- aLIGO IFO design: to be <u>slightly over-coupled</u> for the carrier
 2% carrier reflectivity
- Higher arm loss & misalignment:
 - ~ may cause the carrier critical- or under-couplling

- What's wrong with the critical-/under-coupling (LSC)

LSC signals:
$$d(CA \times SB) = d(CA) \times SB + \frac{CA \times d(SB)}{CA \times CA}$$

$$d(CA) = CARM + PRCL + MICH, d(SB) = PRCL + MICH$$

=> The vertex signals disappear or suffer sign flip

Mitigation: for lock acquisition 3f signals

for low noise operation POP signals

- What's wrong with the critical-/under-coupling (ASC)

ASC signals: $d(CA \times SB) = CA_{01} \times SB_{00} + \frac{CA_{00} \times SB_{01}}{CA_{01} \times SB_{01}}$

=> The sideband alignment signals disappear?

This may cause servo instability and keep us away from the best alignment

- Some intuition ~ a three mirror cavity

ETM: exicites only CA01 => no singularity by the CA coupling

PRM: exicites only SB₀₁ (CA₀₁ is not resonant in PRC) => singularity at the carrier critical-coupling

excites both CA₀₁ & SB₀₁ => cancellation of the two terms cause singularity but

Question:

Where (at which loss/recycling gain) does this happen?

==> Need simulation

- Possible mitigation: POP WFS (VF, RdR, DM)

WFS signal = $CA_{01} \times SB_{00} + CA_{00} \times SB_{01}$

POP WFS:

At POP, we always have CA and SB => different mixture of the terms

Questions:

- Which signal should we use? (POP9, 45, or 36?)
- Is the noise level good enough for the low noise operation? Or are the signals only used for the acquisition stage?

==> Need simulation