

White Light Cavity Ideas and General Sensitivity Limits

G1500730

Haixing Miao

University of Birmingham

Summarizing researches by several LSC groups

Outline

* Mizuno Limit

- ➤ Shot-noise-limited sensitivity and signal recycling
- ➤ A limit on peak sensitivity and bandwidth

❖ Approaches for Surpassing Mizuno Limit

- > Peak-sensitivity-oriented: external/internal squeezing
- > Bandwidth-oriented: white-light-cavity ideas
- ➤ An overview of key issues for future upgrades

***** Fundamental Quantum Limit

- ➤ A limit beyond the Standard Quantum Limit and Mizuno Limit
- Some implications for configuration studies in future

Outline

***** Mizuno Limit

- ➤ Shot-noise-limited sensitivity and signal recycling
- ➤ A limit on peak sensitivity and bandwidth
- **Approaches for Surpassing Mizuno Limit**
- > Peak-sensitivity-oriented: external/internal squeezing
- **Bandwidth-oriented**: white-light-cavity ideas
- ➤ An overview of key issues for future upgrades

Fundamental Quantum Limit

- ➤ A limit beyond the Standard Quantum Limit and Mizuno Limit
- > Some implications for configuration studies in future

Mizuno Limit

Shot-noise-limited sensitivity and signal recycling:

Mizuno Limit

Shot-noise-limited sensitivity and signal recycling:

A limit on peak sensitivity and bandwidth product:

Order-of-magnitude: $\Delta B/S_{hh}^{\rm shot}|_{\rm peak} \approx {\rm constant}$

Mizuno Limit

Shot-noise-limited sensitivity and signal recycling:

A limit on peak sensitivity and bandwidth product:

Order-of-magnitude: $\Delta B/S_{hh}^{\rm shot}|_{\rm peak} \approx {\rm constant}$

More precisely:
$$\int \frac{1}{S_{hh}^{\rm shot}(\Omega)} \mathrm{d}\Omega \leq 2\pi\omega_0^2 \left(\frac{P_c L_{\rm arm}}{\hbar\omega_0 c}\right)$$

Only depends on power and arm length.

Outline

Mizuno Limit

- > Shot-noise-limited sensitivity and signal recycling
- ➤ A limit on peak sensitivity and bandwidth

Approaches for Surpassing Mizuno Limit

- > Peak-sensitivity-oriented: external/internal squeezing
- > **Bandwidth-oriented**: white-light-cavity ideas
- ➤ An overview of key issues for future upgrades

Fundamental Quantum Limit

- A limit beyond the Standard Quantum Limit and Mizuno Limit
- > Some implications for configuration studies in future

Peak-sensitivity oriented: external squeezing

Challenge: optical loss of injection path

Max Mizuno beating factor:
$$\int \frac{\mathrm{d}\Omega}{S_{hh}^{\mathrm{sqz}}(\Omega)} / \int \frac{\mathrm{d}\Omega}{S_{hh}(\Omega)} \approx \left(\frac{\epsilon_{\mathrm{OPO}}}{1 - r_{\mathrm{SQZ}}^2} + \epsilon_{\mathrm{injection}}\right)^{-1}$$

Peak-sensitivity oriented: internal squeezing

Challenge: optical loss of the nonlinear crystal

Max Mizuno beating factor:
$$\int \frac{\mathrm{d}\Omega}{S_{hh}^{\mathrm{sqz}}(\Omega)} / \int \frac{\mathrm{d}\Omega}{S_{hh}(\Omega)} \approx \left(\frac{1 - r_{\mathrm{SRM}}^2}{\epsilon_{\mathrm{OPO}}}\right)^{-1/2}$$

Reference: Mikhail Korobko & Roman Schnabel et al., in preparation

Bandwidth-oriented: white-light-cavity ideas

Principle: Negative dispersion to compensate propagation phase

Advantage: Long coherence time and tunable

Challenges: (1) Wavelength compatibility (frequency conversion)

(2) Additional quantum noise (currently under study)

Reference: Zhou et al., arXiv:1410.6877; Yiqiu Ma et al. arXiv:1501.01349

Bandwidth-oriented: white-light-cavity ideas

Shahriar's group

Mikhailov's group

Bandwidth-oriented: white-light-cavity ideas

Shahriar's group

Mikhailov's group

Working wavelengths

transitions in alkali atom (780, 795, 590, 852, 895 nm)

Bandwidth-oriented: white-light-cavity ideas

Challenge: thermal noise from mechanical oscillator (optomechanics)

$$\frac{k_B T_{\text{envir}}}{Q_m} < \hbar \gamma_{\text{SRM}}$$

Bandwidth-oriented: white-light-cavity ideas

Case II:

An example using optomechanics:

Challenge: thermal noise from mechanical oscillator (optomechanics)

$$\frac{T_{\text{envir}}}{Q_m} \le 6 \times 10^{-10} \text{K} \left(\frac{\gamma_{\text{SRM}}/2\pi}{100 \text{Hz}} \right)$$

Reference: Miao et al., LIGO DCC: P1400255

Overview of key challenges for upgrades

- **❖** Peak-sensitivity-oriented: external/internal squeezing
- > Advantage: fully understood and ready to implement
- Challenge: optical loss in injection path (external squeezing) or in nonlinear crystal (internal squeezing).
- **Bandwidth-oriented: white-light-cavity ideas**
- > Advantage: long coherence time and tunable
- Challenges and readiness:

Atomic-based:

- (1) Compatibility of wavelength (using frequency conversion).
- (2) A complete quantum noise analysis (currently under way).

Readiness: around 5-10 years according to Shahriar and Mikhailov.

Optomechanics-based:

- (1) Thermal noise in the optomechanical oscillator.
- (2) Additional feedback control scheme.

Readiness: conditional on progress in optomechanics.

Outline

❖ Mizuno Limit

- > Shot-noise-limited sensitivity and signal recycling
- ➤ A limit on peak sensitivity and bandwidth

Approaches for Surpassing Mizuno Limit

- > Peak-sensitivity-oriented: external/internal squeezing
- > Bandwidth-oriented: white-light-cavity ideas
- ➤ An overview of key issues for future upgrades

***** Fundamental Quantum Limit

- ➤ A limit beyond the Standard Quantum Limit and Mizuno Limit
- > Some implications for configuration studies in future

Tuned signal recycling: Standard Quantum Limit

A tradeoff between the radiation pressure noise and shot noise

Cancelling radiation pressure noise: Mizuno Limit

A tradeoff between the peak sensitivity and detector bandwidth

Using squeezing or white-light cavities: Next Limit?

Tuned signal recycling: Standard Quantum Limit

A tradeoff between the radiation pressure noise and shot noise

Cancelling radiation pressure noise: Mizuno Limit

A tradeoff between the peak sensitivity and detector bandwidth

Using squeezing or white-light cavities: Next Limit?

$$SNR_{max} \le \langle \hat{S}_{int}/\hbar^2 \rangle = \frac{1}{\hbar^2} \langle [\int dt \, \hat{H}_{int}(t)]^2 \rangle$$

GW detectors as force measurement devices:

$$\hat{H}_{\text{int}}(t) = \hat{x}(t) F_{\text{GW}}(t) = \hat{x}(t) M L_{\text{arm}} \ddot{h}(t)$$

$$SNR_{max} \le \langle \hat{S}_{int}/\hbar^2 \rangle = \frac{1}{\hbar^2} \langle [\int dt \, \hat{H}_{int}(t)]^2 \rangle$$

GW detectors as force measurement devices:

$$\hat{H}_{\rm int}(t) = \hat{x}(t) F_{\rm GW}(t) = \hat{x}(t) M L_{\rm arm} \ddot{h}(t)$$

For any interferometer configuration:

 $\frac{\text{(Displacement spectrum)}}{\text{SNR}_{\max}} \leq \frac{M^2 L_{\text{arm}}^2}{\hbar^2} \int \mathrm{d}\Omega \, |h(\Omega)|^2 \Omega^4 S_{xx}^{\text{quant}}(\Omega)$

$$SNR_{max} \le \langle \hat{S}_{int}/\hbar^2 \rangle = \frac{1}{\hbar^2} \langle [\int dt \, \hat{H}_{int}(t)]^2 \rangle$$

GW detectors as force measurement devices:

$$\hat{H}_{\rm int}(t) = \hat{x}(t) F_{\rm GW}(t) = \hat{x}(t) M L_{\rm arm} \ddot{h}(t)$$

For any interferometer configuration:

$$\begin{aligned} & \text{SNR}_{\text{max}} \leq \frac{M^2 L_{\text{arm}}^2}{\hbar^2} \int \mathrm{d}\Omega \, |h(\Omega)|^2 \Omega^4 S_{xx}^{\text{quant}}(\Omega) \\ & = \frac{M^2 L_{\text{arm}}^2}{\hbar^2} \int \mathrm{d}\Omega \, |h(\Omega)|^2 \Omega^4 |R_{xx}(\Omega)|^2 S_{FF}^{\text{quant}}(\Omega) \end{aligned}$$

Strong back action force (high energy) is necessary for high SNR.

Energetic Quantum Limit

References: [1] Braginsky *et al.*, arXiv: 9907057 (gr-qc); [2]Tsang *et al.* PRL **106**, 090401 (2011); [3] Yiqiu Ma *et al.* (in preparation)

$$\frac{\text{SNR}_{\text{max}}}{\hbar^2} \leq \frac{M^2 L_{\text{arm}}^2}{\hbar^2} \int d\Omega |h(\Omega)|^2 \Omega^4 |R_{xx}(\Omega)|^2 S_{FF}^{\text{quant}}(\Omega)$$

Applied to tuned configurations (no optical spring):

$$R_{xx}(\Omega) = -1/(M\Omega^2)$$
 $S_{FF}^{\text{quant}}(\Omega) = S_{PP}(\Omega)/c^2$

$$SNR_{\max} \leq \frac{M^2 L_{\text{arm}}^2}{\hbar^2} \int d\Omega |h(\Omega)|^2 \Omega^4 |R_{xx}(\Omega)|^2 S_{FF}^{\text{quant}}(\Omega)$$

Applied to tuned configurations (no optical spring):

$$R_{xx}(\Omega) = -1/(M\Omega^2)$$
 $S_{FF}^{\text{quant}}(\Omega) = S_{PP}(\Omega)/c^2$

With matching filtering:

$$SNR_{max} = \int \frac{|h(\Omega)|^2}{S_{hh}^{quant}(\Omega)} d\Omega$$

$$SNR_{\max} \leq \frac{M^2 L_{\text{arm}}^2}{\hbar^2} \int d\Omega |h(\Omega)|^2 \Omega^4 |R_{xx}(\Omega)|^2 S_{FF}^{\text{quant}}(\Omega)$$

Applied to tuned configurations (no optical spring):

$$R_{xx}(\Omega) = -1/(M\Omega^2)$$
 $S_{FF}^{\text{quant}}(\Omega) = S_{PP}(\Omega)/c^2$

With matching filtering:

$$SNR_{max} = \int \frac{|h(\Omega)|^2}{S_{hh}^{quant}(\Omega)} d\Omega$$

Leading to a generalized Mizuno limit [$h(\Omega) = 1$]:

$$\int \frac{\mathrm{d}\Omega}{S_{hh}^{\mathrm{quant}}(\Omega)} \leq \frac{L_{\mathrm{arm}}^2}{\hbar^2 c^2} \int \mathrm{d}\Omega \, S_{PP}(\Omega) = \frac{L_{\mathrm{arm}}^2}{\hbar^2 c^2} V_{PP} \text{ (variance of power fluctuation)}$$

Upper sensitivity bound for all schemes with squeezing and WLC.

For any interferometer configuration:

$$SNR_{\max} \leq \frac{M^2 L_{\text{arm}}^2}{\hbar^2} \int d\Omega |h(\Omega)|^2 \Omega^4 |R_{xx}(\Omega)|^2 S_{FF}^{\text{quant}}(\Omega)$$

Implications:

Approach 1: increasing the back action

Higher power and more squeezing (external/internal)

Approach 2: increasing mechanical response

Modifying test-mass dynamics using optical spring (optical bar)

Note: proper filtering schemes are needed to approach such SNR

(Speedmeter, frequency-dependent readout, intra-cavity filtering)

For any interferometer configuration:

$$SNR_{\max} \leq \frac{M^2 L_{\text{arm}}^2}{\hbar^2} \int d\Omega |h(\Omega)|^2 \Omega^4 |R_{xx}(\Omega)|^2 S_{FF}^{\text{quant}}(\Omega)$$

Implications: increasing the back action & mechanical response

Two interesting examples combining these two aspects:

Mingchuan Zhou & Shahriar *et al*. arXiv:1410.6877

Farid Khalili & Kentaro et al.

The End

❖ Mizuno Limit

- ➤ Shot-noise-limited sensitivity and signal recycling
- ➤ A limit on peak sensitivity and bandwidth

Approaches for Surpassing Mizuno Limit

- > Peak-sensitivity-oriented: external/internal squeezing
- > Bandwidth-oriented: white-light-cavity ideas
- ➤ An overview of key issues for future upgrades

***** Fundamental Quantum Limit

- ➤ A limit beyond the Standard Quantum Limit and Mizuno Limit
- Some implications for configuration studies in future