Topologies and Squeezing Workshop @ GWADW Tue-We, May 19-20

Organizers: Hartmut Grote, Lisa Barsotti LIGO-G1500725

Introduction

- ♦A lot of ideas proposed/tested to reduce quantum noise, with a variety of levels of "realism"
- ♦ Squeezing and input filtering (filter cavity) considered the most plausible options for near term upgrade of advanced detectors
- → see Enhanced Interferometers session this afternoon
- ♦ This Workshop: where do we go from there? (current facilities and new facilities)

Goals

♦ Goal #1: (re)establish applicability/readiness of quantum noise mitigation techniques to go beyond advanced detector sensitivity, both in current facilities and new facilities

Workshop Details

- **♦**Guidelines for speakers:
 - ♦ Is this topology/technology ready to be used in GW detectors 10-20 years from now?
 - ♦ Is this topology/technology particularly useful for a 10-40 km facility?
- **♦**Agenda

WORKSHOP – DAY 1 (TOMORROW)

Tuesday AM, May 19

9:00 - 10:30 Squeezing now and in the future: the road to 10 dB

- K.Dooley/E. Schreiber (25 min talk) focused on losses and control scheme with squeezing injection
- T. Isogai (25 min talk) focused on input filtering
- Discussion
- 10:30 11:00 Break %%%%%%%%
- 11:00 12:30 "Intra-cavity" filtering
 - Overview (K. Somiya, 25 min)
 - White light cavities (H. Miao, 25 min)
 - Discussion

Tuesday PM, May 19

4:00 – 5:30 **Output filtering**

- Variational readout (J. Harms, 25 min)
- Output "anti-squeezing" (G. Cella, 25 min)
- Discussion
- 5:30 6:00 What have we learned today? (All)

WORKSHOP – DAY 2 (WEDNESDAY)

Wednesday AM May 20

9:00 - 10:30 **Opto-mechanical interactions**

- Status and prospects for application in GW detectors (A. Libson/T. Corbitt, 30-45 min)
- Discussion

<u>Wednesday PM May 20</u>

4:00 - 5:30 **Topologies**

- Speed-meter (S. Danlishin, 25-30 min)
- Discussion
- Round table: Topology study for new facilities
 (D. McClelland, D. Sigg, S. Hild, M. Evans, S. Ballmer, H. Lueck)

6:00 - 7:00 TBD, based on inputs from previous sessions

Goals

- ♦ Goal #1: (re)establish applicability/readiness of quantum noise mitigation techniques to go beyond advanced detector sensitivity, both in current facilities and new facilities
- ♦ Goal #2: (re)evaluate these options in the broader context of the "science" we want/ need to do, and the necessary R&D

Philosophical Slide

- ♦Asking ourselves the right questions is sometimes more important than finding the right answers
- ♦What we perceives as "feasible" and "realistic" also changes over time (thanks to experimental results, better models, etc)

Some examples:

near term future "post first-detection"

(discussion @"What's next for LIGO?" workshop)

Questions inspired by Rai Weiss: "What's going on with signal recycling detuning for aLIGO? You can't just remove it from your slides and pretend no one noticed it...what if we need to track a source at 1 kHz?"

- → Shall we revise the option of signal recycling detuning, in the context of having squeezed light, for current detectors? (Not a new question ... time to re-look at it?)
- → Can a combination of <u>squeezed light</u>, <u>signal recycling</u> detuning, and <u>homodyne detection phase</u> be helpful to react to some pressing needs that advanced detectors might face (like: maximize Binary Neutron Star range, maximize high frequency sensitivity in the 1-4 kHz region)?

Some examples: Topologies for new detectors

- ♦ Speed-meter topology identified as the most promising of all techniques for quantum noise reduction (beyond squeezing + filter cavities) to be explored in the R&D phase
- ♦ R&D indeed on-going!
- ♦ Recent paper:

"We show that Sagnac interferometer has superior potential for broadband sensitivity gain compared to Michelson interferometer for any given set of advanced interferometric techniques [..]"

- ♦ Shall we re-evaluate this and maybe other topologies in the context of a 10-40 km facility?
 - round table discussion Wed afternoon

Some examples: How is the design of future detectors going to be impacted by the first few detections?

What are the "right" questions?