the wealth of new knowledge that is

bound to be uncovered. I anxiously anticipate this time, and I am glad to have been

involved in readying ourselves for the new era of gravitational-wave science.
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